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Abstract

The game peekaboo, ordinarily played be-
tween an adult and baby, is used as a situ-
ation where a robot may develop social in-
teraction skills such as rhythm, timing and
turn taking, using its experience and history
of interactions over different temporal hori-
zons. We present experiments using a robot
that explore the length of experiences in an
architecture that selects action based on a
metric space consisting of previous experience
and feedback from the environment. Results
show that sequences of interactions that al-
low the robot to play the game successfully
emerge from the interplay between environ-
mental or social feedback and experience of
various lengths.

1. Introduction

One of the main challenges faced in building agents
embedded in a social environment is how they can
make use of their experience and history of interac-
tion to modulate future action in a meaningful way
and to be further shaped by that action. We take
the view that appropriate mechanisms, while based
in innate abilities, should largely develop through on-
togeny. Our approach is to conduct experiments on a
physical robot (see figure 1) to examine these mech-
anisms for development.

In the study of the ontogeny of social interac-
tion and turn-taking in artificial agents, it is instruc-
tive to look at the kinds of interactions that chil-
dren are capable of in early development and how
they learn to interact appropriately with adults and
other children. A well known interaction game is
“peekaboo” and in general consists of a repeated
cycle of an initial contact1, disappearance, reap-
pearance, and acknowledgement of renewed contact
(Bruner and Sherwood, 1975). Bruner and Sher-
wood note that, while the peekaboo game itself

1Initial contact is usually face-to-face mutual looking
(Bruner and Sherwood, 1975).

Figure 1: Aibo playing “peekaboo” game. Left: Sony Aibo

with human partner Right: Using a static image. (Top:

hiding head with front-leg, Bottom: Aibo’s view, showing

face detection.)

emerges from the exploitation of an innate tendency
in the child that is rewarded by pleasure in respon-
siveness, the game is highly rule bound and needs to
be learnt.

Peekaboo is a common game played by very young
children2 with adults. The contingent, temporal
structure of the game makes it useful as a tool to
better understand the role of interaction as a possi-
ble mechanism to ground robot ontogeny in human-
robot interaction. The child must develop some an-
ticipation of what might happen in the future, and,
moreover, the meeting of this expectation (or indeed,
failure to meet) is where the fun and interest inherent
in the game comes from.

The rhythm and timing of the interaction are cru-
cial and, Bruner and Sherwood suggest that the
peekaboo game and other early interaction games
act as scaffolding on which later forms of interaction,
particularly language and the required intricate tim-
ing details can be built (Pea, 2004, pp424-425).

The temporal structure of the peekaboo game sug-
gests that a robot control or cognitive architecture
needs to take into account the history of interac-
tion. We describe an architecture where an embod-
ied robotic agent can make use of an interaction his-
tory to guide ontological development to act appro-

2(Bruner and Sherwood, 1975) studied 7 month old to 17
month old children but note that the game is played by
younger children still.



priately in a changing environment. The direct sen-
sorimotor motor history of the agent is used to cre-
ate grounded experiences of different lengths which
can be compared with one another using a metric
measure based on the information distance between
them. The agent acts on the basis of its experiences
and the choice of action depends, in part, on the feed-
back of reward from the environment. This archi-
tecture was initially explored in (Mirza et al., 2006),
where the efficacy of the experience space was veri-
fied by using the history to predict the future posi-
tion of a ball.

To relate experiences with other experiences in
an interaction history, we use information distance
measures (Shannon, 1948, Crutchfield, 1990) and a
mathematical concept of experience and the relations
between them. These are defined in (Nehaniv, 2005)
and reviewed in Section 2.4. Information dis-
tance related techniques have been successfully used
in the past, for instance, to compare behaviours
from the perspective of the agent (Mirza et al., 2005,
Kaplan and Hafner, 2005) and for an agent to infer
a model of its own sensory and actuator apparatus
by acting in the environment (Olsson et al., 2005).
This suggests that behaviour can be guided by mov-
ing in a continually constructed space of experiences
by selecting appropriate actions that will move the
agent closer to desired experiences.

We emphasise an ontogenetic developmental ap-
proach (Lungarella et al., 2004, Blank et al., 2005)
to acquiring appropriate behaviour, in that, the
structures controlling action are modified by inter-
action and experience and new skills are acquired. A
new feature of our approach is the growth and ex-
ploitation of the developing agent’s (metric) space of
experiences driving its ontogeny in interaction with
its environment.

