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Abstract: We describe YARP, Yet Another Robot Platform, an open-source project that encapsulates lessons 
from our experience in building humanoid robots. The goal of YARP is to minimize the effort devoted to 
infrastructure-level software development by facilitating code reuse, modularity and so maximize research-level 
development and collaboration. Humanoid robotics is a “bleeding edge” field of research, with constant flux in 
sensors, actuators, and processors. Code reuse and maintenance is therefore a significant challenge. We describe 
the main problems we faced and the solutions we adopted. In short, the main features of YARP include support 
for inter-process communication, image processing as well as a class hierarchy to ease code reuse across different 
hardware platforms. YARP is currently used and tested on Windows, Linux and QNX6 which are common 
operating systems used in robotics. 
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1. Introduction 
 
YARP is written by and for researchers in humanoid 
robotics, who find themselves with a complicated pile of 
hardware to control and with an equally complicated pile 
of software. Achieving visual, auditory, and tactile 
perception while performing elaborate motor control in 
realtime requires a lot of processor cycles. The only 
practical way to get those cycles at the moment is to have 
a cluster of computers. Every year the capabilities of an 
individual machine grows, but so also do our demands – 
humanoid robots stretch the limits of current technology, 
and are likely to do so for the foreseeable future. 
Moreover, software easily becomes entangled with the 
hardware on which it runs and the devices that it 
controls. This limits modularity and code reuse which, in 
turn, complicates software development and 
maintainability. In the last few years we have been 
developing a software platform to ease these tasks and 
improve the software quality on our robot platforms. We 
want to reduce the effort devoted to infrastructure-level 
programming to increase the time spent doing research-
level programming. At the same time, we would like to 
have stable robot platforms to work with. Today YARP is 
a platform for long-term software development for 
applications that are real-time, computation-intensive, 
and involve interfacing with diverse and changing 
hardware. It is successfully used on several platforms 
(Aryananda, L. and Weber, J., 2004; Beltran, C. and 
Sandini, G., 2005; Breazeal, C.F. and Scassellati, B., 1999; 
Brooks, R.A. et al., 1999; Edsinger-Gonzales, A. and 
Weber, J., 2004; Natale, L., 2004; Torres-Jara, E. et al., 
2005) in our research laboratories (see Table 1). 
 

Robot Laboratory Size OS 
Babybot LIRA-Lab 13/21/50 Win32/QNX6 
Eurobot LIRA-Lab 11/NA/NA Win32/QNX6 
RobotCub LIRA-Lab 3/NA/NA Win32 
Obrero MIT-CSAIL 7/14/30 Linux/OSX 
Mertz MIT-CSAIL 5/NA/NA Linux/OSX 

Domo MIT-CSAIL 6/NA/NA Linux 

COG MIT-AILab 32/50/75 Linux/QNX4 

Kismet MIT-AILab 12/NA/NA Linux/Win32/QNX4 
Table 1. Robots using YARP. To give an idea of the 
complexity of the systems, in the third column we 
provide the number of CPUs and the maximum number 
of processes and ports employed (when available). 
 
We begin the paper by summarizing the lessons we have 
learned over the years while working on various robots, 
some of which are software engineering commonplaces 
and some of which are more specific to long-term robotic 
research. The bulk of the paper discusses the 
communication model supported by YARP. We then 
briefly mention other components of the library, in 
particular image processing and device drivers. 
 
