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Abstract—One of the most distinguishing features of cognitive systems is the ability to predict the
future course of actions and the results of ongoing behaviors, and in general to plan actions well
in advance. Neuroscience has started examining the neural basis of these skills with behavioral or
animal studies and it is now relatively well understood that the brain builds models of the physical
world through learning. These models are sometimes called ‘internal models’, meaning that they are
the internal rehearsal (or simulation) of the world enacted by the brain. In this paper we investigate the
possibility of building internal models of human behaviors with a learning machine that has access to
information in principle similar to that used by the brain when learning similar tasks. In particular, we
concentrate on models of reaching and grasping, and we report on an experiment in which biometric
data collected from human users during grasping was used to train a support vector machine. We then
assess to what degree the models built by the machine are faithful representations of the actual human
behaviors. The results indicate that the machine is able to predict reasonably well human reaching
and grasping, and that prior knowledge of the object to be grasped improves the performance of the
machine, while keeping the same computational cost.

Keywords: Manipulation and grasping; computational intelligence; teleoperation; cognitive robotics.

1. INTRODUCTION

One of the most distinguishing features of cognitive systems is the ability to learn
to predict the future course of actions and the results of ongoing behaviors, and in
general to plan actions well in advance. It is now relatively well understood that
the brain builds models of the physical world through learning. These models are
sometimes called ‘internal models’, meaning that they are the internal rehearsal (or
simulation) of the world enacted by the brain [1].

Interestingly, these models are built not only because they are required to control
movements, but also, as has been determined more recently, to interpret the
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movements of others [2–4]. There is now a large body of literature that links
the observation of actions to action execution, e.g., the study of the motor system
conducted by Rizzolatti et al. in relatively recent years [5–7]. It seems then that
building predictions of the future course of action is a key feature of intelligent
living systems.

Moreover, it has been shown in the context of object grasping that the efficiency
of a model of grasping can be improved by using knowledge on the object to be
grasped as priors [8, 9], i.e., the presence of a target object and its geometrical
properties strongly constrain the type of grasp and the approach to the object, and,
as a consequence, the brain might need to include this information when planning
an appropriate course of action [10].

In this paper we set forth to investigate whether a computer, equipped with
enough sensory information about human movements, i.e., grasping, could acquire a
specialized model using machine learning methods. In particular we ask (i) whether
the final configuration of the hand, i.e., at the very moment an object is grasped,
could be predicted from the initial part of the movement and (ii) whether the
knowledge of the object to be grasped could improve the model efficiency, leading
to a smaller error in prediction. It is worth noting that we do not want to
necessarily mimic the structure of the brain, but rather more simply analyze the
human movement data with the best possible algorithm available.

To shed light on these questions, we have set up an experiment in which several
able-bodied subjects have performed a highly repetitive grasping task on various
daily life objects, and we have collected data about their hand position, orientation
and posture. Then we have tried to put a computer in the same situation a human
observer would be if they were to see only the initial part of a grasping action, the
final part being occluded by a screen: a sub-sequence of each grasping sequence,
i.e. the initial segment a human observer would be able to see, was used to train an
efficient machine learning system based on Support Vector Machines (SVMs).

We have then analyzed the error in predicting the final hand configuration and
we have analyzed whether the a priori knowledge of the grasped object makes
a difference in performance as it should intuitively do. The results we present
here, albeit still in a preliminary form, indicate that the machine is able to predict
reasonably well human reaching and grasping, and that prior knowledge of the
object to be grasped improves the performance of the machine, while keeping the
same computational cost.

Once actually realized, optimized and implemented, such models could poten-
tially be used in various ways including the control of semi-autonomous teleop-
erated/prosthetic robotic artifacts, and the interpretation and possibly mimicry of
human movements [11]. For example, in controlling or teleoperating an anthropo-
morphic robotic platform, such models would be able to guess the user intention
and ask the robot to complete the action autonomously. Predicting the user inten-
tion finds its natural role in building man–machine interfaces and possibly into the
control of prosthetic devices.
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The paper is structured as follows: after a brief review of related work, we
describe the methods and the experimental setup in Section 2 and the results
obtained in Section 3; finally we discuss them and comment on future development
in Section 4.