This paper continues by describing in further de-
tail the model of interaction history, the metric
space of experience and implementation in a phys-
ical robot. We then describe experiments where we
investigate the effect of temporal scale (horizon) of
experience on the ability of the robot to develop in
playing the game. We conclude the paper with the
results of the experiments and a discussion of the
strengths and limitations of the current model, and
outline how future research can further improve the
models discussed.

2. Model of Interaction History

In developing a model of interaction history we start
out by considering what such a history might be, and
present a working definition. We then describe the
model in outline and go on to explain its key parts,
namely: the metric space of experience, the action se-
lection mechanism and the motivational subsystem.

2.1 Interaction History

We use a working definition of an interaction history
as:

the temporally extended, dynamically con-
structed, individual sensorimotor history of
an agent situated and acting in its environ-
ment including the social environment, that
manifests as current action.

The key aspects of this definition are:
• Temporal extension: experiences are associated

to episodes of particular duration in terms of
events experienced by the agent. The horizon3

of an agent extends into the past (including all
previous experience available to the agent) and
also into the future in terms of prediction, antic-
ipation and expectation.
• Dynamic construction: This indicates that the

history is continually being both constructed and
reconstructed, with previous experiences being
modified in this process, and potentially affect-
ing how new experiences are assimilated.

• Grounding : the history need not be representa-
tional (i.e. recorded in terms of imposed repre-
sentations) and is grounded in the sensorimotor
experience of the agent.
• Remembering, manifest as action: “memory”

consists not of static representations of the past
that can be recalled with perfect clarity, but
rather is the result of an accumulation of in-
teraction with the environment and this his-
tory of interaction is revealed as current and fu-
ture action. See for example (Rosenfield, 1988,
Dautenhahn and Christaller, 1996).

2.2 An Interactive History Architecture

We describe a computational model (Figure 2) that
demonstrates how such interaction histories can be
explicitly integrated into the control of a robot. The
basic architecture consists of processes to acquire
sensory and motor data from the robot as it acts in
the environment (see Section 2.3), from this a met-
ric space consisting of past interaction experiences
is constructed (see Section 2.4). A process then se-
lects past experiences near (i.e. with low informa-
tion distance) to the current experience (see Section
2.5). The selection is also based on the values of in-
ternal variables that change according to a motiva-
tional system (see Section 2.6). The action following
the chosen past experience becomes the next action
of the agent. Finally, there is an internal feedback
process that adjusts the values of internal variables
associated with any experience when it has been used

3Horizon has a different technical meaning when we talk of
the horizon length of an experience as detailed in Section 2.4



Figure 2: Interaction history based control architecture.

to select future action, making it more or less likely
to be chosen in the future.

There are many potential architectures that
take history of action and interaction into ac-
count, including top-down deliberative architec-
tures such as Soar (Nuxoll and Laird, 2004), con-
nectionist systems that have memory, for in-
stance Elman networks or recurrent neural networks
(Rylatt and Czarnecki, 2000) and certain behaviour
oriented control systems combined with learning
(Matarić, 1992, Michaud and Matarić, 1998). Our
model is not deliberative as no overall plan is
constructed, and it makes history explicit and in-
spectable unlike neural network approaches in gen-
eral. Most behaviour based models do not include
learning from past experience, but of those that do
our approach differs in that the history is not speci-
fied in terms of the behaviour being selected (or in-
deed, the action being selected), but in terms of the
sensorimotor history.

2.3 Sensory and Internal Variables

The sensory information available to the robot4 falls
into three broad categories: proprioceptive (from
motor positions), exterioceptive (environmental sen-
sors, including vision) and internal (these might, for
instance, indicate drives and motivations, or be the
result of processing of raw sensory data e.g. ball
position). The actual variables used in this imple-
mentation are summarised in (Table 1), with further
discussion of internal variables in Section 2.6 and Ap-
pendix A.

All the variables are treated as “random variables”
with local stationarity, for which we can estimate the
probability distributions and entropy for the purpose
of calculating information distance and the experi-
ence metric. See Section 2.4. We also use certain
of these variables to indicate “quality” and in these
cases, the instantaneous values of those variables at

4Sampling is done at regular intervals (between 100-120ms
in the experiments here). Vision sensors are built by subdi-
viding the visual field into regions and taking average colour
values over each region at each timestep. In these experiments
a 3x3 grid over the image is used taking the average of the red
channel only.