2. Motivation 
 
Let us now introduce YARP by describing the high-level 
lessons we have learned and applied within it. 
One processor is never enough. Designing a robot control 
system as a set of processes running on a set of computers 
is a good way to work. It minimizes time spent wrestling 
with code optimization, rewriting other people’s code, 
and maximizes time spent actually doing research. The 
heart of YARP is a communications mechanism to make 
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writing and running such processes as easy as possible. 
Even where mobility is required this is not a limiting 
factor if tethers or wireless communication are acceptable. 
Modularity. Code is better maintained and reused if it is 
organized in small processes, each one performing a 
simple task. In a cluster of computers some processes are 
bound to specific machines (usually when they require a 
particular hardware device), but most of the time they 
can run on any of the available computers. With YARP it 
is easy to write processes that are location independent 
and that can run on different machines without code 
changes. This allows us to move processes across the 
cluster at runtime to redistribute the computational load 
on the CPUs or to recover from a hardware failure. YARP 
does not contain any means of automatically allocating 
processes as in some approaches like GRID 
(http://www.grid.org). We deliberately assign this task to 
the developer. The rationale is that: i) the link between 
hardware and corresponding control software is subject 
to constraints understood by the developer, but 
cumbersome to encode, particularly in a continually 
changing research environment, and ii) in a 
heterogeneous network of processors, faster processors 
might need to be allocated differently from slower 
processors. The final behavior is that of a sort of “soft 
real-time” parallel computation cluster without the more 
demanding requirements of a real-time operating system. 
Minimal interference. As long as enough resources are 
available, the addition of new components should 
minimally interfere with existing processes. This is 
important, since often the actual performance of a robot 
controller depends on the timing of various signals. 
While this is not strictly guaranteed by the YARP 
infrastructure, the problem is in practice alleviated 
computationally by allowing the inclusion of more 
processors to the network, and from the communication 
point of view by the buffer policy (see Section 5.). 
Stopping hurts. It is a commonplace that human cycles 
are much, more expensive than machine cycles. In 
robotics the human cost of stopping and restarting a 
process can be very high. For example, that process may 
interface with some custom hardware which requires a 
physical reset. There may be other dependent processes 
that need to be restarted in turn, and other dependent 
hardware. YARP does its part to minimize dependencies 
between processes. Communication channels between 
processes can come and go without process restarts. A 
process that is killed or dies unexpectedly does not 
require processes to which it connects to be restarted. 
This also simplifies cooperation between people, as it 
minimizes the need to synchronize development on 
different parts of the system. 
Humility helps. Over time, software for a sophisticated 
robot needs to aggregate code written by many different 
people in many different contexts. Doubtless that code 
will have dependencies on various communication, 
image processing, and other libraries. Even the operating 

system on which the software is developed can pose 
similar constraints. This is especially true with code that 
relies heavily on the services offered by the operating 
system (such as communication, scheduling, 
synchronization primitives, and device driver interfaces). 
Any component that tries to place itself “in control” and 
has strong constraints on what dependencies are 
permissible will not be tolerated for long. It certainly 
cannot co-exist with another component with the same 
assumption of “dominance”. Although YARP offers 
support for communication, image processing, 
interfacing to hardware etc., it is written with an open 
world mindset. We do not assume it will be the only 
library used, and endeavor to be as friendly to other 
libraries as possible. YARP allows interconnecting many 
modules seamlessly without subscribing to any specific 
programming style, language interface, or demanding 
specifications as for instance in CORBA (Vinoski, S., 1997) 
or DCOM (http://www.microsoft.com). Such systems, 
although far more powerful than YARP, require a much 
tighter link between the general algorithmic code and the 
communication layer. We have taken a more lightweight 
approach: YARP is a plain library linked to user-level 
code that can be used directly by instantiating 
appropriate classes. Finally, other programming 
languages can access YARP as well, provided they can 
link and call C++ code. We have successfully used YARP 
from within Matlab, Python and L (Brooks, R., 1990). 
Exploit diversity. Different operating systems offer 
different features. Sometimes it is easier to write code to 
perform a given task on one OS as opposed to another. 
This can happen for example if device drivers for a given 
board are provided only on a specific platform or if an 
algorithm is available open source on another. We 
decided to reduce the dependencies with the operating 
system. For this we use ACE (Huston, S.D. et al., 2003), an 
open source library providing a framework for 
concurrent programming across a very wide range of 
operating systems. YARP inherits the portability of ACE 
and has indeed been used and tested on Windows, Linux, 
QNX 6, and Mac OSX. 
 
3. Communication 
 
Communication in YARP follows the Observer pattern 
(Gamma, E. et al., 1995). The state of special Port objects 
can be delivered to any number of observers, in any 
number of processes distributed across any number of 
machines. YARP manages these connections in a way that 
insulates the observed from the observer and, just as 
importantly, insulates observers from each other. For 
example, if one observer reads a data source slowly and 
infrequently, this does not force other observers to slow 
down. In YARP, a port is an active object managing 
multiple connections for a given unit of data either as 
input or output (see Figure 1). Each connection has a state 
that can be manipulated by external commands, which 
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manage the connection or obtain state information from 
it. Ports can behave either as input or output. An input 
port can receive from multiple connections at different 
data rates “speaking” different protocols (e.g. TCP, UDP, 
multicast). An output port can send data to many 
destinations reading at different rates on different 
protocols. Service channels are also temporarily created 
to perform the handshaking between ports; in this case 
the protocol of choice is TCP for reliability. The use of 
several different protocol allows us to exploit their best 
characteristics: 

• TCP: reliable, it can be used to guarantee the 
reception of a message; 
• UDP: faster than TCP, used for point to point 
connections; 
• multicast: used for creating one to many connections, 
efficient for distributing the same information (e.g. 
images from cameras) to many targets; 
• shared memory: employed for local connections 
(selected automatically whenever possible, without the 
need for programmer intervention); 
• QNet: a fast and synchronous protocol used under the 
QNX real-time OS. 

