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Abstract— We present a strategy whereby a robot acquires the
capability to learn by imitation following a developmental path-
way consisting on three levels: (i) sensory-motor coordination, (ii)
world interaction, (iii) imitation. With these stages, the system
is able to learn tasks by imitating human demonstrators. We
describe results of the different developmental stages, involving
perceptual and motor skills, implemented in our humanoid robot,
Baltazar. At each stage, the system’s attention is drawn towards
different entities: its own body and later on, objects and people.

Our main contributions are the general architecture and the
implementation of all the necessary modules until imitation ca-
pabilities are eventually acquired by the robot. Also several other
contributions are made at each level: learning of sensory-motor
maps for redundant robots, a novel method for learning how
to grasp objects and a framework for learning task description
from observation for program-level imitation. Finally, vision is
used extensively as the sole sensing modality (sometimes in a
simplified setting) avoiding the need for special data-acquisition
hardware.

Index Terms— Humanoid Robots, development, imitation

I. INTRODUCTION

“Friendly” and social interaction between robots and hu-

mans is a grand challenge for robotics. Due to the diversity

of actions/tasks to be performed and the range of possible

interactions with objects and humans, it would be impractical

(if not impossible) to explicitly pre-program a robot with such

capabilities. Instead, such systems must be able to learn by

themselves what tasks to execute and how they should be

performed, which requires sophisticated motor, perceptual and

cognitive skills.

To address these challenges, we adopt two fundamental

metaphors: (i) learning by imitation [1] as a powerful means

to teach a complex humanoid (social) robot and (ii) a devel-

opmental approach to balance the system complexity at the

various levels of functional performance [2], [3], [4].

A. Imitation

Learning by imitation is likely to become the primary form

of teaching such social, cognitive robots [1]. A very intuitive

way to program a robot is to demonstrate the task to be

performed. The system would learn how to solve similar tasks

by looking at a human performance, avoiding the need for

supervised learning or trial-and-error rehearsals. This skill

transfer has three major difficulties: (i) how to gather task-

relevant information? (ii) how to convert the data, that is valid

for a human, to a different robot body? and (iii) how to infer

the important parts of the demonstration (e.g. “understand” the

task).

Several approaches have been adopted to gather the infor-

mation for imitation. An exoskeleton was used in [5] to capture

kinematic data. The work presented in [6] relies on markers

to get visual features for hand detection and grasping, in the

context of imitation and modeling of the Mirror neurons. In

our case all the data is acquired solely with vision, making it a

more user-friendly system. Because of this, in some cases the

solutions were guided by the vision problems considerations.

Imitation and skill transfer between systems with different

bodies (body correspondence) was first explicitly addressed

by [7] using an algebraic formulation (bodies with different

skills were considered). For the case of a humanoid robot,

adaptation of the trajectories is used to guarantee the correct

balance during task execution, [8]. We address this problem

in a very different way. Instead of trying to infer the complete

state of the demonstrator, sensory-motor maps can give the

information about the actions that give a certain perception,

and so the imitator will work on the perception space.

One of the first works in imitation was proposed in [9],

a system able to learn how to imitate an assembly task by

extracting a hierarchical description of the task. The problem

of inferring the important parts of the task was addressed in

[10] by casting it into an optimization framework. In a chess-

like world, several metrics are studied where the state or the

action is considered [11]. In our case the task interpretation

is guided by the visual processing restrictions. If someone

is interacting with objects there are many occlusions and

ambiguous postures, making very difficult to detect what

action is being performed. So we rely on the visible effects

on the objects by using a multi-object tracker that describes

tasks by detecting points where the world changes state.

Even if imitation can allow a robot to learn a large variety of

tasks, it is clear that it requires the existence of sophisticated

motor, perceptual and cognitive capabilities. Building such

complex skills can become an overwhelming task in itself.

For learning one particular skill, many other systems need to

be present and their inter-connections properly established.

B. Development

How is it possible to deal with such complexity? In

living beings, ontogenetic development from conception till

adulthood is guided by a genetic program and the particular

environment where it is embedded. The program is responsible

to guide learning from the simplest things to the most complex

ones. All the physical and cognitive capabilities will have to

develop from the interaction with the world and other people.

During the first months of life, infants have limited visual

and motor capabilities. Both systems evolve side by side, with

the visual system feeding information to “calibrate” hand/arm

movements and arm movements providing stimuli to train and

improve visual acuity . “Several reflexes enable a good devel-

opment of head and body control. During the last four months

and the first four months postnatally, reflexive movement is
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such a dominant form of movement that the human being has

been labeled a ’reflex machine’. By nourishing and protecting,

the primitive reflexes are critical for human survival. The

postural reflexes are believed to be basic to more complex,

voluntary movement of later infancy.”[12].

As one example the “sucking reflex” enables a sucking

action when there is a lip stimulation. It is easy to understand

that without this reflex babies would not be able to eat or to

learn how to eat.

For the case of the head-eye system, voluntary control

appears very early. Some reflexive movements are evident

from birth (head-righting reflex [12]) but voluntary control

becomes apparent only at the end of the first month. A five-

month old child already shows a good control. This control of

the head will enable the tuning of the vision system to start

looking at (and understanding) the environment. In [13] there

is a discussion about the significance of neonate’s arm move-

ments. Usually these motions are considered as unintentional,

purposeless, or reflexive. Some experiments were done were

a newborn could see its arm in three different situations: only

the arm they were facing, only the opposite arm on a video

monitor, or neither arm. Some small forces were applied to

pull their wrists. The babies opposed the perturbing force so

as to keep an arm up and moving normally, but only when they

could see the arm, either directly or on the video monitor. The

experiments indicate that newborns can purposely control their

arms in the face of external forces and that development of

visual control of arm movement is underway soon after birth.

For object grasping there are two very distinct phases [14].

In Phase I there is a simultaneous reaching and grasping,

the reach is visually initiated and the grasp is also visually

controlled. In Phase II there is a differentiation between

reaching and grasping, the initiation and guidance of reaching

is visually controlled, the grasp becomes tactile controlled. It is

interesting to see that different modalities are used in different

phases, from visual control of grasp to tactile control.

