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Abstract

Within braided pneumatic Muscle Actuators (pMA) the braid struc-
ture is vital to the actuator’s performance, preventing over-inflation,
converting radial expansion into axial contraction and setting lim-
its for both dilation and contraction. This paper seeks to explore
the nature of the contractile limit and the hysteresis observed by
researchers during the actuation cycle.

Maximum actuator dilation occurs when adjacent braid strands
are forced against one another. Within this work this is analyzed
mathematically and it is shown that by halving the number of strands
used to create the braided shell the actuator’s contractile range can
be increased by approximately 7%. This also results in a simultane-
ous peak contractile force increases of over 16%. These results are
verified experimentally.

Hysteresis due to friction between braid strands during muscle
operation is also explored. The paper will show how consideration of
the deformation of the strands allows the contact area and therefore
friction to be calculated without the need for experimentally obtained
data as in previous research. A mathematical model is produced and
verified experimentally.

KEY WORDS—actuators, braided pneumatic Muscle Actu-
ators (pMA), McKibben muscles, friction, modeling

1. Introduction

Braided pneumatic Muscle Actuators (pMA) are a family of
pneumatic drive that combine antagonistic characteristics of
softness and compliance with powerful and accurate motion.
There are a variety of techniques and materials used in the
construction of braided pMA (also known as McKibben mus-
cles) but to a very great extent the fundamental principles of
the fabrication do not vary (Schulte 1962; Chou and Han-
naford 1996; Tondu and Lopez 2000; Caldwell, Medrano-
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Cerda and Goodwin 1995; Klute and Hannaford 1998; Kings-
ley and Quinn 2002; Shadow Robot Company 2005; Paynter
1996; Inoue 1987; Festo Brochure; Bergemann, Lorenz and
Thallemer 2002). In essence, there is a flexible inner cylindri-
cal containment layer and an outer cylindrical braided woven
layer with end caps to seal the cylinders. The inner layer has
the function of enclosing and retaining the pressurized gas
used to energize the muscle (i.e., prevent air escaping) while
the outer braid which is in the form of a double helix forms
a vital component that is the determining feature of many of
the characteristics exhibited by the actuator.Attributes derived
from the braid included the following:

(i) Acting as a restraining layer to prevent the over-inflation
of the pressurized muscle, thereby preventing rupture.

(ii) Convertion of the largely radial expansion into axial
contraction when the actuator is pressurized, thus gen-
erating the drive force needed to function as an actuator.
It should be noted that the actuators can be used in an
expansive mode (Walker et al. 2005) by compressing
them beyond their contracted length before pressuriza-
tion.

(iii) Setting of the limits of dilation and contraction. Model-
ing of the actuator has shown that a limit for contraction
occurs at a braid angle of 54.7◦ (Schulte 1962). Lim-
its for dilation (stretch) of the muscle are also set by
the braid but in this instance this is determined by the
nature of the weave.

(iv) Energy losses caused by friction between braid fibers
causes a hysteresis component in the models of the ac-
tuators that reduces the contractile force and increase
the control complexity. Previous work has shown that
friction can be modeled experimentally (Chou and Han-
naford 1996; Tondu and Lopez 2000) but where these
experimental data are not available theoretical model-
ing is impossible using this technique.
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Pneumatic Muscle Actuators have a number of character-
istics that may be of use in the field of robotics, such as high
power-to-weight ratios, compliance and low cost of manufac-
ture. This has resulted in them being used in a wide range of
application. These include industrial robots (Inoue 1987), a
nuclear waste manipulator (Caldwell et al. 1999), the walk-
ing robot Airbug (Berns et al. 2001) and a Microrobot Cricket
(Birch et al. 2000).

In his early work Schulte demonstrated that pMAs could
contract by up to 35% and developed a static model relating
the force, supply pressure and contractile behavior (Schulte
1962). This model was typically accurate to within 10–20%
for forces over the full operating range. Subsequently this
model has been refined by several groups that have consid-
ered the effects of rounding of the terminal ends of the ac-
tuators (Tsagarakis and Caldwell 2000), finite thickness in
the containment layers (Chou and Hannaford 1996), fatigue
life (Klute and Hannaford 1998; Kingsley and Quinn 2002)
and stretch of the braid fiber (Davis et al. 2003). Models have
shown that the limit for contraction occurs at a braid angle of
54.7◦ (Schulte 1962). Limits for dilation (stretch) of the mus-
cle are also set by the braid but in this instance are determined
by the nature of the weave.