1.1. Related work

In the monkey, premotor area F5 has been particularly well studied and it is in fact
the location where ‘mirror neurons’ were first identified. In this respect, mirror
neurons are the quintessential correlate of internal models since they are activated
both when executing a specific grasping action and when observing a congruent
action being executed by another individual (or the experimenter) [12].

In a study by Umiltà et al. [13] the response of mirror neurons to the observation
of actions that terminate behind a screen has been investigated. In this case, the
authors analyzed mirror neurons in situations where the final part of the trajectory
of the hand was occluded by an opaque screen with the monkey knowing the
presence/absence of an object to be grasped. As long as the object was shown
to the monkey, the brain could easily supply the missing visual information by
rehearsing the model of the action. The control experiment, in this case, was that
of an identical hand kinematics, an identical screen, but the absence of the target
object, i.e., identical visual stimulation apart from the knowledge of the presence
of the object. Elsewhere it has been also shown that the presence of an object is
required to elicit the mirror neurons response in the monkey [6].

A posteriori, given these results, it is easy to see how the presence of a target
object and its geometrical properties strongly constrain the type of grasp and the
approach to the object, and that, as a consequence, the brain might need to include
this information when planning an appropriate course of action. In the monkey
these constraints are so strong that mirror neurons do not fire unless the goal of
the action is clearly perceivable. The brain codes for the object–motor identity in
part via another class of F5 visuomotor neurons called ‘canonical neurons’ (for a
discussion, see, e.g., Ref. [9]). To complete the picture, the work of Graziano et al.
[14] has shown that the presence of objects is coded in the ventral premotor cortex
and maintained even when the object is no longer visible as long as there is evidence
for its presence at a particular location.

Relevant to this discussion, the work of Fogassi et al. [15] contributed to the
identification of mirror neurons in the parietal cortex (inferior parietal lobule),
which are thought to be related to the decoding of the intentions of others.
Contextual information which links the enacted action to its final goal seems to
be implicated in this type of neural response. The presence of objects is a clear
contextual cue. In humans, it has been demonstrated that the activation of brain
areas correlated to action observation is not simply a perceptual effect, but rather
the activation of a precise sensorimotor model which includes, for example, the
hand kinematics [16] and a precise muscular pattern of activations [17].



1548 C. Castellini et al.

Accordingly, Fadiga et al. [18, 19] have shown that motor imagery changes the
excitability of the cortico-spinal connections specifically to the imagined action,
i.e., imagining a motor task causes the under-threshold activation of the same neural
pathways required to execute the task. This under-threshold activation was revealed
by transcranial magnetic stimulation. In a conceptually similar experiment [20],
the excitability of cortico-spinal pathways was also examined as a consequence of
the actual sensory input. In summary, the motor system is similarly activated when
acting in first person, when imagining an action or when watching somebody else’s
action. Jeannerod [21], for example, goes to great lengths in showing how plausible
is the fact that mental imagery uses the same internal models used by actual action
generation. It is known in this respect that the time required to simulate an action is
the same that is required to execute that action [22]. For a review, refer to Ref. [23].

As far as gesture/hand configuration recognition is concerned, in a previous
experiment we have analyzed the problem of recognizing hand gestures visually by
incorporating a generative approach that used motor information explicitly [8, 9]. In
that case we showed that an action recognition system that uses motor information
in a preprocessing step can perform better (97% recognition rate versus 80% on
the test set) than a traditional classifier built directly in terms of visual information.
This justifies the fact that as a pre-processing step we can consider a visuo to motor
mapping that transforms the available visual information into motor data. This
procedure is consistent in that it can be trained through self-observation. We can
imagine that the brain can exercise its control, and simultaneously acquire both
the motor commands and the corresponding visual information and learn such a
mapping. In the following, we will only consider motor information since we can
safely assume that the visuo-motor map can be always incorporated in the global
model.