As we have seen, the biological development ensures that a

living being can survive (with some help from its progenitors)

and mature. These observations suggested the Developmen-

tal Approach to Robotics ([2], [3], [4]). This developmental

perspective aims at overcoming the complexity problem, by

learning and properly integrating many perceptual, motor or

cognitive skills, incrementally and overtime.

The robot should “start” with a minimal subset of core

capabilities (as newborns do) [15] to bootstrap learning mech-

anisms. Then, the system would progressively acquire new

skills through self-experimentation, interaction with the envi-

ronment and humans, and integrate all the learning methods

internally.

As proposed by [2], the main principles/requirements for a

developmental machine can be summarized in seven points:

1) Environmental openness, 2) High-dimensional sensors, 3)

Completeness in using sensory information, 4) Online process-

ing, 5) Incremental processing, 6) Perform while learning and

7) Scale up to muddy tasks.

Development can be divided in three main axes: learn-

ing, structure and complexity. Learning describes the most

common mechanism where a task solution improves with

experience. When a newborn evolves from grasping an object

with a ballistic motion to a visually controlled motion, we

see that two behaviors exist and that one was built on top,

or with information from, the other. This is a development in

structure, where existing mechanisms elicit the development

of new ones. In this iterative process, higher-level mechanisms

provide also information for improving the lower-level mech-

anisms. In our work, this is the main form of development

used, although each mechanism continues to learn and improve

its efficiency with experience. The other axis of development

is that of complexity where the same mechanism improves

its efficiency by means of a more complex controller or an

increase in perception capabilities, e.g. resolution in vision or

control. For example the stereo-acuity of newborn increases

until adult acuity is reached at around 24 months [16].

Some examples of robotic system using development in

each axis are already present ([2], [17], [18]). A developmental

approach is used in [19] for a robot that successively acquire

vergence, saccade and vestibular control, as well as head-arm

coordination. A system where a binocular head is controlled

by a neural network whose input and output resolution is

improved with time is presented by [20]. The work in [21]

describes a robot thast develops artificial emotions by inter-

acting with people acting as caretakers. The approach takes

advantage of the social interactions for constraining learning.

C. Our approach

The development of imitation capabilities requires an ap-

propriate definition of the sequence of learning steps to reach

that goal, as well as adequate performance evaluation methods

to decide when to switch to higher developmental levels. In

other words, it is important to define the overall hierarchy of

developmental stages and the skills that must be acquired at

each level. Table I shows the structure we adopt for the main

developmental stages the robot goes through: (i) Learning

about the self; (ii) Learning about objects and the world and

(iii) Learning about others and imitation.

TABLE I

DEVELOPMENTAL PATHWAY FOR THE PERCEPTUAL AND MOTOR

CAPABILITIES (IN italic THE MODULES LEARNED BY THE ROBOT, IN BOLD

OUR MAIN CONTRIBUTIONS)

Time line Perceptual/Motor Capabilities

sensory-motor coordination
eye vergence
chaotic movements
smm in redundant robots

world interaction
near-space mapping
object affordances learning
uncalibrated visual control of grasp

imitation

task interpretation
view-point transformation
detection of other’s actions
imitation of goal directed actions
imitation of gestures
imitation metrics
body correspondence

For each stage in this developmental pathway, we present

the set of skills acquired by the system that are then available

for the next level. It is not claimed any distinction between in-

nate versus learned behavior in biological systems (“the nature

versus nurture” question). Instead, we discuss all the modules

necessary to be present before the system can develop to the

next level. The sequence of learning stages is biologically

inspired but the specific division and implementation was a
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pragmatic option for having a real robotic implementation.

Even for artificial systems, several mechanisms are almost the

same across different levels. It is important to note that this

division does not oblige the levels to be independent. Even

when learning a module at a higher level it is possible, and

desirable, to continue to adapt lower level modules.

In the first developmental level, sensory-motor coordination,

the robot acquires very simple and yet crucial capabilities:

vergence control, object foveation and perception-action co-

ordination. By executing random arm movements, in a self

exploratory mode, it begins to coordinate head and arm

configurations, by creating an arm-head map. This map is

accurate enough to allow reaching for objects in easy positions.

It also recognizes its own hand and is able to relate the image

of the hand with the correspondent motor actions. Humanoid

robots always have redundant degrees of freedom. Although

this increases the number of solutions for the same problem,

it makes more difficult to learn relations between variables

because different action can give the same result. Special

attention is given to this problem, by providing algorithms

that work under redundant conditions while exploiting all

advantages of the multiple options of control.

In the second developmental stage, world interaction, the

robot builds a map of the surrounding area (object positions

and identification), studies objects, their properties and how

are they used by others. Driven by attentional cues, the robot

engages in more challenging grasping tasks, for which the pre-

viously learned arm-head map is not sufficiently accurate. For

that reason a novel method for visually controlled grasping is

presented, which improves over time and ensures the necessary

robustness. Special care is taken about the redundancy present

in these complex robotic systems. This grasping capability

allows to recognize similar gestures performed by others.

At the final developmental stage, the presence of a demon-

strator will elicit imitation behaviors. Human gestures will be

imitated, by mimicking exactly the same motions, using the

learned maps. Higher-level tasks, i.e. interacting with objects,

will be imitated by decomposing the observed actions and then

replicate them in an abstracted way, i.e. if an object is grasped

we do not take into account the way it was grasped. For this

purpose, the system must be able to decompose the observed

action into the relevant key elementary actions that must be

executed for performing a task.

This roadmap [22] is implemented in the humanoid robot

Baltazar, shown in Figure 1 and described in [23]. The remain-

ing of this document presents each level of this developmental

architecture, as presented in Table I. At each level the main

principles guiding development and the developed behaviors

are presented. At the end, conclusions and future work is

presented.

D. Contributions

Our contributions are multi-fold. At a general level, we

propose a developmental architecture for imitation, including

the definition of the necessary skills at each stage, that allows

to imitate gesture and goal-directed actions. We proposed

and tested implementations of the various modules of this

architecture, at the various levels, with a real robot. No special

or intrusive hardware was used by the demonstrator because

the robot acquires all the relevant information through vision.

Specific contributions include methods for learning dif-

ferent types of sensory-motor maps with redundant robots

and a methodology for abstracting a task description from

observation. Different types of imitation behaviors, that make

use of appropriate imitation metrics for each situation, were

demonstrated.