It has been observed by Chou and Hannaford (1996) and
Tondu and Lopez (2000) that during operation there is a
force/displacement hysteresis in the muscles caused by fric-
tion between the braid stands. Chou and Hannaford produced
a model including an experimentally obtained force offset
which was added to calculated forces during muscle contrac-
tion and subtracted during extension. Tondu and Lopez took
this concept further by attempting to quantify the offset force
by modeling the friction. Although the model produced was
more accurate than that of Chou and Hannaford it still relied
on a degree of experimental data.

Within this paper Section 2 develops a method of determin-
ing the minimum achievable braid angle for any given braid
material. This is critical in determining the maximum dilated
length of the actuator and thus its contractile range. Further,
this analysis identifies a method for increasing both actuator
contraction and peak force output through modification to the
braid material. The actuator friction/hysteresis and its mod-
eling are considered in Section 3, and a method is presented
that enables theoretical actuator friction models to be devel-
oped without reference to experimental results. Section 4 has
conclusions based on the work.

2. Braid Effects on the Limits of Contraction

The limit of contraction of pneumatic Muscle Actuators is
typically 30–35% (Caldwell, Medrano-Cerda and Goodwin
1995) and is usually defined in terms of a change in the inter-
braid angle (θ), Figure 1. At the fully contracted position the
inter-braid angle is set by the energetics of the operation of

the actuator atθ=54.7◦. The maximum dilation (minimum
braid angle) is limited by one of two factors, either by adja-
cent braid strands being forced against each other or by the
diameter of the inner bladder being so large that it prevents
full braid dilation. The proceeding analysis considers the case
where the inner bladder has a diameter small enough to allow
full braid dilation. This minimum braid angle can therefore
vary depending on the weave pattern (typically a 2/2 Twill
(Braidweaver 2005)), the fiber material and the diameter of
the fiber. Typically the fully dilated braid angle is around 20◦

(Caldwell, Medrano-Cerda and Goodwin 1995).
The contractile range of the actuator is the difference be-

tween the length of the actuator at the minimum and maximum
braid angles. As the maximum braid angle cannot be changed
for this type of actuator it follows that the only way to increase
the dynamic range is to permit the muscle to achieve a lower
braid angle.

Previous studies of the minimum braid angle have been
based on experimentally measured interweave angles; how-
ever, no theoretical basis or limit for the angle has been pro-
duced. To calculate the theoretical minimum angle consider
a short section of braid around the muscle’s circumference,
Figure 1(a). This section can be “unrolled” to form the weave
pattern shown in Figure 1(b), the axis is aligned along the
length of the actuator. Letting each strand crossover point be
known as a node, the distance between nodes will beG, the
distanceC is the circumference of the muscle andl is the inter-
strand separation. To calculatel, consider the case whereθ
is 90◦. At this pointC = 2 · l · Nc whereNC is the number
of nodes in one circulation of the muscle’s circumference. In
Figure 1(b),NC = 3.

Whenθ = 90◦ it is known thatC = π ·Do whereDo is the
theoretical muscle diameter at 90◦ and is found from (Schulte
1962)

DO = b

n · π
(1)

whereb is the length of one strand used to form the braid
andn is the number of times this strand spirals around the
actuator.

Therefore

l = π · Do

2 · Nc

(2)

and node separationG is given by

G = 2 · l · sinθ. (3)

Figure 2 shows the structure of the braid if it is assumed
that only one strand, of thickness WB , follows each path. In
reality each path is traced by several parallel strands but this
does not effect the principle of the analysis.

It can be determined that

X = Y cosθ ⇒ Y = WB

2 · cosθ
. (4)
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Fig. 1. Braid material (a) and unrolled (b).
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Fig. 2. Braid structure assuming single strands.

