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Abstract

In embodied artificial intelligence is it of interest to study
the informational relationships between the agent, its actions,
and the environment. This paper presents a number of sta-
tistical measures to compute the informational distance be-
tween sensors including the information metric, correlation
coefficient, Hellinger distance, Kullback-Leibler, and Jensen-
Shannon divergence. The methods are compared using the
sensory reconstruction method to find spatial positions of vi-
sual sensors of different modalities in a sensor integration
task. The results show how the information metric can find
relations not found by the other measures.

Introduction
In the early 1960s H. B. Barlow suggested (Barlow, 1961)
that the visual system of animals “knows” about the struc-
ture of natural signals and uses this knowledge to represent
visual signals. Ever since then neuroscientists have analysed
the informational relationships between organisms and their
environment. In recent years, with the advent of embodied
artifical intelligence, there has also been an increased inter-
est in robotics and artificial intelligence to study the informa-
tional relations between the agent, its environment, and how
the actions of the agent affect its sensory input. It is believed
that this research can give us new principles and quantitative
measures which can be used to build robots that can exploit
bootstrapping (Prince et al., 2005) and continously learn, de-
velop, and adapt depending on their particular environment,
environment, and task to perform. This paper presents some
work in this area and presents a number of methods for com-
puting the distance between sensors and how these meth-
ods can be useful for sensor integration of different sensor
modalities.

The informational relationships between sensors are de-
pendent on the particular embodiment of an agent. Thus,
these relationships can be useful for the agent to learn about
its own body, the potential actions it can perform, and how
the sensors relate to its particular environment. In (Olsson
et al., 2004b) the sensory reconstruction method, first de-
scribed by Pierce and Kuipers (1997), was applied to robots

and extended by considering the informational relations be-
tween sensors. The results showed how the visual field could
be reconstructed from raw and uninterpreted sensor data and
how some symmetry of the physical body of the robot could
be found in the created sensoritopic maps. This method was
also used in (Olsson et al., 2005b) to show how a robot can
develop from no knowledge of its sensors and actuators to
perform visually guided movement.

One other aspect of the information available in an agent’s
sensors is that the particular actions of the agent can have an
impact on the nature and statistical structure of its sensoric
input. This has been studied in a number of papers since
(Lungarella and Pfeifer, 2001); see for example (Sporns and
Pegors, 2003, 2004; Lungarella et al., 2005). The results
show how saliency guided movement decreases the entropy
of the input while increasing the statistical dependencies be-
tween the sensors. The specific environment of an agent also
limits in principle what an agent can know about the world
and the physical and informational relationships of its sen-
sors (Olsson et al., 2004a).

Information-theoretic measures have also been used to
classify behaviour and interactions with the environment us-
ing raw and uninterpreted sensor data from the agent. In
(Tarapore et al., 2004) the statistical structure of the sensoric
input was used to fingerprint interactions and environments.
Mirza et al. (2005b) considered how the informational rela-
tionships between its sensors, as well as actuators, can be
used to build histories of interaction by classifying trajecto-
ries in the sensorimotor phase space. In (Kaplan and Hafner,
2005) the authors also considered clustering behaviours by
the informational distances between sensors by considering
configurations of matrices of information distances between
all pairs of sensors.

One important issue in this research is what measures to
use to quantify the informational relationships. In (Lun-
garella et al., 2005) the authors present a number of methods
for quantifying informational structure in sensor and motor
data. The focus is on integration, i.e., how much information
two or more sources have in common. In this paper we fo-
cus on the opposite, i.e., how to compute how different two



or more sources are. Following (Olsson et al., 2004b), sev-
eral papers including (Olsson et al., 2004a, 2005b,c,a, 2006;
Mirza et al., 2005a,b; Kaplan and Hafner, 2005; Hafner and
Kaplan, 2005) have used the information distance metric
disucssed by Crutchfield (1990) to compute the informa-
tional distance between sensors. An important question the
authors have received several times in reviews of papers and
in discussions is “why the information metric?”. This is a
good question and in this paper we present a number of al-
ternative distance measures suggested by colleagues and re-
viewers as well as the information metric. To compare the
potential utility of the methods we apply them as the dis-
tance measure used in the sensory reconstruction method
(Pierce and Kuipers, 1997; Olsson et al., 2004b). In the ex-
periment the sensors of the visual field of a robot is split
into three different modalities: red, blue, and green, and the
problem is to find the relationships between sensors, includ-
ing which sensors come from the same pixel in the camera.
This is an example of sensor integration. The results show
how the information metric performs better in this problem
as it measures both linear as well as non-linear relationships
between sensors.

