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Abstract- We introduce metrics on sensorimotor expe-
rience at various temporal scales based on information-
theory. Sensorimotor variables through which the ex-
perience of an agent flows are modeled as information
sources in the sense of Shannon information theory. In-
formation distance between the constellation of an em-
bodied agent’s sensorimotor variables at different mo-
ments in time can be taken variable-by-variable or be-
tween entire sets of such variables to yield two classes of
metrics on sensorimotor experience: the temporal expe-
riential information distance and the Hausdorff metric on
experience. Unlike mutual information, these measures
each satisfy the metric axioms and thus induce a geom-
etry on the space of experiences with the same temporal
scope. Continuity of maps between experiential spaces
as well as robotic applications and extensions are dis-
cussed.

1 Motivation

Enactive and dynamical systems views of interaction of em-
bodied organisms, robots, and agents suggest that develop-
ment and learning can be viewed in dynamical terms as the
activity over time of dynamical systems structurally cou-
pled to their environment, including the social environment
[5, 18, 15, 3, 8, 2]. This activity is understood via tran-
sitions between various kinds of interaction patterns repre-
senting characteristic “attractors” in the space of dynami-
cal behaviours, as is the growth of the set of possible in-
teractions and behaviours in the unfolding of a dynamical
system corresponding to the agent in the course of its on-
togeny. Exploration of this high-dimensional space, involv-
ing re-experiencing, predicting and varying actions in famil-
iar behaviours is seen as the means to scaffold the agent’s
development and learning. How can we begin to realize this
in artificial agents such as robots?

1.1 Sensorimotor Experience

Sensorimotor experience of embodied agents has however
remained an imprecise notion. Efforts at characterizing
agent-environment interactions show that it is possible to
do so quantitatively using information-theoretic measures
[17, 12, 16, 11, 6]. Consideration of sensorimotor variables
modeled as random variables has also recently allowed for
the import of much stronger mathematical techniques into
this area the theory of metric spaces, by using the the in-
formation distance between pairs of sensorimotor informa-
tion sources [12, 11, 6, 4]. Information distance between
such sources, defined as their joint entropy minus their mu-
tual information, satisfies the axioms for a metric under the

identification of informationally equivalent sources [1].
Here we consider metrics on experience naturally de-

rived from information distance, not on single information
sources, but on constellations of them comprising the col-
lection of variables describing sensorimotor an agent’s con-
nection with the world.1 Intuitively, we consider all the sen-
sorimotor variables of an organism or agent – the sensor and
effector variables the agent can “read” or “set” – as informa-
tion source random variables. Locally in time for a partic-
ular agent-environment interaction, this set of random vari-
ables has certain information-theoretic characteristics that
can be estimated from the joint distributions of frequen-
cies of the particular values coming from these sensorimotor
variables in parallel. Considering temporal window sizes of
different sizes (temporal horizon), the frequency distribu-
tions of this collection of sensorimotor variables within the
temporal horizon correspond to estimates of the grounded
experiences of the agent within bounded regions of time.
We define mathematical metrics between such experiences
that allow us to consider temporally extended sensorimotor
experiences as points in geometric space. ‘Useful informa-
tion’ at various scales of temporal horizon (including, e.g.
immediate, affective, and episodic information) for embod-
ied organisms is systematically considered in [9, 10].

1.2 Trajectories for Re-experiencing and Development

In the metric spaces introduced here, experiences lie in an
abstract geometric space. Experiences similar to a given
certain experience lie within a neighborhood of it having
small radius, and increasingly less similar ones lie in con-
centric spheres of increasing distance in this space. The
difference between experiences of the same temporal scope
will now be measured in bits. The agent’s possible experi-
ences are covered by the union of such small neighborhoods
centered on characteristic prototypical representative expe-
riences, and the properties of the metric could serve to guide
an agent in identifying an experience as (literally) close to
another it has had, or in varying some of its actions slightly
to explore other experiences that are (literally) nearby in this
space.