II. SENSORY-MOTOR COORDINATION

The goal of sensory-motor coordination is to build associa-

tions or maps between perception and action. Sensory-Motor

Maps (SMMs) can be interpreted in terms of forward/inverse

kinematics of robotic manipulators augmented with the sensor

model/geometry. With SMMs robots can predict the changes

in the world that result from a given action (forward model),

or which actions to take to change the world in a pre-defined

manner (backward model).

The entire imitation architecture proposed in [24] is based

on the extensive use of pairs of coupled sensory-motor maps.

In their model, the basic structure is a forward-backward

model capable of prediction and/or reconstruction. The back-

ward model is not a simple inverse kinematics, but it includes

a controller for solving a set of tasks. Their systems also

deal with problem of limited computation, by controlling the

attention.

A variety of SMMs can be defined according to the used

sensing/actuation modalities and structure of the input/output

data. Motor commands can be joint torques, velocities or

positions. Sensor signals (percepts) can be shapes extracted

from vision, sounds or proprioception about the body state

(tactile) or motor actuation. Depending of the sensing modal-

ities involved, we can refer to visuo-motor, auditory-motor or

motor-motor maps.

A different type SMM must be used for different goals,

such as: (i) predicting the image (or the image transformation)

resulting from the robot moving the arm to a certain posture,

(ii) computing the motor command to drive the arm toward

a specified appearance or iii) calculating the head motion

required to bring the hand to the cameras field-of-view.

Fig. 1. Sensory-Motor Coordination learned by self-exploration. The
redundancy of robots make it harder to associate perception to actions.

Sensory-motor Maps can be determined analytically, pro-

vided that accurate calibration information exists and that

it remains fixed over time. The alternative approach, that

we adopt in this paper, consists of estimating sensory-motor

maps directly from sensory and motor data. First, (perception,

action) pairs are collected by having the system operating and

(auto-)observing the consequences of its own motor actions.

Then, a learning method is used to estimate the model.

The “calibration” from auto-observation process follows

the general developmental guidelines, as the system creates
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its own excitation actions which, in turn, allow it to gather

enough information to coordinate its own body. With this

approach, there is no need to assume a fixed, prior model

of the system before experimenting with the real robot. Since

the very beginning of this learning process, the system is able

to start solving tasks, in a limited way. Then, as time goes by,

solutions for certain tasks can be improved by exploiting the

availability of more data. This process of learning by means

of self-exploration is frequently used in this work.

Humanoid robotic often have more degrees of freedom

than those strictly necessary to accomplish a certain task.

For example, Figure 1 shows several positions of a humanoid

robot, where the wrist position is always the same, but the

posture of the arm changes. In terms of sensory-motor maps,

this redundancy translates into the fact that several different

inputs yield the same output observation. As a consequence,

backward (inverse) models are not well-defined, since multiple

solutions exist. Commonly used algorithms will thus fail to

learn the inverse model because the dataset is incoherent.

We propose an approach to learn inverse SMMs in redun-

dant systems, by partitioning task-relevant and task-redundant

degrees of freedom. We avoid the usual strategy of “freezing”

the redundant degrees of freedom. Instead, we can solve

several tasks simultaneously or meet additional criteria.

In order to address all the problems described and noting

that different skills need different strategies, we classified

our sensory-motor coordination algorithm in three types. The

different types of SMMs, according to the nature of the

mapped information:

• Static vs Incremental. An SMM can describe a static

relation between the input and output or it can relate input

variations to output variations. The static version is useful

for positioning (open-loop control) while the incremental

map is necessary for closed-loop control.

• Full vs Partial. In a full map, we consider that the

output completely determines the input, meaning that

the task is non-redundant. If there is some degree of

redundancy, either in the actuation or in the task itself,

the number of admissible solutions will be infinite. In

such a case, the map determines the input only partially

and an extra optimization process is needed to identify a

unique solution.

• Geometric vs Radiometric. In most cases, the SMMs

we have discussed, describe the geometry of observation

and actuation. However, in some cases, we can consider

radiometric maps that describe the visual appearance of

an object (e.g. the hand) in addition to its coordinates in

the field of view. Refer to [25] for an example.

In the rest of this section we will focus on the problem

of defining and estimating Sensory-Motor Maps for redundant

robots in two cases. The first case is a static visuo-motor map

between the arm joints and the wrist position in the image.

Then, we detail an incremental (differential) visuo-motor map

used for servoing tasks as, for instance, when grasping an

object.

A. Static Maps in Redundant Robots

In this section we show how to define a Sensory-Motor

Map that explicitly takes the degrees of redundancy (DOR)

into consideration, thus allowing the completion of several

simultaneous tasks [26].

Let us define a SMM that maps a vector of control variables

(n,r) to a vector of image point features I, where n is a

minimum set of degrees of freedom that spans the full output

space and r is a set of redundant degrees of freedom. Note

that there are several admissible partitions of the input space

in redundant/non-redundant degrees of freedom. It is also

possible to find the redundancy automatically, by analyzing

the correlation matrix for the jacobian estimation [27]. The

forward model, that predicts the image configuration of the

robot given a set of motor commands, can be written as:

I = f(n, r)

We are often more interested in obtaining the inverse map,

to compute the motor commands that drive the robot to

a desired image configuration, I. If there were an inverse

mapping (n, r) = f−1(I), this problem could be solved in

a straight forward manner. However, as the dimension of the

input space is larger than that of the output space, many

input combinations generate the same image point features

and f(n, r) cannot be inverted.

To put the problem in another perspective, finding the robot

joint angles that move the arm to a desired image configuration

I becomes an ill-posed problem when the arm has redundant

degrees of freedom, [28], because multiple solutions exist.

One approach to solve ill-posed problems, [29], [30], con-

sists in using additional constraints that restrain the set of

admissible solutions, to guarantee a unique solution. In our

case, this corresponds to recast the original problem to that

of moving the robot to a desired image position I∗ while

minimizing some auxiliary criterion, c(n, r).
We build a cost function, K, with two terms: one weighting

the error in the position of the end effector (data fitness)

and another one corresponding to the weights on the control

(regularization term).