Lastly, machine learning has already been used to classify the types of grasps
(e.g., Refs [24–26]); but, to the best of our knowledge, nobody has applied it in
order to perform regression on the position and configuration of the hand.

2. MATERIALS AND METHODS

In this section we detail the process of gathering data from human subjects and
the processing that makes them suitable for analysis by a machine learning system.
In particular, we address the problem of building a training set, i.e., a set of data
effectively representing, for each user and object considered, the grasping process,
that could be used to train the system.

2.1. Experimental Setup

2.1.1. Devices. We collected data using a 22-sensors Immersion CyberGlove for
the hand posture [27], an Ascension Flock-of-Birds (FoB) for the hand position
[28] and a force resistor sensor (FSR) to detect the contact moment with the object.
Figure 1 shows the devices, as worn by a subject.
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(a) (b)

Figure 1. The devices used for the experiment, as worn by a subject. (a) The CyberGlove, with the
FoB just above the subject’s wrist. (b) The FRS attached to the subject’s thumb.

The CyberGlove was worn by the subject on the right hand. The device returns
22 8-bit numbers linearly related to the angles between the ends of the sensors and
roughly indicating the angles of the subject’s hand joints; the sensors are embedded
in the glove in order for them to be adherent to the subject’s skin. The resolution of
the sensors is on average about 0.5◦ [27], but the noise associated with the sensors
has been experimentally determined to be 1.1 on average and 3 at the maximum
[29]. The sensors describe the position of the three phalanxes of each finger (for the
thumb, rotation and two phalanxes), the four finger-to-finger abductions, the palm
arch, the wrist pitch and the wrist yaw.

The FoB was firmly mounted on the CyberGlove, just above the subject’s wrist,
with the X/Y plane being parallel to the palm plane in the resting position. The
device returns six double-precision numbers describing the position (x, y and z

in inches) and rotation (azimuth, elevation and roll in degrees) of the sensor with
respect to a magnetic basis mounted about 1 m away from the subject. The FoB’s
resolution is 0.1 inch and 0.5◦ [28].

Finally, the FSR was mounted on the subject’s thumb. It returns a 32-bit number
approximately inversely proportional to the pressure applied to the surface of the
sensor. We only used the FSR as an on–off indicator of when the subject made
contact with the object.

All data were collected, synchronized and saved in real time at a frequency of
50 Hz.

2.1.2. Subjects. Eleven subjects, four females and seven males aged 24–34 of
different nationalities, joined the experiment. They were all right-handed and fully
able-bodied, and were given initially some knowledge of the aim of the experiment.
They expressed their informed consent prior to their inclusion in the study.

2.1.3. Method. The subjects were asked to sit comfortably in front of a clean
workspace of about 1 m2, at the center of which an object was placed in a predefined
position. The subjects were then asked to wear the devices and choose a resting
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position for their right hand and arm. They were then instructed to grasp the object
with their right hand as they felt appropriate, not necessarily the same way each
time, keeping a ‘natural’ attitude. After grasping the object, they had to drop it
somewhere else in the workspace, and then return their right hand and arm in the
initial resting position. Subsequently, they had to use their left hand to reposition
the object roughly in the same place it was before.

We first had the subjects do a trial run of the experiment in order for them to
gain confidence in the setup. A beeping sound was heard each time the subject
made contact with the object (i.e., each time the FSR signaled a significant change),
and they were asked to try and hear the beep each time they grasped the object.
Although this ruled out grasps which made no use of the thumb, it enabled us to
better determine the contact points.