From Figure 2 it can be seen that the minimum braid angle
θmin occurs whenG = 2 · Y so from (2)–(4) the following
equation forθmin can be produced:

θmin =
sin−1

(
2 · WB · NC

π · DO

)

2
. (5)

It would be more useful if this equation was in terms of the
known quantitiesDs andN , the strand diameter and number
of strands respectively. This can be achieved as follows:

WB = DS · S (6)

and

NC = N

2 · S
(7)

whereDs is the diameter of one strand,S is the number of
parallel strands andN is the number of strands used to create
the complete muscle. The equation for the minimum braid
angle thus becomes

θmin =
sin−1

(
DS · N

π · DO

)

2
. (8)

This angle will be a constant for any actuator irrespective of
length, assuming that the values ofDs , S andN remain un-
changed. However, in practical design applications it is more
useful to know the maximum dilated length (Lmax) of an ac-
tuator. This can be calculated using the equation for actuator
length introduced by Schulte (1962):
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Lmax = b · cosθmin ⇒ Lmax = b · cos

[
sin−1

(
DS · N

π · DO

)/
2

]
.

(9)

2.1. Experimental Results

To verify the accuracy of the new braid angle model, tests
were conducted on a sample of braid material, Figure 3(a),
with the following properties:

Do = 0.031 m Ds = 0.25 mm N = 240 S = 3.

Each braid sample to be tested was suspended vertically
with the upper section held securely in a clamp and the lower
end loaded with a 3.2 kg mass which extends the braid to
its maximum length. The minimum braid angle was then
recorded; this was achieved by photographing the braid, en-
larging the print and then measuring the angle. Measurements
were take at ten points along the length of the braid (avoiding
the extreme ends where the clamps prevented the minimum
angle being achieved). The number of strands used to form
the braid was then reduced (reducingN), by the removal of
individual strands whilstDo andDs remained constant. The
minimum braid angle was again recorded.

Figure 3 shows the braid at its fully extended length with
the number of strands (N) being used to form the braid equal
to 240 in Figure 3(a), 160 in Figure 3(b) and 120 in Figure 3(c).
It can be seen that the minimum braid angle becomes smaller
as the number of strands used to form the braid is reduced.
Table 1 shows the mean measured minimum braid angles and
the corresponding calculated values. It can be seen that the two
values correspond closely with particularly good agreement
for N equal to 120 and 240.

The dilated length of the actuator and therefore its stroke
length is determined by the minimum braid angle and there-
fore this can be increased by making the angle as small as
possible. For the braid tested here reducing the number of
strands used to form the braid from 240 to 120 resulted in
an increased actuator stroke length of approximately 7%. By
studying eq. (8) it can be seen that as well as reducing the num-
ber of strands used to form the actuator the minimum braid
angle can also be lowered by using strands with a smaller
diameter.

The force generated by a muscle is dependent on braid an-
gle with the largest force being generated at the smallest braid

Table 1. Experimental Configurations

θmin Standard θmin

N Measured Deviation Calculated

240 18.9 0.57 19.0
160 13.7 1.16 12.1
120 9.6 0.97 9.0

angle. It therefore follows that by reducing the minimum braid
angle the peak actuator force can be increased. Equation (10)
shows the ratio of the theoretical force (using the basic force
equation (Schulte 1962)) for a braid angle of both 10◦ and
20◦. It can be seen that the force at 10◦ is approximately 16%
higher than that at 20◦ which represents an increase of peak
static force of 16%:

F10

F20

=
π · D2

O
· P

4
(3 cos2 10− 1)

π · D2
O

· P

4
(3 cos2 20− 1)

= 1.16. (10)

It should be noted that during testing the samples only in-
cluded the braid material; the internal rubber bladder was ab-
sent. Therefore, to achieve such a braid angle in a completed
actuator the dilated diameter of the rubber bladder used should
be less than the diameter of the braid at angleθmin. If this is not
the case the bladder will prevent the minimum braid angles
being reached.

2.2. Braid Area

When fewer strands are used in construction of the actuator
this results in a more open structure, particularly as the muscle
is pressurized. In its contracted state the muscle braid is now
much more open and the gap between strands is larger than
in a standard muscle. In some instances this may present a
problem due to the internal bladder passing through the gaps
and rupturing. It is therefore useful to know the relationship
between the strands and the inter-fiber gap.