K(I∗, n, r) = λ ‖I − I∗‖
2

+ c(n, r) (1)

This cost function expresses our willingness to accept some

error in the position, if another task can be solved at the

same time, e.g. involving the control costs. Examples of

control cost criteria, c, can be “Comfort” (e.g. distance to joint

limits), “Energy minimization” (e.g. the position with lower

momentum) or “Minimum motion” (i.e. minimize total motion

from current to desired position), posture control, amongst

others. The regularized solution can be found by minimizing

the cost defined in Equation (1), as follows:

(n̂, r̂) = arg min
n,r

(
λ ‖I − I∗‖

2
+ c(n, r)

)
(2)

where I can be computed with the forward model I = f(n, r).
Similarly to [31], this formula integrates two terms: one

describing the task and another the posture.

There are two important observations to this formulation.

Firstly, the optimization is done with respect to all DOFs,

which translates into a significant computational cost. Sec-

ondly, the DORs are not treated as such, since they undergo

exactly the same process as the non-redundant DOFs.

The consequence of this approach is that the extra degrees

of freedom are frozen from the beginning and can no longer
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be used for a different purpose during execution. In a way,

redundancy is lost. Instead, our approach keeps the redundant

degrees of freedom available for solving additional tasks

online. In essence, we split the problem in two steps. Firstly,

we define a “Minimal Order Sensory Motor Map”, g(I, r),
that relates n and (I, r):

n = g(I, r) (3)

By taking the DORs as input (independent variables) instead

of output signals, the problem of computing the non-redundant

DOFs is now well posed. The DORs, r, are left unconstrained

and can be fixed during runtime, when a secondary task or

optimization criterion is specified. Secondly, the DORs are

determined as the solution of a new optimization problem,

with cost function L:

r̂ = arg min
r

L(I∗, r) (4)

with the optimization done with a gradient-descent method:

rt+1 = rt − α∇rl(I
∗, r)

In contrast with the previous case (Eq. 1), this optimization

(Eq. 4) is done with respect to the DORs only. The complexity

is thus substantially lower and lends itself to be used as an

online process. In general, the solutions in the two cases are

not the same, because different local minima could be reached

and the criteria are slightly different. In the first case both

criteria are optimized simultaneously while, in the second case,

the posture is optimized after the task criteria.

In a perfectly calibrated setting, this approach guarantees

zero prediction error, because the Minimum Order SMM allows

us to determine the values of n corresponding to the exact

image position, for the selected redundant degrees of freedom.

This solution tends to the first (regularized) problem when λ

becomes large. If the Minimum Order SMM is not exact, then

it will introduce some error in the final image configuration.

For clarity, we summarize the final algorithm.

1) Select the desired image configuration, I∗

2) Select an initial value for the DORs, r, and compute n

using Eq. (3).

3) Select the secondary task optimization criterion

4) Solve the optimization of Eq. (4) for r and use g(.) to

compute n.

5) Move the arm to the obtained solution, (n, r)
6) Observe I and possibly adjust the function g(I, n)
7) If extra precision is needed, go to 4

There are several important differences in our approach

when compared to other methods based on visual servoing.

The Minimum Order SMM in Eq. (3) can be used to determine

the final values of the robot joints that correspond to the

desired configuration. Then, the introduction of a secondary

task-criterion (e.g. comfort, energy), leads to an optimization

problem as per Eq. (4). The solutions to this optimization

process are then used to drive the robot, without requiring

any visual feedback. Only if extra precision is needed should

visual feedback be used.

In the following example, the secondary goal consists of a

comfort criterion where we would like to keep the joint angles

as close as possible to their central position (maximizing the

distance to joint limits):

L(I∗, r) = ‖n − nc‖
2

+ ‖r − rc‖
2

= ‖g(I∗, r) − nc‖
2

+ ‖r − rc‖
2

(5)

where rc and nc stand for the central positions of the cor-

responding articular joints. Differentiating this cost function

yields:

∇rL(I∗, r) = 2

(
∂g(I∗, r)

∂r
(g(I∗, r) − nc) + (r − rc)

)

We have seen how to partition the redundant and non-

redundant degrees of freedom to build a Minimum Order

SMM, g(I, r) that allows for the computation of the non-

redundant DOFs leaving the DORs unconstrained. To learn

this map we use the Locally Weighted Projection Regression

method, [32]. This method is linear with the number of

samples and every new sample can be added easily. As the

method is not capable of extrapolating, the work space must

be well covered in the training set.

We have conducted experiments to assess the quality of the

proposed method. We first performed arm movements during

which the head tracked the robot hand, to estimate the head-

arm sensory-motor map with the previous algorithm. The head

position corresponds to pan, tilt and eye vergence while four

degrees of freedom were considered for the arm. Tests were

made by considering a target hand position in the image plane,

while comfort was chosen as secondary criterion. The quality

can be judged by the distance between the final position and

the goal, as well as by the gain in the comfort criterion. It
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Fig. 2. Convergence rate as a function of the optimization step. The final
error is in the order of magnitude of 0.03 rad for a motion range of 0.5 rad.

is worth stressing that the optimization process relies on the

estimated Minimum order SMM, described before. Figure 2

presents the evolution of the cost function L, for each iteration

of step 4 of the method. For this case, the maximum motion

amplitude for one joint was 0.5 rad. The final error in the

image was ≈ 0.03 rad, mainly due to elasticity in the robot

joints and the approximation errors of the map. Figure 3 shows

the robot view of the hand. Due to the redundancy in the arm, it

is possible to fixate the target while changing the arm posture.

The main conclusion is that the map quality is good enough

to guarantee that the hand is always in the image, although

not necessarily in the fovea. Thus, it enables the system to

reach and, in special cases, grasp objects. The acquisition of
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Fig. 3. Robot view of its own arm, hand and the target being tracked

this skill provides the required motivation for object grasping

to develop in subsequent developmental phases.

B. Dynamic Maps in Redundant Robots

The previous map allows a robot to move the arm to a

desired position, without considering the trajectory followed

to reach that position and without visual feedback. A visual

feedback loop is necessary if the final position is not reached

with enough precision or if the goal is to follow a trajectory

and not a position. For this we present an incremental sensory-

motor map in the context of visual servoing tasks, [33].

