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Abstract

A method is presented for adapting the sen-
sors of a robot to its current environment and
to learn motion flow detection by observing
the informational relations between sensors
and actuators. Examples are shown where
the robot learns to detect motion flow from
sensor data generated by its own movement.

1. Introduction

One of the amazing capabilities of many sensory sys-
tems is the ability to adapt to the current environ-
ment. For example, consider reading this paper out-
side, where the black print reflects considerably more
light to the eye than the white paper does indoors.
Still, the print looks black both indoors and outside
and the white paper looks white both outside and in-
doors. This adaptation to the light conditions of dif-
ferent environments is believed to be realized partly
by the lateral connections of horizontal cells in the
retina (Purves et al., 2001), and enables the visual
processing system to perceive relative differences in
light intensity instead of just absolute differences.

This paper presents a similar sensor adaptation
mechanism which enables a robot to adapt its sen-
sors to its current environment by on-line estima-
tion of the statistical structure of the robot’s sen-
sory environment. This is similar to adaptation
in the fly’s visual system (Laughlin, 1981) and is
discussed in more detail in (Olsson et al., 2005b).
Based on this adaptation we present a method which
enables a robot to “discover” and learn sensori-
motor grounded motion flow detection from un-
structured sensor data. The method for learn-
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ing motion flow detection utilizes body babbling,
cf. (Meltzoff and Moore, 1997), whereby the robot
discovers relations between its motors and tempo-
ral correlations in its sensory input, based on the
method presented in (Olsson et al., 2005a). But,
while (Olsson et al., 2005a) use the optical flow al-
gorithm of (Lucas and Kanade, 1981) to detect mo-
tion flow, we here present a method to detect mo-
tion flow based on the sensory reconstruction method
(Pierce and Kuipers, 1997, Olsson et al., 2004), ex-
tended by considering temporal correlations between
sensors. This is loosely inspired by the way motion
detection seems to work in the fly, where sensors
are connected to correlators using temporal delays
(Harris et al., 1999). The method is exemplified by
experiments performed with a real robot where the
robot starts by learning the structure of its sensors,
then learns to detect motion flow, and finally is able
to perform simple motion tracking based on motion
flow detection.

The rest of this paper is structured as follows. Sec-
tion 2 presents the proposed methods of sensor adap-
tation, learning of motion flow detection, and motion
tracking based on these methods. In section 3 exam-
ples of results from experiments with a real robot
learning to detect motion flow is presented. Finally
section 4 concludes and points out some ideas for
future work.

2. Method

In our experiments a visual sensor is modeled
as discrete random variable S and the possi-
ble input values to each sensor is in the alpha-
bet S = {0, 1, . . . , 255}. Each sensor reads one
value, si,t, at each time step t. The visual lay-
out of the sensors is unknown and the sensory
reconstruction method (Pierce and Kuipers, 1997,
Olsson et al., 2004) is used to reconstruct the lay-
out of the sensors. An example of a reconstructed



layout is found in figure 1(a) and the discretization
algorithm of (Olsson et al., 2004) is used to find a
discrete representation of the same map, examplified
in figure 1(b). It is important to note this method
cannot find the orientation of the visual field, only
the spatial relations between sensors. An example of
this is shown in figure 1, where the the real orienta-
tion had sensor 1 in the upper left corner and 64 in
the bottom left corner.

2.1 Sensor Adaptation

In (Olsson et al., 2005b) entropy maximization is
discussed as a method for compressing sensor data
while maintaining correlations between sensors. To
compress a sensor S, one method is uniform binning,
whereby the alphabet of possible inputs, S, is divided
into a number N of equidistributed bins Bi, where
1 ≤ i ≤ N . The problem with this method is that
the distribution of sensory input of natural scenes
rarely is uniform, which means that this is a non-
optimal encoding. Instead, Laughlin found in 1981
(Laughlin, 1981) that the fly seem to encode con-
trast using the principle of entropy maximization.
Entropy maximization means that nonuniform bins
are selected in such a way that each bin is likely to
contain the same number of possible sensor readings.
More formally, given a sensor S we want to find a par-
titioning of the data into the N bins of the alphabet
S = B1∪ . . .∪BN such that each bin is equally likely.
That is,

P (S = c ∈ Bi) ≈
1

N
, (1)

which implies that the entropy of which bin data
falls into is maximized. In (Olsson et al., 2005b) and
in the computations described below, each sensor S

constantly adapts the size of each bin Bi to the cur-
rent environment by estimating the distribution of
the input data using a sliding window histogram es-
timator.