From Figure 1 it can be seen that the spacing between nodes
G is

G = C

Nc

⇒ G = π · D

Nc

(11)

whereD is the diameter of the muscle and is given byDO ·
sinθ . Substituting this and (7) into (11) results in an equation
for the node separation in known material properties:

G = 2S · π · DO · sinθ

N
. (12)

As can be seen in Figure 2 the shape of the braid gaps is a
rhombus of widthZ:

Z = G − 2Y. (13)

Substituting in eqs. (4), (6) and (12) gives

Z = 2S · π · DO · sinθ

N
− DS · S

cosθ
. (14)

The maximum area of the rhombus occurs at a braid angle of
45◦ and has an area given byZ2

2
, therefore

AreaMax =

(
2S · π · DO · sin 45

N
− DS · S

cos 45

)2

2
. (15)
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(a)   (b)   (c) 
Fig. 3. Braid constructed with a range of strand numbers N.

For the braids tested the maximum gap area increased from
0.22 mm2 for the braid consisting of 240 strands to 2.84 mm2

when 120 strands were used. This represents a significant en-
largement, greatly increasing the chances of the inner bladder
passing through the gaps and rupturing. Anecdotal evidence
suggests thinner bladder material is more likely to rupture and
future work will study the nature of the bladder material and
extend equation (15) to determine the point at which failure
will occur.

2.3. Braid Failure

A second problem associated with removing braid strands is
the reduction in overall braid strength. The radial force gen-
erated on the surface of the actuator, caused by the internal
pressure, causes stretching of the braid strands (Davis et al.
2003). The force is equally distributed between each of the
strands but as strands are removed so the force on each indi-
vidual fiber increases and this will ultimately become so high
that the structure fails. It is therefore essential for safety rea-
sons that it be determined whether the braid used is capable
of withstanding the forces to be applied to it.

To determine this the stress on an individual strand is an-
alyzed. Due to the weave pattern the path of a single strand
is a spiral along the length of the actuator circling itn times.
Each circlingn can be considered as a band around the cir-
cumference of the muscle. Hoop stress analysis can then be
used to determine the increase in diameter of the band when
a pressure is applied inside it (Ross 1987; Drucker 1967).

Hoop stress analysis is performed by considering the case
where a cut is performed through the hoops at their widest
point, as can be seen in Figure 4, and subsequently resolving
the forces.

P

D

L

Bands

Fig. 4. Cut through actuator with strands considered as
individual bands.

The total force in the vertical direction causing strand
stretch equalsP · D · L therefore the force on each band is

P · D · L

n · N
(16)

wheren is the number of times each strand encircles the ac-
tuator andN is the total number of strands used to form the
actuator. Therefore, the stress on each band is

σ =
P · D · L

n · N

2 · Astrand

= P · D · L

2 · n · N · Astrand

(17)
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whereAstrand is the cross-sectional area of the strands in the
same plane as the cut shown in Figure 4.

D is the actuator diameter given by (Chou and Hannaford
1996)

D = b · sinθ

n · π
(18)

andL is the actuator length given by (Chou and Hannaford
1996)

L = b · cosθ. (19)

It would be most useful to know the minimum number of braid
strands necessary to prevent failure, therefore the equation can
be rearranged thus:

N = P · D2
O

· π · cosθ · sinθ

2 · σ · Astrand

. (20)

The ultimate tensile strength of the nylon material used to
form the braid is 75×106 Pa (Brydson 1999) and the typical
operating pressure of the actuators is 500 kPa. Therefore it can
be calculated using (20) that the minimum number of braid
strands that can be used to form an actuator with the material
properties detailed earlier is 97.

This analysis allows for the construction of actuators
with maximum contraction while ensuring safe operation is
maintained.

3. Friction/Hysteresis

It has been observed by Chou and Hannaford (1996) and
Tondu and Lopez (2000) that during operation there is a
force/displacement hysteresis in the muscles. This is caused
by friction between the braid stands. Tondu and Lopez (2000)
also noted that although there is contact between the braid
and the inner rubber liner this does not present a source of
friction as the liner remains “rigidly locked” to the braid by
the internal actuator pressure.