By exploring the boundary of the known dynamics in
such a metric space, an artificial developing agent could
potentially expand its zone of proximal development in the
course of interacting with its physical and social environ-
ment, as in models of developmental psychology (cf. [19,
3]).

1We envision future extensions that will include other internal variables
less directly coupled to the environment.



2 The Geometry of Experience

2.1 Information Sources as Random Variables

We consider a sensor or effector that can take on various
settings or values modeled as a random variable X changing
with time t, taking value x(t) ∈ X , where X is the set of its
possible values. For simplicity in this paper, we take time to
be discrete (i.e. t will denote a natural number; the set T of
possible times is N) and allow X to take values in a finite set
or “alphabet” X = {x1, . . . , xm} of possible values. (The
approach can be generalized to continuous time and value
sets with appropriate changes.)

2.2 Entropy and Information Distance

The entropy H(X ) of a sensor or actuator X is then
H(X ) = −

∑
x∈X p(x) log2 p(x), where p(x) gives the

probability of value x being taken. Entropy is the
information-theoretic measure of uncertainty introduced by
Claude Shannon [14] and its units are bits.

If X and Y are jointly distributed random variables, the
conditional entropy H(X|Y) of X given Y is the amount
of uncertainty that remains about the value X given that the
value of Y is known, weighted by the probability of the oc-
currences of particular values of Y . This is computed to be:

H(X|Y) = −
∑

x∈X

∑

y∈Y

p(x, y) log2 p(x|y),

where p(x, y) is given by the joint distribution of X and
Y , and p(x|y) = p(x,y)

p(y) is the conditional probability of x

given y. The information distance between X and Y is

d(X ,Y) = H(X|Y) + H(Y|X ).

This satisfies the mathematical axioms for a metric:

1. d(X ,Y) = 0 if and only if X and Y are equivalent.2

2. d(X ,Y) = d(Y ,X ) (symmetry)
3. d(X ,Y) ≤ d(X ,Z) + d(Z ,Y) (triangle inequality)

The satisfaction of these axioms is shown by Crutchfield
[1]. Thus d defines a geometric structure on any space of
jointly distributed information sources.

Note that there is no temporal structure present here.

2.3 Experiential Variables and the Temporal Horizon

For a particular agent, in a particular environment, consider
one of its sensorimotor variables X in the context of the
particular environment and beginning from a particular mo-
ment t until a later moment t + h (h > 0). We regard the
sequence of values X (t + i), 0 ≤ i < h taken by infor-
mation source X as deriving from a new, ‘temporally and
interactionally local’ random variable Xt,h. The h-tuple of
values of X in this sequence is used to estimate the proba-
bility distribution this variable. Xt,h is the called the expe-
riential variable with temporal horizon h for sensor [resp.

2For information sources, “equivalence” refers to re-coding equiva-
lence. That is, the values of X are a function of those of Y and vice versa.
See [1].

actuator] X starting at time t. The sequence of (x, y) pairs
of values taken on by sensorimotor variables X and Y in
this time window can be used as an estimate of the joint
distribution of Xt,h and Yt,h. Similarly, for more variables.

Note that the degree of stationarity of the variables, the
length of the temporal horizon, and the number of variables
and the number of values they each can take, are all factors
that may influence the accuracy of such estimates.

Due to the estimation method just described, the esti-
mates are stationary random variables X̂t,h with every p(x)
a multiple of 1

h
, although the true Xt,h might have neither

of these properties. We remark that for a finite number of
sensorimotor variables taking values from finite sets over a
finite temporal horizon, there are only a finite number of
random variables having the above two properties that can
arise by such estimation.

2.4 Time Shifted Sensorimotor Variables

For a particular agent, in a particular environment, consider
two of its sensorimotor variables X and Y . (Possibly X =
Y .) Consider the values taken by X beginning at time t0
and those of Y beginning at time t1. (Possibly t0 = t1.)
Consider the two-component variable Xt0,h ×Yt1,h, taking
values (x(t0 + i), y(t1 + i)) ∈ X × Y . These are values
whose first component comes from X , starting from time
t0, and second component comes from Y with a temporal
shift of t1 − t0 units, i.e. starting from time t1.