After the trial run, subjects were asked to repeat the grasp/drop/reposition
procedure 120 times for each object. We will call both this procedure and the
data time sequence gathered during the procedure a session. We employed, in turn,
three objects: a beer can, a duct tape roll and a mug (Fig. 2). The objects were
chosen so that each of them could be grasped in several different ways, but with a
certain degree of overlapping, e.g., both the beer can and the mug could be grasped
cylindrically, but only the mug could be grasped using the handle.

Each experiment employed one subject and consisted of six sessions: first the
can, then the roll and then the mug, all of them twice, for an approximate total of
720 grasps per subject, 240 per object. The numbers are not precise since now and
then the subjects would grasp without properly activating the FSR. This problem
has been corrected in the batch analysis of the data.

Each experiment lasted 35–56 min, depending on the subject’s confidence and
speed; although almost no subjects reported tiredness, we allowed them to rest
between sessions. It was reported by almost every subject that the experiment
became rapidly boring, which lets us claim that almost all grasps were done in

(a) (b) (c)

Figure 2. The objects used in the experiment: a beer can (a), a duct tape roll (b) and a mug (c).
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(a) (b) (c)

Figure 3. The experiment. The subject sits comfortably in front of a clean workspace, at the center of
which an object is placed (a), with his right hand in a resting position. He then grasps the object and
drops it somewhere else in the workspace (b), then bringing his arm and hand in the resting position.
Lastly, he repositions the object in the initial position using his left arm and hand (c).

a natural way, almost unconsciously. Figure 3 shows the main phases of the
experiment.

2.2. Building the training set

2.2.1. Detecting grasps. In order to figure out when each single grasp starts
and ends in a session, we first observed the values of the FSR mounted on the
subject’s thumb. We manually verified that the FSR correctly reacted in almost all
cases with a spike, signaling, whenever the subject made contact with the object, a
significantly different value from that recorded elsewhere shortly before the contact.
The spike instants were taken as the ending points of each grasp and were gathered
by checking when the first derivative of the FSR value dropped by more than 10% of
its overall minimum value. Moreover, after each spike, we ignored 1 s of the session
to avoid detecting possible spurious spikes which happened immediately after the
grasp due to object slippage and/or blurred values coming from the FSR.

Subsequently, in order to detect the starting point of each action, for each ending
point we observed the hand speed and acceleration, averaged over 0.2 s, from the
ending point backwards. Since we had instructed the subjects to always return to the
resting position before initiating a new grasp, when the grasp starts, the speed must
be close to zero and the acceleration must be negative (the subject’s arm is moving
toward the FoB’s reference point). Therefore, we set the grasp starting point at the
nearest moment in time before the ending point in which the hand speed was close
to zero and the hand acceleration was negative. In order to avoid detecting spurious
speed/acceleration glitches when the hand made contact with the object, we ignored
0.1 s just before the ending point; moreover, we ignored grasps which were shorter
than 280 ms. All these values were determined experimentally to be near optimal in
order to catch as many grasps as possible while avoiding spurious ones.

Figure 4a shows an example set of detected grasps. As one can see, the hand
speed (dotted shallow curve) shows the well-known bell-shaped profile of a planar
reaching movement [30]: the hand acceleration diminishes, changes sign and then
goes back to zero at the end of the trajectory.
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(a) (b)

Figure 4. (a) Detecting the grasps. The figure shows 10 s of a subject grasping an object. The
vertical bands indicate the start and end of a grasp; the thick, continuous line is the FSR response;
and the dotted, shallow line is the hand speed. As one can see, the ending points are found near the
FSR spike, indicating contact; moreover, the hand speed shows the well-known bell-shaped profile
of planar reaching [30]. (b) Grasps duration. The figure shows the duration of the grasps (moving
average over 50 grasps) averaged for all subjects. As the experiments advance, the duration becomes
shorter.

Overall, the procedure could recognise 716 ± 12 grasps for each subject, which
matches the desired result of 720, i.e., 120 per session, each user running six
sessions (during two experiments, the FSR sensor broke down, resulting in the
recognition of only 550 and 649 grasps). All data were also parsed by hand in
order to verify that spurious detected grasps would be an insignificant fraction of
the total grasps.