Table 1: Sensors and Internal Variables
Type Examples Total

Exterioceptive IR-distance, Buttons 15

Proprioceptive Joint positions, 18

Visual Average colour values in a 3x3
grid over image

9

Internal Face position, ball position,
desire to see a face

10

the end time point of the experience is attached to
the experience.

2.4 Experience Space

The metric space of experience is constructed from
“experiences” of a particular horizon length (in
timesteps) with relative positions in the space de-
termined by the information distance between them.

We formalise an agent’s experience from time t
over a temporal horizon h as

E(t, h) = (X 1
t,h, . . . ,XNt,h)

where Xnt,h is the random variable estimate from the
sequence of values taken by a sensor n from time t
to t+h taken from the set of all sensorimotor inputs
available to the agent. A metric on experiences of
temporal horizon h is then defined as

D(E,E′) =
N∑

k=1

d(X kt,h,X kt′,h),

where E = E(t, h) and E′ = E(t′, h) are two ex-
periences of an agent and d is the information dis-
tance between two random variables X and Y given
by d(X ,Y) = H(X|Y) + H(Y|X ). The information
distance satisfies the axioms of a metric and can be
estimated from the probability distributions5 of the
sampled, discretised variables. See (Nehaniv, 2005)
for proofs and discussion.

2.5 Action Selection and Development

While an experience space can be built without much
difficulty, the challenge is how to have experience
modulate future action in a meaningful way and to be
further shaped by that action. To achieve this goal, a
simple mechanism is adopted whereby the robot can
execute one of a number of “atomic” actions (or no
action) at every timestep (see table 2). Each action
takes 2 seconds or less to execute and the re-centre
head action is duplicated to offset the two actions
which take the head away from the centre. A record
of actions executed by the robot at any time is kept
to facilitate the action-selection based on history of
experience.

5Note that the discretised (binned) values of all variables
at all time intervals are stored in order to be able to estimate
the joint distribution with other (new) experiences.



Table 2: Actions
Action Description

0 Do Nothing

1,2 Look right/left

3 Track ball with head

4,5 Re-centre head

6,7 Hide head with left/right foreleg

8,9 Wave with left/right foreleg

10 Wag tail

To choose an action based on experience, a number
of candidate experiences from the experience space
near to (that is with short information distance to)
the current experience are selected, and one chosen
according to:

pEn ∝ QEn

D(En, Ecurrent)
− C (1)

where pEn is the probability of choosing a candidate
past experience En with quality QEn , taken from the
set of K experiences {E1, . . . , EK} in the neighbour-
hood of the current experience Ecurrent. The exact
nature of the calculation of quality is dependent on
the nature of the drives and motivations ascribed to
the agent (see section 2.6 and Appendix A).

The next action that was executed following the
chosen past experience is then the action to be exe-
cuted next.

If none of the candidate experiences is chosen, then
a random action is executed. This has the advantage
of emulating body-babbling, i.e. apparently random
body movements that have the (hypothesised) pur-
pose of learning the capabilities of the body in an en-
vironment (Meltzoff and Moore, 1997). Early in de-
velopment, there are fewer experiences in the space,
so random actions would be chosen more often. Later
in development, it is more likely that an the action se-
lected will come from past experience. Additionally,
with a small probability reflected by the constant C
above, the robot may still choose a random action
as this may potentially help to discover new, more
salient experiences.

Finally, we introduce a feedback process that eval-
uates the result of any action taken in terms of
whether there was an increase in quality after the
action was executed, and then adjusts the quality
of the candidate experience, from which the action
was derived, up or down accordingly. Closing of the
perception-action loop in this way with feedback to-
gether with growth of the experiential metric space,
results in the construction of modified behaviour pat-
terns over time. This can be viewed as ontogenetic
development, that is as a process of change in struc-
ture and skills through embodied, structurally cou-
pled interaction (Lungarella et al., 2004).

Our approach uses temporally extended experi-

ence rather than instantaneous state6. We would
argue that this distinction is important as tem-
poral structure is inherently captured in experi-
ences of different lengths. Moreover, we do not as-
sume that the environment can be modeled as a
Markov Decision Process (this is particularly im-
portant when there is an interaction partner) as is
the case with most reinforcement learning paradigms
(Sutton and Barto, 1998) and in particular with ap-
proaches that do not use a model, for example Q-
learning.