Ports can be connected either programmatically or at 
runtime. Communication is fully asynchronous and as 
such messages are not guaranteed to be delivered unless 
special provisions are made. The default behavior of 
YARP ports is targetted at dealing with recurrent 
messages, updated and sent often, where losing one 
message does not compromise the integrity of the system. 
This is a characteristic of sensor data such as images and 
sound, where it is far more important to keep up with the 
present than to process every bit received. A typical 
application is, for example, the acquisition of images, and 
delivery to many machines performing the processing in 
parallel. Slower processes might simply not use all the 
available frames in the stream of data and instead skip 
some of them. Details of the port API are reported in the 
next section (Section 4.). Message delivery can be 
guaranteed, but at the cost of introducing a subtle 
coupling between processes (see Section 5.). 
Ports are located on the network by symbolic names 
which are managed by a name server. The name server 
maps symbolic names (strings) into the triplet composed 
of the IP address, port number, and interface name. This 
information is all that is required to establish socket 
communication between two endpoints. A description of 
the network topology is stored statically in the name 
server tables (a cluster might have multiple separate 
networks) and used to reply to registration or connection 
requests by the clients. The first operation each port must 
perform is the registration of its name with the name 
server. Registration is typically followed by connection to 
a peer of the same data type. When the user is done with 
the port, it can be stopped, unregistered, and eventually 
destroyed.  

 

 
Fig. 1. The port internal structure: in practice either input 
or output connections, but not both, are used for a given 
instance of a port object.  
 
Ports can deal with any data type. For simple data types 
(i.e. not containing pointers) the port class is already 
equipped with the appropriate communication code. 
Complex data types are dealt by specializing the port C++ 
template for the new type and providing the serialization 
and deserialization functions. Serialization is done by 
providing lists of memory blocks, to minimize copies 
(crucial for bulky types such as images). Support for 
marshalling is not built into the library. Ports are 
implemented as C++ templates and specialized to the 
type of the data to be transmitted or received. This creates 
a very clean and consistent client interface. 
 
4. Port API 
 
We will show an example of the idiom used in YARP for 
communication. As mentioned in the previous section, 
the Port class is the key abstraction used. Ports are 
typically instantiated with a specific type. For example, if 
we wish to receive integers, we can create an input port at 
any point in the program and in any thread, as follows: 

YARPInputPortOf<int> in_port; 
in_port.Register ("/my_in_port"); 

This creates a port for receiving integers with the default 
buffering provided by the communication layer (see 
Section 5. for a discussion of alternatives). If we are in a 
heterogeneous network, it would be wiser to use 
YARPInputPortOf<NetInt32>, where NetInt32 is a standard 
integer type that is the same size and byte order on all 
platforms. The next statement instructs the port to 
register with the name server with the arbitrary name 
“/my_in_port”. A hypothetical sender should conversely 
create a port as in the following example: 

YARPOutputPortOf<int> out_port; 
out_port.Register ("/my_out_port"); 

This is an output port employing the default protocol 
(TCP, or shared memory whenever possible); alternatives 
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can be easily requested. The protocol type is determined 
by the output port since the input port can receive any of 
the available protocols. Again, the port has to register 
with the name server by calling Register. As described 
earlier, the port is a template with the argument of the 
template being the type of the data being sent. 
The next step is to wait for data from the input port and 
send data through the output port waiting or polling for 
data can be done in several ways; here is one way: 

if (in_port.Read()) { 
int datum = in_port.Content(); 
cout << datum << endl; 

} 

This shows how to read from the port with a blocking 
Read and acquire the received data through Content. If the 
call to Read succeeds, then the object returned by any 
subsequent call to Content will be the received data, and 
is guaranteed not to change or be overwritten until the 
next call to Read. If new data is sent to the port in the 
meantime, the appropriate action will be taken based on 
the port buffering policy (see Section 5.). For example, the 
data may be stored in an alternate buffer and then 
queued up to become the Content after the next call to 
Read. On the sending side we will have something like: 

out_port.Content() = 42; 
out_port.Write (); 