2.2.2. The blind window. In order to test the power of prediction of our machine,
we needed to somehow hide to the system the final part of the grasping action. We
therefore defined a blind window B, with 0 � B � 1, representing what fraction of
the grasp, from the contact point backwards, was hidden. Figure 5 shows a typical
situation. It was intuitively expected that larger values of B would smoothly lead to
larger errors.

Moreover, in general, in order to make time sequences suitable for regression,
they all must have the same length so that they can be represented as vectors in a
fixed-dimension input space. An alternative possibility appears, e.g., in Ref. [31];
this issue is the subject of future research. In order to accomplish this, since in
general not all grasps have the same length, for each grasp we decided to stretch its
visible window (i.e., a fraction of the grasp corresponding to 1 − B) to a predefined
length and it seemed reasonable to choose this length according to the average speed
of the grasps in order not to lose any information.

Figure 4b shows the average grasp durations for all subjects over each experiment
(moving average over 50 grasps); as one would expect, in general the subjects get
rapidly used to the grasp/drop/reposition task and the grasps become faster and
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Figure 5. The blind window (the grey zone) indicates what fraction of each grasp, from the contact
point backwards, is hidden to the learning machine. The data shown is a typical trajectory of the
thumb (rotation, inner phalanx, outer phalanx) during a grasp. In this case the grasp lasts 0.78 s and
B = 0.375. The last sample (for t = 0.78) is the target value.

faster. It must be remarked, though, that this is not the case for all subjects when
considered individually. On average, the grasp duration was 0.62 ± 0.20 s. We
decided then to stretch every visible window to 1 s by linear interpolation, obtaining
fixed-length time sequences of 50 samples for each sensor and grasp; these time
sequences were then represented as vectors in a 50-dimensional space.

2.3. SVMs

Our machine learning system is based upon SVMs in the particular variant for
regression. Introduced in the early 1990s by Boser et al. [32], SVMs are a class
of kernel-based learning algorithms deeply rooted in statistical learning theory
[33], now extensively used in speech recognition, object classification and function
approximation, for example, with good results [34]. We now give a very quick
account of SVMs; for an extensive introduction to the subject, see, e.g., Ref. [35].

We are interested here in the problem of SVM regression, i.e. given a function
whose value is known only for a finite number of points in its input domain, find
its best approximation f drawn from a suitable functional space F . In practice, let
S = {xi , yi}li=1, with xi ∈ R

m and yi ∈ R be a set of l points and output values
of the unknown function (the training set); then the resulting f (x) is a sum of l

elementary functions K(x, y), each one centered on a point in S, and weighted by
real coefficients αi :

f (x) =
l∑

i=1

αiK(x, xi) + b, (1)

where b ∈ R. The choice of K , the so-called kernel, is done a priori and defines F
once and for all; it is, therefore, crucial. According to a standard practice (see, e.g.,
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Ref. [34]) we have chosen a Gaussian kernel, so that:

K(x, y) = e− ‖x−y‖2

σ2 , (2)

where σ ∈ R
+ is the standard deviation of the Gaussian function K .

Now, let C ∈ R be a positive number; then the αis and b in (1) are found by
solving the following minimisation problem (training phase):

min

(
R(S, K, α) + C

l∑

i=1

Lε(xi , yi, f )

)
, (3)

where R is a regularization term and Lε is a loss functional. Minimizing the
sum of R and Lε together ensures that the solution will approximate well the
values in the training set (thanks to Lε), at the same time avoiding overfitting, i.e.,
exhibiting poor accuracy on points outside S (thanks to R). The regularization
term controls the ‘complexity’ of f (x). As is apparent from (3), C balances the
relative importance of Lε and R. In SVM regression, it is usually the case that
Lε(xi , yi, f ) = max(0, |yi − f (xi )| − ε), where ε > 0 controls the width of an
‘insensitive band’ around the output values, e.g., errors on the training set within
this band are not considered.