To account for the strand on strand friction in mathemati-
cal models Chou and Hannaford proposed adding a constant
force offset to the calculated force during muscle contrac-
tion and subtracting it during extension (i.e., friction force
always opposes the driving force). Tondu and Lopez (2000)
took Chou and Hannaford’s concept further by attempting to
quantify the offset force by modeling the friction. However,
the model produced is based on the basic static model which
does not provide accurate force data (Schulte 1962; Chou and
Hannaford 1996; Tsagarakis and Caldwell 2000; Davis et al.
2003). To overcome this, a parameterk is introduced which
“tunes the slope of the considered static model” (Tondu and
Lopez 2000). This ensures that the modeled data match the
experimental values through the selection of an appropriate
value ofk. Although the model produced is more accurate

than that of Chou and Hannaford, the method of producing it
relies on experimental data.

In this section the approach taken by Tondu and Lopez is
used to analyse the frictional effects present in the actuator and
this is then combined with the more accurate static model de-
scribed in Davis et al. (2003) which include stretching effects
in the braid strands. This removes the need for the “tuning
factor” k.

3.1. Braid Contact Area

When the strands used to make up the muscle braid move
against one another they form a source of friction and this
needs to be included in any mathematical model. The expres-
sion describing the static dry friction of the braid moving
against itself is as follows (Tondu and Lopez 2000):

Ffriction = fs · Scontact · P (21)

whereFfriction is the resisting force caused by friction,fs is
the coefficient of friction (0.15–0.25 for a nylon on nylon
contact (Plastics Design Library Staff 1995)) andScontact is the
contact area between the braid strands. Due to the weave of
the braid, the contact area varies as the braid angle changes
and so an expression for the contact area needs to be found.
This is achieved by first considering just one braid crossover
point as shown in Figure 5.

It can be seen that

tanθ = x

y
(22)

and

sinθ = WB

2y
(23)

whereθ is the braid angle as shown in Figure 5. The area of
one contact polygonSone is given by

Sone = 2 · x · y

therefore

Sone = W 2
B

2 · cosθ · sinθ
(24)

where, as before,WB is the width of a strand assuming only
a single strand follows each path. In reality several parallel
strands are often used and therefore WB is the total width of
these parallel strands. The total contact area for the whole
muscle is therefore

Scontact = Ncontacts· W 2
B

2 · sinθ · cosθ
(25)

whereNcontacts is the total number of crossover points in the
muscle.
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Fig. 5. One single braid crossover point.

The values for bothWB andNcontactscan both be obtained
experimentally; however, this is difficult due toNcontactsbeing
very high. However, if it is assumed that when the muscle
is at its maximum dilation (minimum braid angle) there are
no gaps between the crossover points, then the entire surface
area of the muscle is made up of crossover points. Hence
we can easily calculate the surface area of the muscle at its
maximum length using eqs. (18) and (19) andθmin which can
be calculated as described in Section 2.

Therefore atθmin,

Surface area= π · Dmin · Lmax = Sone · Ncontacts. (26)

Substituting (22), (24) and (25) into (26) gives

Ncontacts= 2 · b2 · sin2 θ ·
min cos2 θmin

n · W 2
B

(27)

so

Scontact = Sone · Ncontacts (28)

and by combining (22), (27) and (28) we obtain an expression
for the contact area of the whole muscle at any braid angle
thus:

Scontact = b2 · sin2 θmin · cos2 θmin

n · sinθ · cosθ
. (29)

Tondu and Lopez (2000) produced a similar expression; how-
ever, this format allows the variation in braid strand length
described in Davis et al. (2003) to be included.

3.2. Frictional Effects

In the preceding analysis it has been assumed that the braid
strands are of flat cross-section; however, in reality they are
circular in cross-section and the basic friction equation (21)
needs to be modified due to the circular nature of the braid
strands. The contact surface calculated using (29) assumes
that the strands are flat and this produces an overestimate
of the contact area (Tondu and Lopez 2000). Therefore, a
second constantSscaleis introduced which accounts for this by
reducing the calculated contact area:

Ffriction = fs · Scontact

Sscale

· P. (30)

To produce a full model including friction the expression de-
scribing the frictional force needs to be combined with the
static model thus (Tondu and Lopez 2000):

FSF = Fstatic − Ffriction during contraction

FSF = Fstatic + Ffriction during dilation (31)

whereFSF is the modeled output force including friction and
Fstatic is the force calculated using the static force equation.