2.2 Learning Motion Flow Detection

In the sensory reconstruction method
(Pierce and Kuipers, 1997, Olsson et al., 2004)
each sensor is seen as a time series and treated as
a random variable. The sensor data in each sensor
is adapted as described above before being used as
input to the sensory reconstruction method. When
the joint entropy,

H(X,Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log
2
p(x, y), (2)

is computed between two sensors S1 and S2 to com-
pute the information distance (Crutchfield, 1990),
d(X,Y ) = H(X|Y ) + H(Y |X), the value at time t

in sensor S1 is usually compared to the value at the
same time t in sensor S2. Now, consider shifting the

values of sensor S2 in time, where the value at time
t in sensor S1 is compared to the value at time t+n,
where n is a constant, in sensor S2. This enables us
to find temporal correlations between sensors, which
can be used to discover motion flow in the sensors.

To learn how motion flow causes temporal corre-
lations in sensors we use the following method illus-
trated by an example. Given that the visual layout
has been found, select a sensor in the center of the
map, for example sensor 29 in the discretized map in
figure 1. Now the robot can perform movements in

(a) Sensoritopic
map

(b) Reconstructed
discrete map

Figure 1: Figure 1(a) shows the sensoritopic map of the

visual field found by the sensory reconstruction method

and 1(b) the discretized sensor map.

different directions and save the sensor data associ-
ated with each motor setting. Sensoritopic maps are
created for the data of each direction with different
values of the shifting constant n, where n always is
0 for the center sensor, in this case sensor 29. For
each direction there will now be a map where the in-
formational distance between the center sensor and
one other sensor is 0.0 or close to 0.0 if there is mo-
tion flow. The spatial relation between this sensor
and the center sensor describes the direction of that
particular flow. For example, if the distance between
the center sensor, 29, and 30 is 0, this signifies that
the flow is moving upwards, since sensor 29 at time
t is correlated with sensor 30 at time t + n.

2.3 Motion Tracking

Given that the robot now knows what direc-
tion of movement that causes a certain motion
flow in its visual sensors, it can now use this
knowledge combined with the learned sensorimotor
laws (Olsson et al., 2005a) to perform simple motion
tracking. For example, if the robot detects a motion
flow which is similar to the flow generated by moving
its head down, it can track this flow by performing
the inverse of that movement. The tracking can ei-
ther be performed after waiting a number of frames
and averaging the motion flow, or by computing the
flow between each frame. This adds the problem of



Figure 2: The SONY AIBO sitting in the experimental

set-up trying out various actuator settings.

motion flow that comes from the movement of the
robot itself, which might be solved by subtracting
the known motion flow of a certain movement from
the motion flow experienced by the robot.

3. Experiments

In the experiments we have used a SONY AIBO1

robot. The robot was sitting on a bench in the lab,
see figure 2, connected to a computer using a dedi-
cated wireless network transmitting 30 frames of sen-
sor data per second. The camera of the AIBO cap-
tures 88 by 72 pixels. This image was pixelated to an
8 by 8 image of the intensity which gives a total of 64
sensors. The first step was to reconstruct the visual
field using the sensory reconstruction method like in
(Olsson et al., 2005a) by only moving the head. Fig-
ure 3(a) shows the reconstructed visual field and fig-
ure 3(b) a discretized version.

(a) Reconstructed
map

(b) Discrete map

Figure 3: Figure 3(a) shows the reconstructed visual field

and 3(b) the discretized version used for the motion flow

detection.