In the end, there are three numbers to be tuned in our setting, called hyperparame-
ters: C, σ and ε. In all our regression tests, we found the optimal values of C and
σ by grid search with 5-fold cross-validation, whereas ε was chosen accordingly to
the resolution of the sensors being examined (see next Section 3 for a more detailed
discussion).

It is also usually the case that, after the training phase, some of the αis are found
to be zero; the xis associated with non-zero αis are called support vectors (SVs).
Both the training time (i.e. the time required by the training phase) and the testing
time (i.e., the time required to find the value of a point not in S) crucially depend on
the total number of SVs; therefore, the total number of SVs is an indicator of how
hard the problem is. An even better indicator is the fraction of SVs with respect
to |S|, since in the standard SVM setting the number of SVs grows proportionally
to the total number of samples in S [36].

Notice, finally, that the quantity to be minimized in (3) is convex; due to this,
as well as to the use of a kernel, SVMs have the advantages that their training is
guaranteed to end up in a global solution and that they can easily work in highly
dimensional, non-linear feature spaces, as opposed to analogous algorithms such
as, for example, artificial neural networks. Our system employs LIBSVM v2.82
[37], a standard, efficient implementation of SVMs.

According to the procedure described in the previous parts of this section, we
defined R

50 as the input space of our machines. We have then set up 28 such SVMs,
each one approximating the value of a sensor at the time of contact.
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3. RESULTS

We were mainly interested in answering two questions:

(i) How far in the future can our system predict well?

(ii) How does the knowledge of the grasped object affect the error?

In order to answer the first question, we have checked how the error on regression
changes as B varies from 0.1 to 0.5. This procedure was repeated independently for
each single sensor.

To obtain statistically meaningful results, we recorded each mean error obtained
on a single fold of the cross-validation procedure; for each sensor and value of B,
this means we have obtained five numbers. The errors for each sensor were
then grouped accordingly to their measurement units and meaning: the position
of the hand (three sensors, the x, y, z from the FoB), the hand orientation (three
sensors, the azimuth, elevation and roll from the FoB) and the posture of the hand
(22 sensors, the joint positions from the CyberGlove). According to the device
resolutions (see Section 2), we set ε to 0.1 in. for the hand position, 0.5◦ for the
hand orientation and 1◦ for the hand posture.

Finally, for each group of sensors, we averaged the errors per single cross-
validaton fold, and evaluated the mean and standard deviation of the resulting five
values. This gave us an indication of how well our machine performed on the hand
position, orientation and posture. In all graphs, the points on the curves represent
the mean values, whereas the error bars are placed at ±1 standard deviations which
is common practice in machine learning.

In order to answer the second question, we first evaluated the error obtained as
described above using all sessions for each single object, so to obtain an estimate
of how complex it is to approximate the grasp for the can, roll and mug unbiased
by the differences among the subjects. Subsequently we averaged these three errors
and compared the averages with the overall error, obtained by joining all sessions
together in a single training set.

3.1. Prediction power

With reference to Fig. 6, left column: first of all, as B increases, the error does, as it
was intuitively expected: the more data is hidden, the harder the prediction becomes.
Then, as one can see, as far as the hand position and orientation are concerned, the
three objects show comparable errors. On the other hand, there is a precise ranking
in the hand posture regression: the mug is more difficult than the roll, which is in
turn harder than the beer can. This also is intuitively sensible, since it is possible to
grasp the roll in more ways than the can and it is possible to grasp the mug in even
more ways (especially using the handle).