One could obtain an incremental SMM directly by differ-

entiating the static maps described in the previous section.

This process is too sensitive to noise due to the function

approximation method used to estimate the map. Alternatively,

we could repeat the procedure followed in the previous section

while using incremental motor and visual data as the SMM

input-outputs. However, the time necessary to explore all the

input space and provide a good representation is way too large,

and the number of parameters to estimate prohibitive.

Here we follow a different approach to improve the conver-

gence time and facilitate the use of these maps in closed loop

control. We approximate the maps by (locally) linear functions,

which can be directly used in visual servoing tasks. In this

control method we relate image features velocities ∆y with

motor velocities ∆θ by the following relation ∆y = J(θ)∆θ,

where J is the robot jacobian.

In this setting, it is possible to consider the redundancy

of the manipulator explicitly. The implementation of this

incremental and partial visuo-motor maps can be made by

resorting to the redundancy formalism [34]. The idea is

to decompose a complex task as a sequence of redundant

sub-tasks such that each new sub-task does not disturb the

previous ones [35]. Using this formalism, a control law is

computed to keep a given priority or order of sequencing of

the various sub-tasks. This control law can be implemented

for various kinds of closed-loop control, provided that the

objective can be written as a task function [34]. Under

this formalism the redundancy is exploited by having

several tasks simultaneously performed, the main task and

sub-tasks that can define posture, obstacle avoidance or others.

1) Redundancy formalism for two tasks: Let θ be the

articular vector of the robot. Let e1 and e2 be two tasks,

with jacobians, Ji = ∂ei

∂θ
(i = 1, 2), defined by:

ėi =
∂ei

∂θ
θ̇ = Jiθ̇ (6)

To control the robot with the articular velocity θ̇, eq. (6)

has to be inverted. The general solution (with i = 1) is:

θ̇ = J+

1 ė1 + P1z (7)

where P1 is the orthogonal projection operator on the null

space of J1 and J+

1 is the pseudo-inverse (or least-squares

inverse) of J1. Vector z can be used to apply a secondary

command, that will not disturb e1. Here, z is used to fulfill

the task e2. Introducing (7) in (6) (with i = 2) gives:

ė2 = J2J
+

1 ė1 + J2P1z (8)

By inverting this last equation, and introducing the com-

puted z in (7), we finally get:

θ̇ = J+

1 ė1 + P1(J2P1)+(ė2 − J2J
+

1 ė1) (9)

Since P1 is Hermitian and idempotent (it is a projection

operator), (9) can be written:

θ̇ = J+

1 ė1 + J̃2

+˜̇e2 (10)

where J̃2 = J2P1 is the partial jacobian of the task e2, giving

the available range for the secondary task to be performed

without affecting the first task, and ˜̇e2 = ė2 − J2J
+

1 ė1 is the

secondary task function, after subtracting the part J2J
+

1 ė1

already accomplished by the first task. A very good intuitive

explanation of this equation is given in [36].

2) Learning: Although it is possible to evaluate J an-

alytically, we adopted a model-less approach, as it allows

the system to learn and develop from its own experience.

A particularly useful method for online estimation of visual

motor relations is based on the Broyden update rule, well

known from optimization theory [37], and used in real robotic

applications with visual control [38], [39]. The image Jacobian

is estimated iteratively:

Ĵ(t + 1) = Ĵ(t) + α

(
∆y − Ĵ(t)∆θ

)
∆θT

∆θT ∆θ

where α ∈ [0, 1] denotes the Jacobian update rate. To move

the system to the desired image position y∗, we apply the

following control law:

∆θ = h
(
J+ (y∗ − y)

)

where J+ represents the pseudo-inverse of J and the function

h(.) can be chosen to ensure an exponential, linear or

any other type of convergence. It is important to notice

that the influence of the estimation process is twofold. On

one hand, errors in the Jacobian estimation will influence

the computation of the control law, but visual servoing is

known to be robust to such errors. On the other hand, these

estimation errors will also impact on the delicate procedure

of task decomposition and computation of the projection

operators [40].

3) Experiments: In the first experiment, two tasks are

considered: centering (eg) the hand in the image and rotation

(eα) in the image. Our goal was to test the influence of the

jacobian estimation errors on the task sequencing approach,

due to errors introduced in the projection operators. When the

jacobian of the first task is mis-estimated, the centering-task
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Fig. 4. Temporal evolution of the image error during servoing using offline
(left) or online (right) learning methods. The vertical line shows the time
instant where the second task started.

is lost with the activation of the second task. When the error

increases, the target moves further away from the image center,

and possibly leaving the image if the disturbance is too strong

(which results of course in the visual servoing failure).

Figure 4 presents the evolution of the error for the first

task, comparing offline and online methods along with an

analytical estimate of the Jacobian. The vertical line represents

the time instant where the second task was introduced. We

can see that because the jacobian estimation is not perfect the

first task is perturbed, i.e. its error is not maintained at zero.

Offline learning relies on simple motions of the arm, lasting

for approximately 250 iterations. Online learning is carried out

at every frame. As for the estimation methods, we compare

the proposed Broyden update rule with a standard least-square

estimate of the Jacobian (correlation method) or its inverse

(direct inverse method).

The first result shows that analytic or offline learning are

worse, in terms of perturbation rejection and convergence

times. This can be explained by the uncertainty in the pa-

rameters used for analytical computations and by the linear

approximation of a non-linear process in the case of the offline

method (the linearization is done in a point different from

the actual execution). Instead, online estimation methods lead

to much better results, outperforming the results with the

analytical jacobian. Although a large disturbance appears when

the second task is added, it is quickly reduced afterward.

The amplitude of the perturbation ranged from 20 to 30

pixels. Broyden and Correlation methods were able to elim-

inate the error after 30 iterations. The maximal perturbation

is equivalent to the one obtained with analytic computation,

but the duration is much shorter. The task-error convergence

is very similar for all methods (it occurs before iteration 50

for task eg, see Fig. 4). This emphasizes that the reduction

of the perturbation is not made at the cost of convergence.

The convergence is very robust to jacobian estimation errors,

since the task convergence rates are the same. It is nevertheless

not true for the projection operator estimation, which is very

sensitive and requires an accurate estimation.

All online learning methods succeeded to solve the task.