The next step was to discover motion flows as de-
scribed above. In order to simplify the experiment
and results only four possible movements were al-
lowed by the head: up, down, left, and right, using

1AIBO is a registered trademark of SONY Corporation.

only one speed. Each possible movement was per-
formed 30 times and all the data from each movement
saved to one file per movement. Then sensoritopic
maps for each movement were created where all sen-
sors, apart from sensor 36, were shifted in time one
or two time steps to find what motion flow in the
sensors that each movement induced. Figure 4 shows
examples of the created maps for all four movements.
In each of these figures we find that sensor 1 is lo-

(a) Moving up flow (b) Moving down
flow

(c) Moving left flow (d) Moving right
flow

Figure 4: Figure 4(a) to 4(d) shows the sensoritopic maps

with a time-shift of 1 for all sensors but sensor 36. The

direction is found by finding which sensor the center sen-

sor 36 is most closely correlated with. For example, in

4(b) sensor 36 is very close to sensor 44. Looking at the

discretized map in 3(b) we find that this corresponds to

moving down.

cated in different corners of the sensory layout, while
the ordering of the sensors is the same. This is due
to the fact that the sensory reconstruction method
does not find the real physical order of sensors, just
their positional relations. We also find that for each
map, the non-shifted sensor, 36, is in a very similar
position as another sensor, which means that these
two sensors are higly correlated. For example, in fig-
ure 4(c) we find that sensor 36 is closely correlated
with 35. Looking at figure 3(b) sensor 35 is posi-
tioned to the left of sensor 36, which means the flow
is from the right to the left. Similarly, if we look
at for example figure 4(b), sensor 36 is completely
correlated with sensor 44, which indicates a down-
ward flow, which is the case since this flow was in



fact induced by downward movements by the robot.

4. Conclusions

This paper has presented a method for sensor adap-
tation that compresses the information in individ-
ual sensors while maintaining correlations between
sensors. The adaptation enables algorithms that
compute informational relationships between sen-
sors, such as the sensory reconstruction method
(Olsson et al., 2004), to be more robust to noise and
to perform better in changing conditions. From
the compressed sensor data motion flow detection is
learned by shifting the compressed sensory channels
in time while the robot performs various actuator
settings similar to body babbling found in infants.
This allows the robot to learn how correlations over
time in the sensors are related to the actuators, and
as a by-product, the direction of motion flow given
a certain movement. Using this method a robot can
develop from unknown sensors and actuators to be-
ing able to perceive motion flow.

In our view, the presented method should not be
seen as a replacement for traditional motion flow de-
tection techniques. It is rather the principles of dis-
covering motion flow and the relation between sen-
sors and actuators by information theoretic means
which are important. The robot develops from a
state with unknown sensors and actuators by exper-
imenting with its actuators and their effect on the
sensors to being able to perform simple tasks. This
makes the robot robust to various changes in the en-
vironment and sensors, as it can re-adjust its model
of sensors and actuators at anytime by once again
performing the same algorithm. Another useful area
for the presented method is detecting and adjust-
ing to morphological changes, for example changes
in effector capacity and the loss or gain of sensors.
For example, if extra visual sensors are added to the
robot, they can be added to the visual field auto-
matically, based purely on their informational rela-
tions with other sensors. Conversely, if the robot
experience sensor failures it can detect that by the
new relations between the broken sensors and the
functional ones. Thus sensory adaptation and sen-
sorimotor control can be responsive to ontogeny and
experience of the robot.

There are plenty of issues to consider for future
work. One interesting area of research is to look at
motion flows in different sensory channels, e.g. the
green, red, blue sensors found in cameras. Depend-
ing on the statistics of a certain environment one
channel might be more efficient than another one to
detect motion flow in that particular environment.
One question is how to find the best channel for a
certain environment. There is also more work to be
done in the area of morphological and sensor changes
as discussed above. Finally it should also be noted

that the presented method not only can be applied
to visual sensors, but also to other modalities where
motion flow is possible - for example infrared sensors
and haptic sensors.
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