For a temporal horizon of window size h, we estimate the
probability distribution of Xt0,h in this temporal window,
the time interval [t0, t0 + h), by measuring the frequency
distribution of its values taken during that time. Similarly,
for Yt1,h during [t1, t1 + h). And hence, we can also esti-
mate their probability joint time-shifted distribution and the
information distance d(Xt0,h,Yt1,h) using between X dur-
ing the first time window and Y during the second time win-
dow by measuring the frequencies of occurrence of values
(xt0+i, yt1+i) as i runs from 0 to h − 1.3,4

2.5 Experience Metric

Consider the set of all sensorimotor variables available to
an agent. Suppose there are N such, X 1, . . . ,XN . Let
Et,h = (X 1

t,h, . . . ,XN
t,h) be the (ordered) set of these vari-

ables considered over a temporal window of size h starting
at t. We call Et,h the agent’s experience from time t having
temporal horizon h. The set of all possible experiences of
temporal horizon h is denoted Eh.

Let E = Et,h and E′ = Et′,h be experiences of an agent
from time t and t′, respectively, both with horizon size h.
We shall often suppress the subscripts t or h in our notation

3As above without temporal shifting, clearly there are issues related to
the size of the temporal horizon h and also the number of values X and Y

may take that affect the accuracy of these estimates. Also in practice, inde-
pendent samples of time shifted sensorimotor variables are not available.

4Previous work on sensory reconstruction and sensorimotor learning
on robots by Olsson et al. [12] generally uses t0 = 0 and h the largest
available, but also has considered shifts by a small amount t1 − t0 to study
temporal correlations in information such as occur, e.g., in optical or tactile
flow [13].



when their value is free or can be determined from context.
Sometimes we write E(t) or Eh(t) for Et,h. Define a metric
on experiences of temporal horizon h as

D(E, E′) =

N∑

k=1

d(X k
t,h,X k

t′,h),

where d is the information distance.
We remark that the experience metric defined here is the

metric induced by taking the N -fold direct product of the
space of information sources with itself and restricting to
N -tuples whose components always arise from the sensori-
motor variables in the same order, all having the same start-
ing time and temporal horizon.
Theorem 1 D is a indeed metric on the set of experiences
of fixed temporal horizon h for a given agent.
Proof: That the metric axioms hold for D follows from
the fact that they hold componentwise, since d is a metric. �

Corollary 1 D = 1
N

D, the average experiential informa-
tion distance per sensorimotor variable, is a metric on the
set of experiences of fixed temporal horizon h for a given
agent. �

Thus D (or D) provides a geometric structure on the set Eh

of experiences of an agent. The units of D are bits and those
of D are bits per sensorimotor variable.

2.6 The Local Picture at an Experience

For any subset S of the set sensorimotor variables V , let ES

be derived from experience E be omitting all components
from random variables not in S. Then, we have a metric on
the set ES of experiences of the agent restricted to variables
S:

DS(ES , E′S) =
∑

Xk∈S

d(X k
t,h,X k

t′,h)

Clearly DV = D. The following is obvious (by definition).
Lemma 1 For any partition of the set of sensorimotor vari-
ables V into two subsets S and M (i.e. with S ∩ M = ∅,
S ∪ M = V ), we have D = DS + DM , or, more precisely,
D(Et,h, Et′,h) = D(ES

t,h, ES
t′,h) + D(EM

t,h, EM
t′,h). �

Similar facts hold for partitions of V into more subsets.
In what follows, we take M to be the set of propriocep-

tive sensors (read-write random variables, giving the agent’s
internal state and effector settings) and S to be set of exte-
roceptive variables (read-only variables, corresponding to
sensors).