The rest of this paper is structured as follows. The next
section presents a number of methods to compute the dis-
tance between two sensors. Then a short introduction to the
sensory reconstruction method is given before the results of
the experiments are presented. The final section concludes
the paper.

Measuring the Distance Between Sensors
In this section we present a number of methods for com-
puting the distance between two sensors Sx and Sy. Each
sensor can assume one of a discrete number of values (con-
tinuous values are discretized) St

x ∈ X at each time step t
where X is the alphabet of possible values. Thus, each sen-
sor can be viewed as a time series of data {S1

x ,S
2
x , . . . ,S

T
x }

with T elements. Each sensor can also be viewed as a ran-
dom variable X drawn from a particular probability distribu-
tion px(x), where px(x) is estimated from the time series of
data. Similarly the joint probability distribution px,y(x,y) is
estimated from the sensors Sx and Sy.

A distance measure d(X ,Y ) is a distance function on a
set of points, mapping pairs of points (X ,Y ) to non-negative
real numbers. A distance metric in the mathematical sense
also needs to satisfy the three following properties:

• d(X ,Y ) = d(Y,X) (Symmetry).

• d(X ,Y ) = 0 iff Y = X (Equivalence).

• d(X ,Z) ≤ d(X ,Y )+d(Y,Z). (Triangle Inequality).

If (2) fails but (1) and (3) hold, then we have a pseudo-
metric, from which one canonically obtains a metric by iden-
tifying points at distance zero from each other. This is done
here and in (Crutchfield, 1990).

Why can it be useful to use distance measures which are
metrics in the mathematical sense? If a space of information
sources has a metric, is it possible to use some of the tools
and terminology of geometry. It might also be useful to be
able to talk about sensors in terms of spatial relationships.
This might be of special importance if the computations are
used to actually discover some physical structure or spatial
relationships of the sensors, for example as in (Olsson et al.,
2004b), where the spatial layout of visual sensors as well as
some physical symmetry of a robot was found by informa-
tion theoretic means.

Distance Measures
The 1-norm distance used in (Pierce and Kuipers, 1997) is
different from the distance measures that follows in that it
does not take in to account the probabilites of the different
values that a sensor can take. It is normalized between 0.0
and 1.0 and is defined as

d1(Sx,Sy) =
1
T

T
∑

t=1

|St
x −St

y|. (1)

The correlation coefficient is defined as

r =

∑T
t=1(S

t
x − S̄x)(St

y − S̄y)
√

∑T
t=1(St

x − S̄x)2
√

∑T
t=1(St

y − S̄y)2
(2)

where S̄x and S̄y are the mean of Sx and Sy respectively. The
range of r is −1.0 ≤ r ≤ 1.0, where 1.0 means that they are
perfectly correlated in a linear way, 0 that they are not lin-
early correlated, and −1.0 perfectly negatively correlated.
This can be made symmetric by computing the squared cor-
relation coefficient, which is in the range 0 ≤ r2 ≤ 1.0, and
then

dCC(Sx,Sy) = 1− r2
Sx,Sy . (3)

This is still not a metric since it does not satisfy the triangle
inequality (Ernst et al., 2005).