This fills the content (a simple integer in this case) by 
accessing the buffer through Content and sends it by 
calling Write. The use of Content is important to avoid 
unnecessary copies while still maintaining an abstraction 
barrier between the port and the user. We can now 
connect the two processes (one receiving, one sending) 
by, for example, using the YARP command-line utility 
yarp-connect: 

yarp-connect /my_out_port  /my_in_port 

To halt the communication the user can detach the ports 
in a similar way. The ports are not destroyed by 
detaching them and in fact can be connected and 
disconnected freely. When done with the ports the user 
code can call Unregister to remove the ports from the 
name server, and finally destroy them by invocation of 
the C++ destructor (perhaps implicitly when exiting the 
port scope).  
The Write method abstracts over a great deal of 
complexity. An output port may be connected to many 
input ports, all of which may read data at different rates. 
By default, when Write is called, a reference to the buffer 
is passed to every free output connection (to block and 
wait for all sends to finish before trying the next one, 
FinishSend can be called). The buffer will be retained until 
it is no longer needed by any output connection, and then 
given back to the port to be recycled. 
This short example shows all the main features of the port 
classes including the strong typing of the communication 
channels, the independence of the connected processes, 

and the use of an external utility to command ports. Port 
creation, connection, and communication can occur in 
one part of a much larger program without, for example, 
having to place special initialization steps in some 
particular phase of start-up. This makes it very easy to 
add YARP-style communication incrementally to existing 
code. 
 
5. Decoupling timing 
 
A very useful feature of YARP is that “observers” (input 
ports) can be connected to an “observable” (output port) 
with minimal impact on existing observers. A “slow” 
observer, which takes time to process each update it 
receives from the observable, does not force a “fast” 
observer of the same observable to slow down. To 
achieve this requires either buffering of messages for 
bursty sources, or simply dropping messages for 
observers that cannot keep up. The second approach is 
the default behavior in YARP, since it is important to 
minimize latency. 
Let us assume we have a “server” process which contains 
an observable (an output port), and a “client” process 
which contains a corresponding observer (an input port). 
The server process can update the observable in one of 
three ways: 
• The default mechanism is no-wait. When the server 
process calls the observable’s update method (Write), 
then the current state of the observable is made available 
to be sent to every free observer, and the server can 
continue without delay. Free observers are ones not 
currently in the process of reading a previous state of the 
observable. 
• An alternate mechanism is wait-after. After the same 
steps as no-wait are taken, the server can choose to wait 
for all communication to cease before continuing (by 
calling FinishSend). This guarantees that all observers 
will be notified and free to receive the next update.  
• The final mechanism is wait-before. The server can 
choose to wait for all communication to cease before 
updating (by calling a blocking version of Write). This 
guarantees that all observers will be free, and the update 
will be sent to all of them. The difference between this 
and wait-after is that, if the processing time of the server 
(the time between updates) is greater than the time taken 
to send the update to all observers, then the server will 
never actually need to wait. 

To insulate the server from the details of implementing 
all this, the state associated with an observable is made 
logically distinct from the observable itself, and once an 
update is requested (by a call to Write) the state becomes 
the property of the communication system, while the 
server is given a replacement object to prepare for the 
next update. 
The communication system manages a pool of such state 
objects which grows to whatever size is necessary based 
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on the speed of the various observers. On the client side, 
there are some choices in how the observer behaves: 
• triple-buffer behavior: an observer becomes free for 
another update immediately after having received one, 
before any processing is done by the client. If updates 
arrive faster than processing occurs, then updates will be 
lost from time to time (where “lost” means “never 
processed”), but the most recent update received will 
always be available to the client immediately when 
processing is completed. 
• double-buffer behavior: same as above, but if an update 
is currently arriving, then no new content will be 
available to the client until the update arrives. This is 
good if it is more important to minimize latency of non-
dropped updates than to maximize throughput.  
• single-buffer behavior: the arrival of updates is delayed 
until the client completes processing. No updates will 
ever be lost on the client side. 

The default behavior for YARP is no-wait for the 
observable (server side) and triple-buffer for the observer 
(client side). This choice minimizes the time spent waiting 
for communication to occur by the server and the client, 
and permits updates to be lost (either by never sending 
them, or discarding them on the client side) if the client is 
not keeping up. This is generally a good choice for real-
time performance (see Figure 2). 
The default of no-wait on the server side is particularly 
important, since it minimizes coupling between observers 
of the same observable. If it is important that updates are 
never lost, then inevitably there will be coupling, since a 
slow client can then force the server to slow down the 
rate at which it serves all clients. 
The default of triple-buffer on the client side insulates the 
server from the client’s behavior by default. Even if the 
server is configured to wait, default clients will only 
delay the server with the time taken to communicate with 
them, and not the time they take to process the update. 
Clients which absolutely need a guarantee of zero update 
loss can choose single-buffer behavior. 
 