The local picture of experience at time t0 is the tra-
jectory plot of the distance DS of the sensory experience
ES(t) to ES(t0) vs. the distance DM of motor experience
EM (t) to EM (t0) as time t varies over the experience
of the agent; that is, experience at time t is plotted as
(DS(ES

t,h, ES
t0,h), DM (EM

t,h, EM
t0,h)). By the Lemma, the

distance in E of any experience at t from the experience at
time t0 is its the sum of its x- and y-displacements from the
origin in the local picture.

Remarks. (1) Distances from points in the plot from expe-
rience at t0, the origin, are faithfully represented in the local
picture. (2) Distances D(Et,h, Et′,h) between other points
with t, t′ 6= t0 are not necessarily faithfully represented in
the local picture, but are not closer than they appear, since
by the triangle inequality, we have for all times t and t′,

D(E(t), E(t′)) ≤ D(E(t), E(t0)) + D(E(t0), E(t′)).

Thus the right hand side of the inequality, the sum of the
distances of t and t′ to t0, is an upper bound for the experi-
ential distance between t and t′. (3) The set of experiences

Br(E(t0)) = {E(t) : D(E(t0), E(t)) < r}

less than r bits from E(t0) are contained within the triangle
bounded by the origin, (r, 0) and (0, r) in the local picture.
Br(E(t0)) is called the ball of radius r centered at E(t0).

2.7 Continuous and Contracting Experiential Maps

The fact that D is a metric on experience gives a well-
defined notion of continuous mapping on spaces of expe-
riences. Suppose E and F are spaces of experiences of the
same or different agents, of the same or different tempo-
ral scope, and F : E → F is a function that associates to
each experience E ∈ E an experience F (E) ∈ F such that
for all ε > 0, there is a δ > 0, such that D(E, E ′) < δ

implies D(F (E), F (E′)) < ε, then F is called continu-
ous. Equivalently, continuity of F means that if F maps
E to F (E), then F given any radius ball Bε(F (E)) cen-
tered at F (E), no matter how small, must map some ball
Bδ(E) centered at E to inside of Bε(F (E)). In other
words, F (Bδ(E)) ⊆ Bε(F (E)).

For the metric space Eh of experiences with fixed tempo-
ral horizon h, the experiential trajectory of an agent is the
continuous function from T to Eh taking time t to Et,h The
time-horizon h graph of the experience trajectory is

Γh = {(t, Et,h) : t ∈ T} ⊆ T × Eh.

Examples of Continuous Maps.
1. (Sensorimotor Variable Restriction). If V ′ is a subset
of the set of sensorimotor variables V , then function map-
ping the experience of all variables in V to the restricted ex-
periences that only consider the variables in V ′ is a continu-
ous experiential map E 7→ EV . More generally, if V ′ ⊆ W

are any subsets of an agent’s sensorimotor variables, then
the function EW 7→ EV ′

is continuous.
2. (Temporal Extension). When h′ ≥ h are temporal
horizon sizes, define a function mapping the graph of ex-
perience with temporal horizon h to experiences of longer
temporal horizon h′ by e(t, Et,h) = Et,h′ . This function
e : Γh → Eh′ is well-defined5 and continuous.
Proof of (1): Since V ′ ⊆ V , we have DV ′

(EV ′

, E′V
′

) ≤
D(E, E′). So for each ε > 0, taking δ = ε, we have that
D(E, E′) < δ implies DV ′

(EV ′

, E′V
′

) < ε. The more
general case is similar. Proof of (2) is omitted here.

5Note that mapping Et,h to Et,h′ would not be a well-defined function
if Et,h = Et′,h for some t 6= t′ but Et,h′ 6= Et′,h′ .



3. (Contractions). Given E is a metric space of experi-
ences, a function F : E → E is called a contraction if there
is some c ∈ [0, 1) such that for all E, E ′ ∈ E ,

D(F (E), F (E′)) ≤ c D(E, E′).

A contraction is always continuous as can be seen by taking
δ = c−1ε if c 6= 0 (or δ arbitrary if c = 0).