The information metric is proved to be a metric in
(Crutchfield, 1990) and is defined as the sum of two con-
ditional entropies, or formally

dIM(Sx,Sy) = H(X |Y )+H(Y |X), (4)

where

H(Y |X) = −
∑

x∈X

∑

y∈Y

p(x,y) log2 p(y|x). (5)

The Kullback-Leibler divergence (Cover and Thomas,
1991) is defined as

D(px||py) =
∑

x∈X

px(x) log2
px(x)
py(x)

, (6)



where 0log2
0
py

= 0 and px log2
px
0 = ∞. The Kullback-

Leibler measure is not a metric because it is not symmetric.
It can be made symmetric by adding two Kullback-Leibler
measures,

dKL(Sx,Sy) = D(px||py)+D(py||px), (7)

where px is the probability distribution associated with sen-
sor Sx and py with Sy. This is still not a metric since it does
not satisfy the triangle inequality.

The square root of the Hellinger distance, also known as
Bhattacharya distance (Basu et al., 1997) , is a metric and is
defined as

dH(Sx,Sy) =

√

√

√

√

1
2

∑

x∈X

(

√

px(x)−
√

py(x)
)2

. (8)

Finally, the Jensen-Shannon divergence, presented in
(Lin, 1991), is defined as

dJS(Sx,Sy) = H(πX X +πYY )−πXH(X)−πY H(Y ), (9)

where πX ,πY ≤ 0,πX + πY = 1, are the weights associated
with the sensors Sx and Sy. In this paper the weights were
always πX = πY = 0.5. In (Endres and Schindelin, 2003) it
was proved that the Jensen-Shannon is the square of a met-
ric, i.e.,

√
dJS is a metric, which was used in the experiments

presented in this paper.

Sensory Reconstruction Method
In the sensory reconstruction method (Pierce and Kuipers,
1997; Olsson et al., 2004b) sensoritopic maps are created
that show the informational relationships between sensors,
where sensors that are informationally related are close to
each other in the maps. The sensoritopic maps might also
reflect the real physical relations and positions of sensors.
For example, if each pixel of a camera is considered a sensor,
is it possible to reconstruct the organization of these sensors
even though nothing about their positions is known. It is
important to note that using only the sensory reconstruction
method, only the positional relations between sensors can
be found, and not the real physical orientation of the visual
layout. To do this requires higher level feature processing
and world knowledge or knowledge about the movement of
the agent (Olsson et al., 2004b). Figure 1 shows an example
of a sensoritopic map for a SONY AIBO robot.

To create a sensoritopic map the value for each sensor at
each time step is saved, where in this paper each sensor is
a specific pixel in an image captured by the robot. The first
step of the method is to compute the distances between each
pair of sensors. In the paper by Pierce and Kuipers (1997)
the 1-norm distance was used but after (Olsson et al., 2004b)
the information metric has been used in a number of pa-
pers. In this paper the different distance measures presented
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Figure 1: A sensoritopic map created by the sensory recon-
struction method taken from (Olsson et al., 2004b) using the
information metric. In this example there are 150 sensors,
including 100 image sensors that are labeled 1-100 to the
right in the map.

in the previous section are used. From the matrix of pair-
wise distance measurements between the sensors the dimen-
sionality of sensory data (two in this case of a visual field)
is computed and a sensoritopic map of that dimensionality
can be created, using a number of different methods such
as metric-scaling, which positions the sensors in the two di-
mensions of the metric projection. In our experiments we
have used the relaxation algorithm described by Pierce and
Kuipers (1997).

Experiment
This section describes the performed experiment and the re-
sults.

Method
In our experiments a SONY AIBO robotic dog was placed
in a sitting position on a desk in the lab. The robot only
moved its head with uniform speed using the pan and tilt
motors in eight directions: up, down, left, right, and four
diagonal directions. Five sequences of 6000 frames each of
visual data was collected from the camera at a resolution of
88 by 72 pixels with 8 bits for each channel (red, green, blue)
at an average rate of 20 frames per second. The collected
images were downsampled to 8 by 8 pixels using averaging.
Each pixel of the image had one red, one green, and one
blue sensor. Thus, there is a total of 192 sensors (64 of each
modality) where the red sensors are labeled R1−R64, the
green G1−G64, and the blue sensors B1−B64. The sensors
labeled 1 are located at the upper left corner of the image and
64 at lower right corner. In the collected data the range of



Measure
Exp.