From several experiments, starting from different initial po-

sitions and using different tasks, the Correlation method

produced better results in sense of perturbation amplitude,

perturbation average and perturbation-correction time, when

properly tuned. However, it is not as robust to gain-tuning

as the Broyden approach that could solve the task in all

situations with the same parameters settings (note the Broyden

performances for offline learning).

A very important point is to note that learning improves

the sequencing quality by reducing convergence times and

0 20 40 60 80 100 120 140 160 180 200 220
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standard

Fig. 5. Condition-number evolution of the estimated interaction matrix
during the servo. The matrix is learned from three different trajectories: (i)
sequencing as done above; (ii) sequencing formalism, with all tasks activated
simultaneously at the first iteration; (iii) classical visual servoing using a six-
DOF task composed of all the visual features. The matrix learned from a
classical servo has a very large condition number. It increases until the servo
becomes impossible. The learning under the sequencing procedure provides
a properly conditioned matrix.

the amplitude of the perturbations. At the same time, the

sequencing generates more efficient trajectories for learning.

This experiment tests this hypothesis by comparing learning

four simpler tasks in sequence, against learning four tasks at

the same time.

We compared the learning when running the robot under

three different control laws. During the first run, task sequenc-

ing was used, in the same way as in previous experiments.

In the second trial, all tasks are active at the same time. In

other words, the same formalism is used but every task is

active from the beginning, as opposed to starting a new task

only after all the previous ones are completed. The last trial

consisted on classical visual servoing, using only one single

task of full rank. The conditioning number of the full-rank

jacobian matrix was then estimated at each iteration. When a

sequencing was used, the jacobians of all tasks were piled up

and the overall conditioning number evaluated.

Figure 5 shows that for the Broyden method, the condition

number of the matrices are much worse for the full task and

convergence cannot be attained. This method is thus very

reliable for learning partial and incremental maps.

At the end of this stage, the robot has learned how to predict

what happens in the visual field when it acts in a particular

way. It also learned which action creates a desired perceptual

change (the inverse map). Having mastered the control of its

own body, the system is going to deal with entities in the

world, during the next developmental stage.

III. WORLD INTERACTION

As the robot gains control over its own perceptual and motor

capabilities, it gets more and more interested in exploring the

surrounding world. This exploratory motivation calls for the

development of manipulative capabilities.

Object grasping requires the use of several motor programs:

detect the target position, approach the object (reaching),

correct eventual errors with visual feedback and finally grasp

it. This capability, by allowing interaction with objects, en-

ables the system to learn about object physical properties but
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also their affordances. This knowledge can also be used to

recognize similar gestures performed by others. At this stage,

all the robot can do is to fixate at salient objects and approach

them. Saliency is hand-coded and objects are detected by color

segmentation. The developmental path requires the acquisition

of the following new skills:

1) near-space mapping.

2) learn to grasp objects.

3) learn object affordances.

This section describes the approach to acquire this new

behavior by making use of the previously learned sensory-

motor maps. This new capabilities permit the robot to move

on to the next developmental level, where it gains awareness

of others (humans or robots) and the actions they perform.

Fig. 6. World level behaviors. At this level the system interacts with objects
in the world by learning about their properties and their locations to finally
grasp them. Left: verging on an object. Right: Mapping object positions in
head coordinates.

A. Near-Space (Objects) Mapping

There is neurological evidence of spatial aware neurons that

are activated by motion or objects near the skin [41]. It is

also known in developmental psychology that infants became

aware of the near and far space very early [42]. The near-space

contains the touchable objects and the robot’s own body.

The head can be moved to look toward the hand using

disparity as a feedback signal to control it. Figure 6 shows

Baltazar verging on an object. By this exploratory behavior,

we create a map of the localization of objects around the robot

- the peripersonal map - through various steps:

1) Find an object in the visual space

2) Foveate on this object

3) Memorize the object position in body centered (propri-

oceptive) coordinates.

By gazing at an object, the 3D position of the object

becomes defined in proprioceptive coordinates: two angles

with the neck position and the distance with the eye vergence

angle. Through exploration, the robot thus creates a mental

image of the surrounding space. The positions of objects are

memorized in terms of proprioceptive coordinates. Figure 6

presents Baltazar searching and mapping “fruits” around him.

B. Object Grasping - a multi-step approach

Infants start reaching objects without any visual feedback.

The movement is only initiated with vision but not guided

throughout the entire action. In case of failure, the movement

restarts from the beginning.

At the first stage of development, the estimated Arm-Head

map allows the system to (crudely) move the hand towards an

object. Hence, a simple trajectory may put the hand in contact

with the object. The problem with this (open-loop) approach

is the absence of a mechanism for error correction.

The second stage of object reaching relies on visual feed-

back, coping with the problem of error correction. The static

Head-Arm map is used to move the hand to the objects vicinity.

Then, accurate positioning is achieved by visual guidance

using the incremental Head-Arm map. With this phase, it is

possible to grasp objects in a reflex type manner, the hand

closing after touch. The missing capability of visual closed-

loop control can be the reason why babies in this phase

restart the grasp when it fails instead of correcting it [12].

Our grasping mechanism can be summarized as follows:

1) Move the head in order to have the eyes gazing at the

object.

2) Use the head-arm map to move the arm into the image

and as close as possible to the object. This phase uses

the Minimum-order head-arm map from section II-A

3) As soon has the hand is detected in the image, start the

visual closed-loop toward the object. This phase uses the

incremental and partial map from section II-B.

4) Close the hand, upon contact with the object.

We made several experiments to access the quality of the

resulting algorithm. Our system measures a specific dot in the

hand with two cameras giving an image position of the hand

(ul, vl) for the left eye and (ur, vr) for the right eye. The

features are calculated as follows:

y =
[

ul+ur

2

vl+vr

2
ul − ur

]T

This gives position and distance information estimation of

the hand related to the head. The head was maintained fixed

and four arm joints were used. The Jacobian update rate was

chosen as α = 0.1.

After moving the head, the hand was positioned near the

object using the Head-Arm map. The resulting error corre-

sponds to about 8 cm. The associated image error is corrected

in the final phase (visually controlled). Figure 7 shows the

convergence of the grasp sequence shown in Figure 8 using our

proposed algorithm. We can see an almost linear convergence.