Theorem 2 (Contraction Mapping) Suppose E is a met-
ric space of experiences and F : E → E is a contraction.
Then

lim
n→∞

D(F n(E), F n+1(E)) = 0.

Proof: By definition of contraction, we have
D(F 2(E), F (E)) < c D(F (E), E). By induction,

D(F n+1(E), F n(E)) ≤ cn D(F n(E), F n−1(E))

holds of all n > 0. Since 0 ≤ c < 1, the limit as n goes to
infinity is zero. �

6

2.8 Hausdorff Experience Metric

Each of the random variables X i
t,h are points in the geomet-

ric space of information sources, for every sensor/actuator
(indexed by i), time t, and temporal horizon h. By regarding
the (unordered) experiential set Ct,h = {X 1

t,h, . . . ,XN
t,h}

as a subset of the geometric space of information sources
whose metric is the information distance d, we can use the
natural construction of the Hausdorff metric induced by d on
subsets of this metric space. Let C = Ct,h and C ′ = C ′

t′,h

be two experiential sets of temporal horizon h for a given
agent. Define δ(C, C ′) = maxX∈C minY∈C′ d(X ,Y),
where d is information distance.7 Then

dH(C, C ′) = max(δ(C, C ′), δ(C ′, C)),

is the Hausdorff metric on experiential sets.
More generally, let E be the set of all non-empty,

bounded experiential sets of given temporal horizon h for
a given agent (or agents, if their sensorimotor variables
jointly distributed at all moments of time under considera-
tion).

Theorem 3 The Hausdorff experiential metric dH is a met-
ric on the set E of (unordered) bounded experiential sets
with temporal scope h.
Proof: The proof follows a standard construction of Haus-
dorff. Obviously, dH is symmetric. If dH (C, C ′) = 0 then
δ(C, C ′) = 0 implying for each X ∈ C that the minimum
of d(X ,Y) as Y ranges over C ′ is zero, i.e. each X ∈ C is
re-coding equivalent to something in C ′, whence C ⊆ C ′

6This is a weakening of the standard contraction mapping theorem for
complete metric spaces, which guarantees the existence of a fixed point for
any contraction. The experiential metric spaces in general have not been
shown to be complete.

7The definition of dH here has been simplified by using max and min

instead of sup and inf. Given that only a finite number of estimate random
variables with a fixed temporal horizon are accessible to the agent, this is
justified by operational considerations where C and C ′ are always finite.

Table 1: AIBO Telemetry Collected
Sensors # Motors #

IR-Distance 1 Leg Joint Positions 12

Accelerometers 3 Head Joint Positions 4

Temperature/Battery 2 Tail Joint Positions 2

Buttons 8 Motor Force / Duties 18

Visual 27

Total Sensors 41 Total Motors 36

(up to informational equivalence). Similarly, C ′ ⊆ C ′, so
C and C ′ consist of equivalent information sources. The
triangle inequality can be shown for δ, and hence for dH ,
using the properties of min and max. �

Remarks. (1) Note the unlike the experience metric D, the
Hausdorff experience metric can be used to compare sets
of sensorimotor variables that do not necessarily have the
same number of variables. (2) Considerations of continuity
of maps to or from the space of experiences with the Haus-
dorff experiential metric, as well as contractions and results
about them can be derived analogously as for the experience
metrics of the previous section.

3 Examples: Metrics for Robot Experience

Figure 1: Trajectory of the wandering AIBO robot in 2m x
2m arena.

3.1 Experimental Set-up

Sensorimotor variable data for a SONY AIBO robot wan-
dering in a 2m × 2m environment were gathered previously
to study information distance characterizations of sensori-
motor interactions [6]. These data are reanalyzed here us-
ing the tools of the experiential metric introduced above for
temporal horizons of size 20, 40, and 80. More details of ex-
periments with robots and examination of other aspects of



the temporal experiential metric is given in the companion
paper [7]. Seventy-seven sensorimotor variables were parti-
tioned into two classes (read-only) variables (41 “sensors”)
and (read-write) variables (36 “motors”) – see Table 1. Data
from sensorimotor variables was sampled at approximately
10 times per sec. Figure 1 shows the trajectory of the robot
in the arena lasting 90.3 seconds.