64R 192RGB 192ARGB

1-norm 0.06
(0.01)

0.32
(0.01)

–

Correlation
coefficient

0.19
(0.02)

0.23
(0.03)

0.21
(0.05)

Information
metric

0.07
(0.02)

0.12
(0.03)

0.09
(0.03)

Kullback-
Leibler

0.37
(0.03)

0.35
(0.01)

0.41
(0.05)

Hellinger (0.45
(0.05)

0.40
(0.02)

0.46
(0.04)

Jensen-
Shannon

0.45
(0.04)

0.39
(0.01)

0.45
(0.04)

Table 1: Average distances between all pairs of correct and
reconstructed sensors using equation 10 with standard de-
viation in parentheses. The column 64R shows the average
distances for the 64 red sensors of figure 2 and 192RGB the
red, green, and blue sensors of figure 3, both using normal
binning. 192ARGB shows the results for the adaptive bin-
ning of figure 4.

the blue sensors was slightly lower than the red and green
sensors with a slightly smaller variation.

Sensoritopic maps were created from each of the five se-
quences of data by the sensory reconstruction method using
the different distance measures previously described. The
presented maps are examples but all maps created using one
particular distance measure had the same characteristics as
the ones presented here.

Results
Figure 2 shows sensoritopic maps computed with the dif-
ferent distance measures of only the red sensors R1−R64.
First, if we look at the maps for the Kullback-Leibler,
Hellinger, and Jensen-Shannon distance, we find no real
structure. For the correlation coefficient distance, figure
2(b), we find that sensors that are close in the visual field
tend to be closer in the sensoritopic map, but it is not very
clear. Now, compare this to the sensoritopic maps for both
the 1-norm distance, figure 2(a), and the information metric,
2(c). Here the spatial relationships of the red sensors have
been found, with sensor R1 in the upper left corner and R64
in the lower left corner for the 1-norm distance and the R1
sensor in lower left corner for the information metric. Since
the sensory reconstruction method cannot find the true phys-
ical location of sensors but only the spatial relationships both
of these maps represent the visual field.

Up until now the term “reconstructed” has been used in
an informal way, where a visual field is reconstructed if the
sensoritopic map and the real layout of the sensors look sim-
ilar. One way this similarity can be formally quantified is by
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Figure 2: Sensoritopic maps of the red sensors.

computing the relative distances between pairs of sensors in
the reconstructed visual field and the real layout of the sen-
sors. Let ri, j be the Euclidean distance between two sensors
i and j in the reconstructed map, and `i, j the distance be-
tween the same two sensors in the real layout, where the x
and y coordinates in both cases have been normalised into
the range [0.0,1.0]. Now the average distance between all
pairs of sensors can be compared,

d(r, `) =
1

N2

∑

i, j

|ri, j − `i, j|, (10)

where N is the number of sensors. This compares the relative
positions of the sensors and not the physical positions, and
d(r, `) will have a value in the range [0.0,1.0]. A distance of
zero means that the relative positions are exactly the same,



and sensors placed at completely random positions will have
an average distance of approximately 0.52.

Table 1 shows the average distances for 10 created maps
for each of the five sets of data using equation 10. The 64R
column shows that the 1-norm and information metric have a
significantly lower average distance then the other measures,
indicating that using these two measures more accurately re-
constructs the real visual field.
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Figure 3: Sensoriopic maps of 192 sensors using uniform
binning.

Figure 3 shows sensoritopic maps for all the red, green,
and blue sensors, and column 192RGB of table 1 show the
corresponding average distances. This is an example of sen-
sor integration where the problem is to find what sensors
that are from the same location of the visual field, when the
only input data to the system is the raw and unstructured
data from the 192 sensors without any classification. The
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Figure 4: Sensoriopic maps of 192 sensors using entropy
maximization of the sensor data.