The use of the open-loop motion made this possible because

moves the hand near the target.

Fig. 7. Convergence of the servoing algorithm for object grasping, plotter
as error versus sample.
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Fig. 8. Several frames in the grasping sequence from the initial position
resulting from the Head-Arm Map, the visual guided part and finally the
object grasping.

C. Object Affordances

In order to interact with the world it is necessary to have

some knowledge about it. Physical entities have different uses:

some are graspable, some can be combined, some can be

eaten and there are others that move by themselves. Learning

about properties of objects is done by observing the way

they are acted upon by others, giving information about their

affordances [43].

This understanding of the world is becoming more and more

important as robots are expected to interact with people in a

home setting. The robot can look around and start to learn the

identities of things and their properties.

In our architecture, the observation of objects being grasped

is useful in two ways: it suggests how to grasp them and gives

possible uses for them. Therefore, it is important to recognize

grasping action to learn about objects and to interact with

them. Note-worthily, neuroscience suggests that the ability of

recognizing someone’s gestures is facilitated by the fact that

the system knows how to perform those same gestures. Further

details of an implementation based on a model for Mirror

Neurons is presented in [25].

IV. IMITATION

We present the final development stage, where the system

looks at people in the environment to learn by imitation. The

imitation process consists of the following steps: (i) observa-

tion the demonstrator’s actions; (ii) view-point transformation

(VPT) of the description in the demonstrator’s frame allo-

image to the imitator’s frame ego-image, (iii) recognition of

observed actions to abstract the observed motion (if neces-

sary), and (iv) then a sensory-motor map (SMM) generates

the adequate actions. A metric is chosen to selected among

the imitation behaviors, VPTs and SMMs. Figure 9 presents

this process.

A. View-Point Transformation

Understanding events and object’s localizations at far dis-

tances (i.e. more than the arm can reach) is different from

mapping the surrounding space. The frame of reference is

Fig. 9. Imitation architecture. Observed actions are first transformed to a ego
frame of reference (VPT) where segmentation and recognition is made. After
that an imitation metric and body correspondence is chosen (by selecting the
corresponding SMM). In the end the imitation is performed

no longer one’s own body. Instead, a description of object’s

positions is made by referencing to another person or envi-

ronmental cues. Object’s position should be coded in terms

of allo-coordinates, and for this it is necessary to transform a

description from allo to ego coordinates by means of a View-

point transformation (VPT).

View-point transformation involves scene understanding and

reconstruction. This reconstruction can be very coarse or

purely two-dimensional (2D VPT). Alternatively, if depth

information is required, a 3D transformation is considered (3D

VPT). A VPT, describing a rigid transformation that aligns the

allo-centric and ego-centric image features, can be written as:

Ie = P T Rec(Ia) = V PT (Ia)

where P is the camera projection matrix, T is a rigid trans-

formation and Rec(Ia) stands for the reconstruction of the

demonstrator posture from allo-centric image features. The

properties of the reconstruction, transformation and projection

give different properties to the VPT. Extra details of these

processes are presented in [25].

B. Imitation Metrics

In this section, we present the metrics used to evaluate and

guide imitation. Two different sets of metrics are presented

for the cases of action-level and program-level imitation (in

the context of an object manipulation task).

1) Action-level imitation: Gestures are a very important

mean of communication. They are used to wave someone

goodbye or to make some warnings like: you’re out of

time, everything is fine. Although the gesture itself can be

produced in a variety of different ways, the meaning is almost

always unambiguous and recognition or understanding will be

relatively easy. When waving goodbye, the speed or the exact

distance between the hand and the head are not critical.

The choice of the metric and the viewpoint transformation

are extremely intertwined. If a metric is defined in 3D terms,

it is not possible to use a VPT that expresses a partial

transformation (e.g two dimensional) only. Therefore, in the

general imitation architecture the metric is the first thing to

be defined. Then, all the rest follows. The following equation

gives a general metric used for action-level imitation:

im =

∫ (
V PT (Ia) − Iself

e

)
dt
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where Ia denotes the image of the demonstrator seen by the

imitator (allo-image) and Iself
e represents the image of the

imitator’s body as seen by itself (ego-image). Clearly, different

properties of the VPT give different imitation behaviors.

With these metrics, the imitator is required to move its

body in order to match the position of the demonstrator, as

closely as possible. The great advantage of the VPT becomes

now very clear. Because of the ego-representation of the

gestures, all the sensory-motor coordination mechanisms

learned in the first development stage can now be used.

To imitate according to a given metric, the body is moved

through the selection of the appropriate SMM and giving as

control reference I∗ = V PT (Ia).

2) Program-level imitation: A different type of task in-

volves acting on objects, like placing dishes on a table or

storing books in a shelf. The key issue in these tasks does

not reside on pure gesture imitation, the most important part

is the final state (or task goal). The way in which the task is

solved, i.e. the posture, the speed, is not so relevant. This calls

for different metrics than the ones we have seen before. The

actions and movements of the demonstrator must be segmented

and coded in a way meaningful for imitating the task goals

and sub-goals.

We developed a method consisting in a multiple object

tracking and an action detector. In manipulation tasks, hand

often occlude objects. Grasping and releasing can be very

difficult to detect. The fact that the hand is the only active

element in the scene provides some implicit information that

will help dealing with occlusions. We assume that every object

can have two movement models: “rest” and “moving”. When

an object is being moved, it has the same velocity as the hand.

Object grasping is detected in two situations: i) when it starts

to move, ii) when it is occluded by the hand. Detecting object

releasing is done by detecting a previously grasped object

becoming static while the hand moves away. Using these

hypotheses, our algorithm will mark every grasping/releasing

point in the trajectories of the objects. Figure 10 gives a finite-

state machine that controls the detection of object state. The

process of task segmentation is illustrated in Figure 11. If the

grasping type is important, the grasping classification method

presented in section III-C could be used.

Fig. 10. Object state transitions used in task segmentation.

The task is then codified in a sequence of world states, the

transitions between states occur by grasping or releasing a

given object. Each state describes the objects spatial relations

(A between B and C;A right of B or A left of B) and metric

positions.