The analysis of the obtained models (see Fig. 7, left column) shows that,
accordingly, the percentage of SVs with respect to the total number of samples
increases steadily as B grows, indicating that the problem becomes harder and
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Figure 6. Regression results as the blind fraction B increases from 0.1 to 0.5. In each row the left-
hand panels compare the errors on different objects, while the right-hand panels compare the average
error on single objects and the overall error.

harder. The three curves also confirm that regression on the mug is the most difficult,
followed in turn by the roll and the beer can.
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Figure 7. Percentage of SVs with respect to the total number of samples.

A further analysis of the hyperparameters (see Fig. 8) confirms that, as B

increases, more and more information is missing from the training set: both C and σ

show a decreasing trend on all three groups of sensors (more pronounced in the
case of C), meaning that the regularization term in (3) becomes more and more
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Figure 8. The trend of the hyperparameters C (left) and σ (right), as far as the hand position,
orientation and posture is concerned. As B is increased, both parameters show a decreasing trend,
more pronounced in the case of C.

important, and that the Gaussians used to build the solution become narrower and
narrower.

To determine how far in the future SVMs can predict well, we need to decide
what an acceptable error is. In general, this is application dependent. In this case
we decided to accept an error as large as 5 times a minimum threshold, determined
by taking into account the resolutions of the sensors as declared in the devices
manuals and related publications (see Section 2). This led us to 0.5 in. for the
hand position, 2.5◦ for the hand orientation and 7.5◦ for the hand posture. As far as
the hand posture is concerned, it must be remarked that, in this paper, we have only
considered the average of errors on all the 22 sensors, whereas in a more detailed
analysis one should take into account that, for example, an error on the wrist pitch
would lead to a worse displacement of the hand than an error on a phalanx would.
This is a subject of future research.

As one can see from the graphs, the acceptable error is attained for the hand
position at B = 0.3, for the hand orientation at B = 0.2, and for the hand posture at
B = 0.15 (mug), 0.2 (roll) and B = 0.35 (beer can). Since the average grasp lasts
on average 0.62 s, we can say that the system can predict reasonably well

• Something less than 200 ms in advance of the hand position.

• About 120 ms in advance of the hand orientation.

• About 100–200 ms in advance of the hand posture, the mug being the hardest and
the beer can the easiest object.

This answers the first question.

3.2. Knowledge of the objects

As far as the second question is concerned, consider Fig. 6, right column: the curve
representing the error on the single objects is basically always smaller than the other
one, indicating that a specific SVM trained on a single object will on average be
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more precise than a SVM trained on all objects altogether: the a priori knowledge
of the object improves the performance.

Notice that this effect is more pronounced in the case of the hand posture than for
the hand position and orientation, where a substantial overlap of the error bars can
be seen (the ANOVA test on the error indicates no significance for the hand position
and orientation, but high significance for the posture, P < 0.01). This is sensible,
since knowing what object one is going to grasp will tell a great deal about how to
shape one’s hand in order to grasp it, but it will definitely be less influential in order
to determine where and how to reach unless there is a strong connection between
the grasp type and the wrist orientation.

Let us now focus upon the fraction of SVs found by the SVMs: consider Fig. 7,
right column. It turns out that SVMs trained on single objects have a definitely
smaller fraction of SVs than the one trained on the overall sequence. This means
that the machines trained on single objects are smaller and simpler than the overall
one, while being more precise.

Summing up, we can say that if the problem is split into subproblems, each one
regarding a single object, performances are better and the computational complexity
is smaller. This phenomenon is particularly evident as far as the hand posture is
concerned, as one can intuitively expect.

This answers the second question.

3.3. Single grasp types

A further interesting question is:
• How well does our system perform on specific types of grasps?

In order to shed light on this point, we have considered the most complex and
interesting object under this point of view, i.e., the mug. All sessions in which
the subjects were grasping the mug have been collected and all final grasping hand
postures have been considered as representing the ways the mug was grasped. This
resulted in slightly more than 2550 samples, according to the fact that each of the
11 subjects performed about 240 mug grasps.