3.3. Experimental Results

To verify that the static model described in Davis et al. (2003)
can be extended to include the effects of friction a test muscle
with the following dimensions was used:

bmin = 0.65 m
n = 4.7
Ds = 0.00025 m
N = 240
fs = 0.2 .

The muscle was pressurized to a predetermined test pres-
sure and then a second, larger muscle was used to apply a force
to the free end as shown in Figure 6. This allowed a range of
differing forces to be applied to the test muscle. A load cell
was placed at the point where the two muscles joined and a ro-
tary potentiometer was used to measure the contraction of the
test muscle. Although a hysteresis exists in both muscles the
load cell was used to control the force applied to the test mus-
cle and therefore the results are not affected by the hysteresis
in the force muscle. As force was applied to the test muscle
it increased in length and as a result its volume decreased. As
the volume of air in the test muscle was constant this resulted
in a pressure increase. To overcome this closed loop pressure
control was used to maintain the pressure during testing.
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Load cell
Force muscle

Potentiometer

Test Muscle

Fig. 6. Hysteresis test rig.

During testing an increasing force was applied to the test
muscle and the contraction recorded. When the length of the
muscle reached a predefined maximum the force was then
gradually released. The experiment was repeated for a range
of maximum muscle extensions to determine what effect this
had on the size and shape of the hysteresis loop (Figure 7).

It can be seen that the width of the hysteresis loop, at each
contraction length, remains constant despite varying the range
of the test muscle’s motion.This means that the frictional force
Ffriction calculated using (30) is valid for all ranges of motion
at the pressure for which it is calculated.

To investigate the effect of pressure on the hysteresis the
experiment was repeated at a range of test muscle pres-
sures. The results are shown in Figure 8 and the modeled
force/displacement relationship calculated using (31) is in-
cluded. Suitable values ofSscalewere selected from the exper-
imental data and were found to be 20 at 200 kPa and 16 at
300 kPa.

This method of selecting an appropriate value ofSscalefrom
the experimental results was used by Tondu and Lopez (2000)
and a scaling factor of 13 was used in their work. The scaling
factors used here and that used by Tondu and Lopez are in
approximately the same range and the difference is likely to
be due to the nature of the actuator materials used. Having to
determine the scaling factor experimentally is not, however,
desirable as the performance of any theoretical actuator cannot
be calculated. It is more appropriate to calculateSscaleand this
can be achieved by studying the structure of the weave used
to form the braid and the points where friction occurs.

3.4. Strand Deformation

If the strands used to make up the braid were flat it would
be simple to calculate the contact area between two touching
strands. However, the cylindrical nature of the strands makes
this more complex as the contact area is determined by the
deformation of the material. If the cylinders were considered
non-deformable as in Figure 9(a) the contact area would be
negligible. In reality, however, all materials deform to some

degree and therefore the contact area between the two strands,
known as the Hertz contact area, is that shown in Figure 9(b).

The scaling factorSscale can be calculated by determin-
ing the ratio of the work required to rotate two flat strands
against each other and two cylindrical strands against each
other. Calculation of the Hertz contact between two cylinders
at any arbitrary angleθ is highly complex, requiring a finite-
element-based approach. Therefore, for the purposes of this
analysis the contact is considered as equivalent to the contact
between two spheres, as can be seen in Figure 10.