Related work in the multi-agent domain
(Arai et al., 2000) has agents in a grid world
acquiring coordination strategies, and uses a fixed-
length episodic history expressly to counter the
MDP assumption. However, that model is also state
based and so uses a profit-sharing mechanism to
assign credit to state-action pairs. Moreover, it does
not compare episodes of history with previous ones,
nor locate them in a metric space.

2.6 Environmental feedback

We make use of feedback from the environment as
actions are executed, and define certain internal vari-
ables and their dynamics such that they provide feed-
back appropriate for the peekaboo game (noting that
an appropriate temporal arrangement of actions is
still necessary to actually play the game). This can
be seen as building in innate drives and motivations
in the robot that underly and scaffold the learning of
the rules of interaction games, in a way analogous to
inherited drives and motivations in human babies.

To provide appropriate feedback, we require a high
value for motivation when a face is seen following a
period where there has been no face seen. Three in-
ternal variables are used to model this: f indicating
when a face is seen, m the motivational value that is
used as the quality of experience, and d the desire to
see a face when one is not seen. The exact nature of
the dynamics is determined by 6 parameters encod-
ing rates of decay, increase and feedback of f and d.
For details see Appendix A.

3. Experiments

The purpose of this investigation was initially to eval-
uate whether the model for development based on in-
teraction history performed better than random for
the task of playing the game of peekaboo. Secondly,
the hypothesis that the horizon length of experience
would affect the ability to learn was tested by trying
a number of different horizon lengths in a controlled
experiment. The hypothesis was that the horizon
length of experience needs to be of a similar scale to
that of the interaction in question. If it is too short,
the experience does not carry enough information to

6that is the instantaneous values of the sensory variables



make useful comparisons to the history. If it is too
long, then the interesting part of the interaction be-
comes lost in the larger experience.

3.1 Implementation and Setup

The architecture was implemented using using URBI
(Baillie, 2005) and Java on a Sony Aibo ERS-7 robot
dog and a desktop computer. The system runs on-
line with telemetry data being sent over wireless to a
desktop approximately every 120ms where the metric
space of experience is constructed and used in action
selection.

The robot stays in a “sitting” position throughout
the experiments with the forelegs are free to move,
facing a picture of a face (see Figure 1) at a fixed
distance of 40cm. A picture was used rather than an
interaction partner in these particular experiments to
allow analysis of the robot’s interactions in isolation
when comparing horizon lengths, and for experimen-
tal repeatability. Early experiments where the robot
faced a human interaction partner are presented in
(Mirza et al., 2006) and this is also the subject of
future experiments.

For the purposes of these trials, we define
peekaboo-like behaviour to have occurred when face
detection has been lost and then regained (one or
more times) resulting in a maximum value for the
motivational variable m. The duration of the se-
quence being taken from the point of the first loss
of face through to the last point at which high mo-
tivation can be sustained without a break in the se-
quence.

We ran 6 trials of 2 minute duration for each hori-
zon length of 8, 16, 32, 64 and 128 timesteps (0.96,
1.92, 3.84, 7.68 and 15.36 seconds respectively). For
comparison, a further 6 trials were run where the
action selection was random and not based on his-
tory. In each of the trials the metric space started
unpopulated.

4. Results

Table 3 summarises the results of 36 trial runs, while
Figure 3 shows, for selected trials, time-series graphs
of the motivational variables coupled with the ac-
tions taken. Peekaboo behaviour, involving hiding
the head, was seen in 18 of the 36 runs. All of the tri-
als using random action selection showed some peek-
aboo behaviour, although it was intermittent and not
regular (see figure 3A for example). All but one of
the horizon size 8 trials, and all but two of hori-
zon size 16, also showed peekaboo, however, there
were longer periods of repeated behaviour. Figure
3A (horizon size 8) shows the best example of an
extended period of peekaboo behaviour; the repeat
period is approximately 42 timesteps or 5 seconds,
and the episode continues for around 640 timesteps

(76 seconds). During this episode the head is hidden
to the left and right and this is interspersed with
head-centring actions. Through all of these episodes
periods of no action serve to alter the timing of the
cyclic periods.

Of the longer horizon length (32, 64 and 128) tri-
als, three showed peekaboo behaviour, but three also
showed an emergent behaviour which resulted in high
motivation, see Figure 3C for an example. Here the
robot stares ahead at the face while intermittently
waving. Due to the way that the robot was sat dur-
ing some of these trials the robot was shaken slightly
as the front arm finished the wave and rested on the
hind leg, causing a momentary loss of face detection.
Given the sensitivity of the motivational system, this
was enough, when repeated, for the dynamics to re-
sult in increased desire d and therefore high motiva-
tion m.