The final positions were then clustered using a K-means clustering algorithm (see,
e.g., Ref. [38]). We used the freely available Fuzzy Clustering and Data Analysis
Matlab toolbox [39, 40]; due to the intrinsically stochastic nature of the algorithm,
we ran the algorithm 100 times for 1, . . . , 10 clusters and employed Dunn’s Index
[41] to determine the optimal number of clusters. It was determined that the optimal
number of clusters was 4.

We then split the mug grasps into four sets according to the clustering and ran
separate experiments on each set for B = 0.1, . . . , 0.5; the four clusters represent
about one quarter each of the total mug grasps. Finally, we compared the four error
and SV percentage curves to one another, and to the mug curve of Figs 6 and 7, left
column, bottom graph. We hoped to get more insight on how the knowledge of what
grasp is being examined changed the situation. Figure 9 shows the experimental
results.
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Figure 9. Comparison among regression on single grasp types (left) and between regression
with/without knowledge of the grasp type (right).

First of all, it must be noticed (left column) that there is a considerably different
error among the types of grasps, type 4 being the more complex, followed by 1 and 3
having the same complexity, and 2 being the easiest one. This ranking is confirmed
by the percentage of SVs graph (bottom left). However, as well, the error on the
single grasps is smaller than that on the mug in three cases out of four, and only
slightly larger in the case of grasp type 4. This suggests that the machine is able
to learn well a number of different grasp types without ‘specializing’ on one easy
type.

Second, consider Fig. 9, right column, showing an analogous comparison as that
shown in Fig. 6, right column: in that case we compared the errors obtained with
and without prior knowledge of the object to be grasped; here we compare the errors
on the mug, with and without prior knowledge of the type of grasp. The result is
that knowing in advance the type of grasp makes the machine even more accurate
and smaller than it used to be before.
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4. DISCUSSION

With this initial experiment we really pose further questions and sketch future
research rather than draw definite conclusions. The machine learning questions
addressed in this paper do indeed have an answer, albeit partial; on the other hand,
it remains difficult to say something other than speculations when comparing these
results to neuroscience.

In short, the answer to the two questions posed in Section 2 is that we can predict
well, given that we have access to motor information at least during learning and
that knowing the objects to be grasped improves the ability to predict the outcome of
an action. There are many caveats in this experiment, e.g., the question on whether
a pre-processing of the data through clustering could improve performance further,
i.e., given that objects afford certain grasping postures and they are executed with
high probability. In humans the quality of the prediction of grasping is a function of
the expectancies of the various possible grasp types which are in turn determined by
the past experience of manipulation of the target object (Luciano Fadiga, personal
communication).

The solution found by the SVMs detailed in the previous section is optimal,
since the dependence from hyperparameters has been optimized out in our case by
grid search and cross-validation that although expensive is known to provide good
results. An analysis of the solution should thus provide an accurate characterization
of the problem for the data set that has been collected.

In this sense (and only in this sense) we have shown that by partitioning the
training set per object provides a general improvement of the quality of the solution
and simultaneously of the training time (worst case O(l3) versus O(3(l/3)3) in our
case with three objects and l the total number of samples). This can be an effective
strategy when the world affords such an intuitive partitioning as for objects (seen as
discrete entities).

This is also true from what is known about the brain structures that control
grasping where the presence of a target object, its shape and affordance, and in
general any contextual cue, are coded separately by different populations of neurons
and influence simultaneously the response of the neurons that enact specific motor
plans. After motor prediction is in place, the next step, that of recognizing the action
of another individual, is conceptually simple since it amounts to building a classifier
on highly predictable motor trajectories.

Another interesting question that is left to future research is whether we can
investigate the complexity of the controllers of reaching and grasping (which are
known to develop separately in humans) from the complexity of the learned models
or as a consequence of the prediction error.

Clearly, the fact that we can train such models is prone to be applied in various
contexts, as we mentioned, ranging from control of robots through interpretation
and prediction of human behavior, in particular for man–machine communication.
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