3.2 Experience Metric at Different Temporal Scales

Figures 2-6 illustrate the experiential information distance
concepts discussed above for the temporal regions of expe-
rience ending at three different timesteps t = 220, 250, or
310 (rows) with increasing temporal horizon h of 20, 40,
and 80 time units. Time is measured in units of 100 msec.

Although there are large empty areas in the neighbor-
hood of the sample experiences examined (with no expe-
rience within 1 bit/variable of the origin), the experiences
which are nearest to E(t0) in the local picture are qualita-
tively similar to E(t0) from an external observer’s point of
view (e.g. walking, or turning if the robot was walking or
turning during the temporal region at time t0.)

4 Summary

We have introduced metrics for regions of experience hav-
ing uniform temporal horizon grounded in the sensorimotor
variables of an embodied agent. The experiential informa-
tion distance, average experiential information distance, and
Hausdorff experiential metrics were introduced, and conti-
nuity mapping and contraction properties were discussed, as
well an introducing the local picture of the experiential met-
ric space with respect to a particular experience, partitioning
into sensory and effector components of the metric. Expe-
riential metric spaces can be constructed at various sizes of
temporal horizon h. Hierarchical or multiscale elaborations
of the approach taken could make use of the natural con-
tinuous temporal extension maps between graphs of expe-
riential trajectories with different temporal horizons. Ap-
plications for grounding the ontogeny of artificial embodied
agents were suggested, and illustrations of some of the con-
cepts on data from the experiences of a physical robot were
presented.
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the 8th International Conference on Intelligent Autonomous Systems,
pages 512–520, 2004.

[17] I. J. A. te Boekhorst, M. Lungarella, and R. Pfeifer. Dimension-
ality reduction through sensori-motor coordination. In O. Kaynak,
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Figure 2: Distances of all sensorimotor experiences from the temporal regions of sizes 20, 40, and 80 (columns), ending at
timesteps 220, 250, and 310 (rows) using D metric. Horizontal axis gives ending point of temporal region t = 220, 250, 310
(rows) with increasing temporal horizon h. Time is measured in units of 100 msec. Vertical axis shows distance from
experience Et−h,h in bits per sensorimotor variable. During the temporal windows shown the behaviour of the robot, from
a human observer perspective, was as follows: (row 1) 200 - 220 walking, 180 - 220 walking, 140 - 220 part turning, part
walking; (row 2) 230 - 250 walking, 210 - 250 walking, 170 - 250 (mostly) walking; (row 3) 290 - 310 turning, 270 - 310
walking and turning, 230 - 310 walking and turning (walking dominates). Different columns are related by continuous
temporal extension maps between graphs of trajectories id × e : Γh → Γh′ in experiential metric spaces of increasing
temporal horizon – see section 2.7. Continuity is evidenced in the the gradual change as h increases. Continuity of the
experiential metric D is seen in the gradual changes as t increases – except that no experiences appear to be extremely close
to the examined experiences. This might be due to low number of samples within a window in estimating the Et,h, or due
to sparseness of the experiences sampled in this short experiment.
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Figure 3: Distance D of sensorimotor, sensory and motor experience (columns) from the temporal regions ending at
timestep 220. Horizontal axis gives ending point t of temporal region. Behaviour and units as is Figure 2. Distances shown
are in the experiential spaces E , ES , and EM (left to right), with with temporal horizons h = 20, 40, and 80 timesteps (top to
bottom). Time units are 100 msec. The first column distance is the average weighted by number of variables of the second
and third, illustrating Lemma 1.

t=220 t=250 t=310
Motor Variables

 0

 0.5

 1

 1.5

 2

 0  100  200  300  400  500  600  700  800  900

In
fo

rm
at

io
n 

D
is

ta
nc

e 
(b

its
/s

en
so

r)

Timestep

Information Distance from region 200-220
Bin size 5. Average of motors group.