5. Discussion and Future Work

All of the trial runs where only random actions were
selected resulted in some episodes of high motiva-
tional value (m). It is likely that this is due to a
very sensitive motivational system7 combined with a
range of actions, most of which would result in some
loss of face detection. However, to see longer periods
of high motivation, some controlled behaviour must
be selected (as a contrary example see Figure 3F
where no peekaboo-like dynamics are seen). Cyclic
behaviour with the long peekaboo-like sequences of
repeated action is only seen in the experience-driven
trials.

In some of the experience-driven trials repeated
behaviour was seen that could have resulted in high
motivation were the head pointed forward, however,
a single action turned the head away, and experience
alone was not able to re-centre the head. On one oc-
casion however, when the head was re-centred (ran-
domly) then the experience space allowed a resump-
tion of the peekaboo sequence (see figure 3E). It is
possible that if each trial had a longer duration, then
the experience space would be richer and recentring
behaviour would be selected. This also may point to
a reason why the trials using longer horizon lengths
performed poorly: appreciation of current state may
be necessary to notice that the head is not pointing
forward (for instance) and this may be easier with a
shorter time horizon.

The best of the cyclic behaviour was seen in the
experience-driven trials of horizon size 8 and 16
timesteps (approx 1 and 2 seconds respectively).
This result indicates that it is necessary to have a

7The motivational system tuned with the parameters given
in Appendix A, would result in high values of m after a few cy-
cles where the face signal was lost for anywhere between 50ms
to 9.5 seconds. Thus it was inevitable that high motivational
value should be reached with even random actions.



Table 3: Experiment Summary. Duration and period in timesteps (ts) of peekaboo (pkb) behaviour for each trial. Also

noted is where high m is attained with an alternative, emergent sequence.

Run Random Horizon 8 Horizon 16 Horizon 32 Horizon 64 Horizon 128

length/period length/period length/period length/period length/period length/period

1 120ts / 40ts 180ts / 45ts 260ts / 40ts none Waving pkb 400ts none

2 220ts / 55ts 150ts / 40ts none none none none

3 220ts / 45ts fig 3A, 640ts/42ts 140ts/45ts,200ts / 50ts fig 3F, none none 100ts / 40ts

4 200ts / 60ts 130ts / 45ts fig 3E, 260,240ts/40ts none none none

150ts / 70ts repeated sequence

5 160ts / 50ts none Waving emergent fig 3C Waving pkb fig 3D, 160,100,140ts 120ts / 40ts

pkb 150ts 540ts / 47ts / 40ts

6 fig 3B 250ts / 42ts 120ts / 40ts Waving pkb none none

80,140ts / 40ts 840ts / 47ts

short time-horizon, and this may be related to the
length of single actions (about 2 seconds), and thus
the natural period8 of the cyclic behaviour. A reason
why this may be the case is that, to bootstrap the
initial repetitive behaviour, it is necessary to focus
on an experience of one cycle length when there is
only a single (possibly randomly generated) example
of the cycle in the agent’s experience.

An important direction that needs to be explored
is the anticipation of future action and expectation
of future reward, although how far ahead in the fu-
ture may vary for the development of different skills
and task abilities. Currently experiences of the same
length are being compared, however it is also pos-
sible to have shorter term current experience being
matched with parts of longer term episodic experi-
ence, and the current short experience being given
an anticipated future value related to the best value
in the extended experience. We expect this approach
to better balance the requirement, as found above,
to have short horizons for comparing experience suc-
cessfully while also taking into account temporally
extended aspects of interaction.

Further, given the apparent dependence on hori-
zon length, it may be necessary to operate on many
different horizon lengths, and an adaptive, variable
experience length may help in then finding areas of
high value for the different kinds of interaction the
robot will encounter. We suggest that an approach
to deciding on appropriate experience lengths will
come from the density of “interesting” features or
events in the experience space, the determination of
which will take into account motivational dynamics,
value of experience, and possibly rates of change of
experience distances.

These particular experiments do not have any in-
teraction from the partner’s side and so are lacking
a vital part of the interaction. The motivational dy-
namics compensate for this by providing a reward

8Note that the motivational system itself does not dictate
this period as any cyclic behaviour of period up to 19 seconds
can result in high values of m.

landscape based only on internal factors and the sin-
gle external stimuli of a face. However, we argue
that the interaction history can be extended to a
fully interactive scenario by, for instance having the
interaction partner modulate both the external stim-
ulus (the presentation of the face) as well as, po-
tentially, the reward signal that interacts with the
motivational dynamics. Given that the robot’s ac-
tions can in some way affect the behaviour of the
partner (e.g. bark excitedly when an internal vari-
able reached maximum), then the interaction history
could be used as part of a full interaction.