The contact force between the two strands remains constant
irrespective of the area of the contact. The distance that the
two materials move against each other, however, does vary
depending upon the contact area. Consider a circular contact
area with radiusac. If the upper sphere is rotated through one
full revolution against the stationary lower sphere a point on
the circumference of the contact area will travel a distance of
2πac. Now if the contact area is reduced so as to have a radius
of ac/2 then a point on the circumference of this new contact
area will only travel a distance ofπac, half that of the original
point. Remembering that the contact force between the two
spheres remains constant in both cases, the work required to
rotate the sphere in the second instance must also be half that
of the first. It therefore follows that the scaling factor will be

Sscale = aflat
c

a
sphere
c

(32)

whereaflat
c

is the contact radius assuming flat strands and is
equal toDs /2 andasphere

c
is the contact radius assuming the

contact to be between spheres.
The Hertz contact radius between two spheres is given by

(Stolarski 1999)

asphere
c

= 0.721
(
Fcomp · Kd · Ce

) 1
3 (33)

where

Ce = 2(1 − ν2)

E
, Fcomp = P · D2

s
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Contact
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Fig. 9. Hertz contact between two parallel cylinders.
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Fig. 10. Treating contact as that between two spheres.

and for equal radius spheres

Kd = Ds

2

with E being the Young’s modulus,ν being the Poisson ratio
of the strand material andFcomp being the force pushing the
two strands together. Therefore the scaling factor is

Sscale = Ds

/
2

0.721

(
Fcomp · Ds

2
· Ce

) 1
3

= Ds

1.442

(
Fcomp · Ds

2
· Ce

) 1
3

. (34)

For the test muscle

E = 3 × 109 Pa (Brydson 1999)
ν = 0.4 (Brydson 1999)
Ds = 0.00025 m

and this results in a value forSscale of 18.1 for a 200 kPa

drive pressure and 15.8 for a 300 kPa input. These values
match the values obtained experimentally to better than 10%.
The contact area increases as higher drive pressures are used
as the material deformation is greater. This implies that the
value ofSscale will not be a constant across all pressures and
this is reflected in the experimentally obtained values ofSscale.
Further evidence of this can be seen in the work of Tondu and
Lopez (2000) where modeled force data using a scaling factor
of 13 closely match the experimental data for a 400 kPa drive
pressure, but as this pressure is reduced the accuracy of the
model deteriorates.

The accuracy of the new model can also be verified using
the experimental data presented by Tondu and Lopez (2000).
Tondu and Lopez did not provide a value for the diameter
of the braid strands used in their work but it seems reason-
able to assume a similar material to that used in this work,
and therefore a braid diameter of 0.25 mm was used during
calculations. For a 400 kPa input pressure the scaling factor
calculated using (34) is 14.3 which is within≈10% of the ex-
perimentally obtained value of 13 of Tondu and Lopez. The
difference is likely to be due to assumed strand diameter and
the fact that the scaling factor of 13 was chosen to cover all
operating pressures.

4. Conclusion

This paper has analyzed the structure of braided pneumatic
Muscle Actuators and it has been shown that the minimum
braid angle of the actuator can be calculated from the mate-
rial properties of the actuator. This information is useful as the
angle determines the dilated length and therefore the maxi-
mum stroke length of the actuator. The analysis has shown
that by simply halving the number of strands used to create
the braided shell of the actuator the minimum braid angle can
be reduced by 50% (from 19◦ to 9◦) and this results in an
increase in actuator contraction of approximately 7% and an
increase in peak contractile force of 16%. This result has also
been proven experimentally.

As the number of fibers used to construct the braid is re-
duced the ability to contain the internal pressure decreases,
ultimately leading to failure. Mathematical analysis has been
used to determine the point at which this failure will occur.
Further, reducing the number of fibers results in a more open
braid structure, meaning the inner liner may pass through the
braid and rupture. Further analysis of this will form future
work.

It is well known that there is a force/displacement hys-
teresis in the actuators and whilst some work has considered
this effect the resulting methods rely on data obtained exper-
imentally from the actuator being modeled. This paper has
presented a method allowing theoretical modeling (and ex-
perimental verification) of any generic actuator through anal-
ysis of strand contacts. Due to the cylindrical nature of the
strands, calculation of the contact area is complex, and for
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this reason past analysis has assumed flat strands and used a
scaling factor to account for the circular cross-section of the
strands. The scaling factor has usually been determined exper-
imentally; however, this work has presented a mathematical
method of determining the scaling factor using analysis of the
Hertz contact between the strands and this has been verified
against experimental data. It has been shown that the scal-
ing factor is a pressure-dependant variable, not a constant as
previously assumed.
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