Hellinger map and Jensen-Shannon map both contain three
clusters, one for each modality. The Kullback-Leibler map
is divided in to four clusters. The 1-norm distance shows
how structure within the modalities is present but there is no
fusion of the sensors from different modalities. The correla-
tion coefficient measure shows a similar structure but there
is some overlap between the red and the green sensors. For
the information metric, figure 3(c), the situation is differ-
ent. Here the sensors of different modalities from the same
location in the visual field are clustered together. This is
an example of autonomous sensory fusion where sensors of
different modalities are combined. A well-studied example
of this in neuroscience is the optic tectum of the rattlesnake,
where nerves from heat-sensitive organs are combined with
nerves from the eyes (Newman and Hartline, 1981).



In (Olsson et al., 2005c) it was shown how entropy max-
imization of the data in individual sensors might be useful
to find correlations between sensors of different modalities.
Figure 4 shows sensoritopic maps and column 192ARGB
of table 1 the average distance computed using the same
data as before where it has been preprocessed by maximiz-
ing the entropy in each sensor using a window of 100 time
steps (see (Olsson et al., 2005c) for details of this method).
The 1-norm distance is not included since it is operating on
raw sensor values and not on probabilities. The Kullback-
Leibler, Hellinger, and Jensen-Shannon measures now clus-
ter the red and green together and the blue in another clus-
ter. The map of the correlation coefficient is similar, albeit
with with more structure showing the layout of the individ-
ual sensors of the different modalities, as also can be seen
in the average distance in table 1. The information metric
in figure 4(b) again shows clustering of the different modali-
ties according to their spatial location in the visual field. For
example is sensor R28 clustered together with B28 and G28.

Discussion
Why is it the case that the information metric enables the
sensory reconstruction method to find these relations be-
tween sensors of different modalities when the other mea-
sures do not? By considering the individual as well as joint
entropies of the sensors the information metric provides a
general method for quantifying all functional relationships
between sensors, while many other methods only find some
relationships. For example, a correlation coefficient ap-
proaching 0 does not imply that two variables actually are
independent (Steuer et al., 2002).

Conclusions
For purposes of autonomous construction of the relations
among sensors in an embodied agent, in this paper we com-
pared the information metric to five other distance measures:
the 1-norm distance, the correlation coefficient, Kullback-
Leibler divergence, Hellinger distance, and the Jensen-
Shannon divergence. Among these the information metric,
1-norm distance, Hellinger distance, and the squared Jensen-
Shannon divergence are metrics in the mathematical sense.
The comparision was performed by applying the distance
measures as the distance measure used in the sensory re-
construction method. The created sensoritopic maps were
evaluated by comparing the average spatial distances of the
sensors of the reconstructed maps with the spatial distances
between the sensors of the real square layout of the sensors.

The results showed that for autonomous construction of
the relationships between sensors of different modalties,
sensoritopic reconstruction using the information metric was
the only successful method, outperforming all the other dis-
tance measures. When using sensors from only one modality
the average reconstruction distance of the information met-
ric was similar to the 1-norm distance. Among the other pro-

posed measures the correlation coefficient had a shorter av-
erage distance than the others, but still significantly greater
than the information metric. This is due to the fact that the
information metric captures general relationships between
sensors and not just linear relationships, as is the case with
many other measures.

In recent years there has been an increased interest in
studying the informational relationships between robots,
their environment, and how their actions affect the infor-
mation available in their sensors. Here the information
metric is useful since it captures general relationships be-
tween sensors. This has, for instance, been exploited to dis-
cover optical and information flow in sensors of different
modalities (Olsson et al., 2005a, 2006), and to build “in-
terpersonal maps” that represent the informational relation-
ships between two agents (Hafner and Kaplan, 2005). It has
also been used to study the informational content available
to robots in environments with oriented contours (Olsson
et al., 2004a), inspired by the developmental studies of kit-
tens reared in restricted visual environments (Wiesel, 1982;
Callaway, 1998).

One possible avenue for future research is to study how
robots, just like animals, can optimize their sensory system
based on the statistics of their specific environments, as well
as the actions and embodiment of the particular robot. Here
the construction of sensoritopic maps using the information
metric can be used as a general method to find the informa-
tional relationships between the sensors and the actions of
the robot. It would also be of interest to study how a robot
actively can shape the informational relationships among its
sensors by deliberate actions.
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