6. Image processing 
 
Support for visual processing is a mandatory requirement 
for a software library designed to be used in humanoid 
robotics. Efficiency is very important in real-time image 
processing, so we chose an approach which interfaces 
well with popular optimized libraries, but which is still 
capable of good performance in their absence. 
To help developers write efficient visual processing 
routines, Intel released the Image Processing Library 
(IPL). This library is optimized to provide high 
performance on machines which employ Intel processors, 
especially if equipped with MMXTM technology. The IPL 
library is a set of C functions which implement basic 
operations on images, from simple algebraic operations 
on pixels to color conversions and convolutions. 

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

Frame 1 Frame 2 Frame 3 Frame 5

Frame 7 Frame 8

Frame 6

Frame 1 Frame 3 Frame 5 Frame 7

Frame 1 Frame 2 Frame 5Frame 4 Frame 7

 
Fig. 2. The top row represents an output port configured 
for no-wait; dashed and solid lines show (exaggerated) 
start and end times of sending an update to three 
observers (input ports), configured as single-buffer, double-
buffer, and triple-buffer respectively. For the scenario 
shown, the processing time of the client is greater than 
that of the server. 
 
Another advantage of using the IPL is that it is at the core 
of the OpenCV library (Bradsky, G., 2004) which provides 
sophisticated routines for image processing such as 
filtering, face tracking, optic flow, and much more. 
Our basic image class has an internal structure that is 
compatible with the IPL library. This allows any user to 
take full advantage of the IPL and/or OpenCV libraries; if 
these libraries are not used, then a core set of functions 
are available through YARP. YARP also provides support 
for transmitting images across the network. 
 
7. Device drivers 
 
A frequent problem encountered during development in 
robotics is that it is very hard to reuse code on different 
platforms. For example, two mechanically similar 
platforms may have different electronics – different frame 
grabbers, different control boards, etc. (see Figure 3). In 
these situations it is not possible to reuse code written for 
one platform on the other unchanged. However 
something can be done to reduce the differences and 
localize them to specific components by minimizing the 
degree to which high level software modules are 
concerned with the low level details of the underlying 
hardware platform. 
Another problem occurs when two identical boards are 
used on setups that are mechanically different. 
Experience shows that in these situations code reuse is 
very difficult. Consider for instance the example of two 
robotic arms controlled by identical boards. The 
calibration of the joints might be different if index signals 
from the encoders are available or if hardware limits are 
present in the joints. Likewise, the procedure required to 
activate the amplifiers might differ in the two cases. 
These dissimilarities cannot be handled by different 
configuration files as they imply the execution of different 
routines. In YARP, the ensemble of these routines is 
grouped in an adapter. This class is, in general, 
responsible for implementing methods to correctly 
initialize and shut down the device, but it can implement 
other functionalities as well – it is the place where all the 
peculiarities of each particular piece of distal hardware 
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Fig. 3. YARP makes a distinction between proximate 
devices, such as control boards and framegrabbers which 
are used to talk to distal devices such as arms or sensors. 
In different systems, the same proximate device may be 
used to interface with different distal devices (A). 
Conversely, a given distal device may be interfaced with 
using a choice of proximate devices (B). Taking care to 
disentangle these two devices aids code reuse. 
 
(arms, sensors, etc.) is mapped onto the proximal device 
(control boards, framegrabbers, etc.) used to interface 
with it. As such it collects all and the only routines 
specific to each hardware device. 
Finally, the driver for the proximal device and the 
adapter for the distal device are aggregated together by a 
single class. The interface between higher level software 
modules and the hardware occurs through this class and 
it is thus independent of the device driver or the actual 
hardware underneath. Code changes required to use 
different boards or mechanical devices are localized to 
the device driver and the adapter respectively. 
 
8. Conclusions 
 
To operate in natural, unengineered environments, we 
need perceptive robots. We hope that humanoid robots 
will ultimately be able to operate productively in such 
environments. That means that between now and when 
that happens, we can only expect the sensor density and 
computational burden on our robots to grow. Real-time 
operation under this burden is challenging enough, but 
we must also expect the hardware we work with to 
change continually. The YARP library has grown 
organically to face this challenge. Somewhat similar 
projects have evolved from other domains in robotics 
such as mobile navigation (Carmen/IPC (Montemerlo, M. 
et al., 2003)) and commercial/industrial robotics 
(OROCOS, (http://www.orocos.org), Constellation  from 
RTI (http://www.rti.com/products/constellation)), and we 
expect that there will be further development as the 
perceptual component of robotics grows in importance. 
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