The motivational system used is specific to the
peekaboo scenario, and while it potentially gives
useful insights into motivational dynamics for other
scenarios, is not generally applicable. Additionally
it is clear that the system is overly sensitive with
high motivational value being reached very easily
through a wide range of interactions. As an alter-
native it would be useful to explore the balance be-
tween novelty and mastery drives as in, for example
(Oudeyer et al., 2005), as the basis of a more gen-
eral motivation system. Moreover, basing novelty
and mastery directly on the structure of the experi-
ence space as it develops through interaction would
ground these notions in the sensorimotor history of
the agent.

Finally, we conclude that the architecture is able
to direct future action of an agent based on previous
experience and that the horizon length of experience
plays an important role in the types of interaction
that can be engaged. The experimental results sup-
port the hypothesis that horizon length needs to be
of a similar scale to that of the interaction in ques-
tion, and thus should be determined, at least in part,
by the types of interaction that will take place. The
action selection architecture is however extremely
limited and simplistic and this combined with the
short experiment lengths and the over-sensitive mo-
tivational system suggests various directions for im-
provement.
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B: Random, run no. 6/6
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Timestep

Experience based action selection, horizon size 32, (5 of 6)

A
ct

io
ns

w
av

e 
rig

ht

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

w
av

e 
le

ft

C: Horizon 32, run no. 5/6
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D: Horizon 64, run no. 5/6
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Experience based action selection, horizon size 16, (4 of 6)
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E: Horizon 16, run no. 4/6
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F: Horizon 32, run no. 3/6

Figure 3: Motivational dynamics and actions for selected 2 minute interaction sequences of different horizon lengths.

Graphs show when face is seen (black bars at bottom), the values of the key internal variables, m and d, and the action

taken at the top (Note: action 0 - “do nothing”, is not shown for clarity). A: Peekaboo. Horizon size 8. Dynamics

during an extended peekaboo sequence. B: Random action selection resulting in high m and d. Although the action

selection is random, it is possible to get periods of high value. C: Emergent behaviour resulting in high m and d.

Horizon size 32. Dynamics generate high value when face is intermittently lost when the waving paw returns to hit

the hind knee and jogs the robot. D: Irregular response to regular actions. Horizon size 64. The regular hiding of the

head does not always result in high value, this maybe because the face is not detected during the period that the head

points forward. E: Repeated sequence. Horizon size 16. Sequence of peekaboo repeated after the head is recentred.

F: Peekaboo not inevitable. Horizon size 32. Here although the head is hidden twice, the peekaboo dynamics are not

inevitable and coordinated action is necessary for continued high motivation.



Appendix A - Motivational Dynamics

Firstly, the agent possesses a binary meta-sensor f that is
a result of processing the visual sensors (image) to locate a
generalised human face shape in the image, if one exists9.
This is smoothed to remove short gaps (< 50ms).

Secondly, the desire to see a face is given by d (constrained
in the range [0,1]) and increases when there is no face seen at
a rate determined by how often a face has been seen recently
(actually by feedback from m described below). The desire
decays otherwise. See equation 2.

Finally, the overall motivation m, also constrained in the
range [0,1] and increases when f = 1 determined by the desire
to see a face d. In the absence of desire d, when a face is seen
m tends to a constant value set by Cmax. When no face is
seen, m decays at rate δ3. See equation 3.

∆d =

(
α1m− δ1(1−m)d if f = 0,

−δ2d if f = 1.
(2)

∆m =

(
−δ3m if f = 0,

α2d+ β(Cmax −m) if f = 1.

d,m constrained such that d,m ∈ [0, 1]

(3)

The parameters of the dynamics equations are shown below
along with the values used in the experiments. These values
were chosen by trial and error.

α1 rate of increase of d based on m 0.12
α2 rate of increase of m based on d 0.12

Cmax value that m tends to after long periods of
f = 1

0.25

β rate that m tends to Cmax 0.02
δ1 rate of decay of d when no face is seen 0.05
δ2 rate of decay of d when a face is seen 0.05
δ3 rate of decay of m when no face is seen 0.05
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