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17
Observed behaviour shown below

Walk-->
Turn-->

 0

 0.5

 1

 1.5

 2

 0  100  200  300  400  500  600  700  800  900

In
fo

rm
at

io
n 

D
is

ta
nc

e 
(b

its
/s

en
so

r)

Timestep

Information Distance from region 230-250
Bin size 5. Average of motors group.

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17
Observed behaviour shown below

Walk-->
Turn-->

 0

 0.5

 1

 1.5

 2

 0  100  200  300  400  500  600  700  800  900

In
fo

rm
at

io
n 

D
is

ta
nc

e 
(b

its
/s

en
so

r)

Timestep

Information Distance from region 290-310
Bin size 5. Average of motors group.

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17
Observed behaviour shown below

Walk-->
Turn-->

Sensor Variables

 0

 0.5

 1

 1.5

 2

 0  100  200  300  400  500  600  700  800  900

In
fo

rm
at

io
n 

D
is

ta
nc

e 
(b

its
/s

en
so

r)

Timestep

Information Distance from region 200-220
Bin size 5. Average of sensors group.

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17
Observed behaviour shown below

Walk-->
Turn-->

 0

 0.5

 1

 1.5

 2

 0  100  200  300  400  500  600  700  800  900

In
fo

rm
at

io
n 

D
is

ta
nc

e 
(b

its
/s

en
so

r)

Timestep

Information Distance from region 230-250
Bin size 5. Average of sensors group.

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17
Observed behaviour shown below

Walk-->
Turn-->

 0

 0.5

 1

 1.5

 2

 0  100  200  300  400  500  600  700  800  900

In
fo

rm
at

io
n 

D
is

ta
nc

e 
(b

its
/s

en
so

r)

Timestep

Information Distance from region 290-310
Bin size 5. Average of sensors group.

1 2 3 4 5 6 7 8 9 10 11 12 1314 15 16 17
Observed behaviour shown below

Walk-->
Turn-->

Figure 4: Motor and sensor temporal distances (rows) from time regions 220, 250 and 310 (columns) for temporal window
size 20. Vertical lines indicate waypoints marked in Figure 1. Walking and turning behaviours are indicated in each graph.



Figure 5: Sensory experiential distances between all pairs of temporal regions of window size h = 20 in the experiential
metric space ES

20 with metric D in bits per sensorimotor variable (vertical axis). Time units are in 100 msec. Left: nearest
experiences shown uppermost (by negating the D). Right: farthest experiences uppermost. Horizontal axes labeled by
ending time of temporal regions of size 20. The left graph shows that experiences in this experiment are only very close to
themselves. Both graphs reveal an apparent nearly periodic regularity in distances to other experiences over time perhaps
arising due to regularity in the activity of the robot, e.g. periodicity due to gait.
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Figure 6: Local picture at experience Eh(t0), the temporal region ending at timestep t0 with temporal horizon h. The
trajectory in experiential space is plotted by giving sensory and motor average experiential distances from E(t0) for regions
ending at timestep t0 = 220, 250, 310 (top to bottom) with horizons h of 20, 40, and 80 timesteps (hundred millisecond time
units). See section 2.6. Vertical axis and horizontal axes are in bits per proprioceptor and bits per exteroceptor, respectively,
measured by metrics D

S
and D

M
. Distances of any experience Eh(t) to Eh(t0) are accurately reflected in the local picture

as a weighted sum of x- and y-coordinates. Distances between other points are generally not reflected accurately but are
guaranteed to be bounded above by the sum of their distances to Eh(t0) as a consequence of the triangle inequality. Robot’s
behaviour is as described in section 3 and Figure 2. There is no experience was very close in the sampled behaviour to the
9 experiences examined via their local pictures - although nearest experiences usually seemed similar to human observers.