Although this approach cannot be seen as a general frame-

work for goal-directed, program-level imitation, it is notewor-

thy to mention that the goals and sub-goals of certain tasks can

be abstracted in this way. As a consequence, a rich imitation

Fig. 11. Task Segmentation. Notice that from the third to the fourth image
there is no difference in the ordering of the object, just their absolute distances.
These relevant points were extracted online from a video sequence with 234
frames.

behavior is achieved, following the proposed developmental

roadmap. The summary of the algorithm is summarized below.

1) Detect and localize objects around the demonstrator and

apply the VPT to map those objects in the observer’s

coordinate frame.

2) Observe the sequence of task execution.

3) Segment the sequence by detecting interesting points

(changes in the tracker state), in time and space.

4) Make a description of the task, as a chain of meaningful

events such as grasp and release objects.

5) Perform the same task.

V. EXPERIMENTS

We have implemented the modules discussed in the previous

sections to build a system able to learn by imitation. We

start by describing the approach used for hand-tracking before

presenting the overall results on imitation, both for action and

program-level imitation.

A. Vision

1) Vision system: To model the arm position of the demon-

strator, we have three steps of segmentation for the back-

ground, person and hand.

During initialization, the background is estimated by model-

ing the intensity of each pixel as a Gaussian random variable.

We need about 100 frames to obtain a good model. After this

process, we can estimate the probability of each pixel belong-

ing to the background. In order to increase the robustness of

segmentation to illumination variations, we use RGB color

representation normalized by the blue channel.

The model of the background is used to determine the areas

in the image where motion has been observed. After detection,

the position of the person is estimated by template matching

and correlation. The template consists of a rectangle for the

body, on top of which, a second rectangle represents the head.

The body-head proportions used were those corresponding to a

fronto-parallel person at a nominal distance from the cameras.

By scaling the template, we can estimate the size of the person

and the scale parameter, s, of the camera model. In addition,

if we need to detect if the person is rotated with respect

to the camera, we can scale the template independently in

each direction, and estimate this rotation by the ratio between

the head height and shoulder width. To find the hand in the



11

image we use a color segmentation scheme, implemented by a

feed-forward neural network with three neurons in the hidden

layer. As inputs, we use the hue and saturation channels of

HSV color representation. The training data are obtained by

selecting the hand and the background in a sample image.

After color classification a majority morphological operator is

used. The hand is identified as the largest blob found and its

position is estimated over time with a Kalman filter. Figure 12

shows the result of this process.

Fig. 12. Vision system. Left: original image. Right: background segmentation
of the human figure and hand detection. The rectangular frame is used for the
template matching.

B. Action-level imitation

The first imitation experiments deal with action-level imi-

tation. Here gestures made by a person should be repeated by

the robot. Using the generic architecture of Figure 9 the robot

observes the scene using the person/hand tracking system

presented earlier. After choosing the metric the robot applies

the correct VPT and then the previously learned sensory-motor

map gives directly the necessary motor commands.

If we assume that the hand movement is constrained to a

plane or that the depth changes are small, we can use a view-

point transformation that does not take depth information into

account to estimate the position of the person. Here, the system

succeeds in imitating the hand gesture but, as expected due

to the properties of the VPT used, there are differences in

the configuration of the elbow, particularly at more extreme

positions. Figure 13 shows the system imitating a tutor in real-

time.

C. Program-level imitation

The goal of the imitation task illustrated here consists on

moving a set of objects, as shown by a demonstrator. It follows

the imitation system presented in Sec. IV-B.2.

All the modules developed until this point are essential to

replicate the task at hand. Although the way we describe this

particular set of tasks could be replaced by possibly more

sophisticated processes, the modules would still remain as

valid building blocks to perform such a new set of tasks.

Figure 14 shows an example of the execution of a task,

consisting of grasping a set objects and moving them around.

To imitate this task, the robot first needs to understand the

spatial relations of objects in the vicinity the demonstrator

(understand the far space). Then, understanding the near space

becomes fundamental to establish correspondence between the

demonstrator perspective and its own (self) viewpoint (i.e. the

blue object located on the left hand side of the demonstrator

is in front of me). After the observation of the demonstrator’s

movements, the important task moments must be extracted and

Fig. 13. Robot imitating the hand movements made by a demonstrator.
A partial SMM is used in such a way that the elbow position is left
unconstrained.

Fig. 14. Several frames of the task demonstration. The person is moving
objects from position to position.
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Fig. 15. Repetition of the task by the robot. Two different metrics are being
used here: object ordering and metric position. The robot localizes and grasps
object using the behaviors learned in previous developmental stages.

temporally segmented. Finally, the learned task is repeated

by the robot (Figure 15), using the imitation architecture and

the proposed developmental pathway. The robot places the

objects in the same order as the demonstrator. In the final step,

the robot assumes that the task sub-goal consists in changing

the absolute position of one object, since the demonstrator

did not affect the objects relative spatial relations. The task

interpretation and execution is the following:

1) By moving the head, detect objects A and B (on the

right and on the left of the demonstrator)

2) Foveate on object A, Grasp Object A

3) Foveate on position 0, Release Object A

4) Foveate on object B, Grasp Object B

5) Foveate on position 1, Release Object B

6) Foveate on object A, Grasp Object A

7) Foveate on position 2, Release Object A

Note that all positions are restricted to a vertical plane. First,

the head foveates the objects of interest. This step facilitates

the control because the target is in the center of the image,

but it is also a necessity due to the limited field-of-view of the

robotic head. Then the grasp action is elicited to finally grasp

the objects. To grasp (or release) an object, a static head-arm

sensory-motor map is used for the initial reaching phase. Then

a visual servoing loop is used for the final phase of the grasp.

Upon contact the hand closes.

VI. CONCLUSIONS/FUTURE WORK

We presented a developmental route for creating an hu-

manoid robot 1 able to learn by imitation. This route allows

the robot to acquire increasingly more sophisticated skills by

slowly increasing the task complexity. We described results,

implemented in a robotic system, of the various developmental

stages of the system.

The robot first learns about its own body and surrounding

environment, gathering all information by self-exploration. In

the end of this stage the coordination achieved is sufficient

to ensure that the hand always remains in the image and

that objects can be grasped in simple cases. We propose

methods for learning different types of sensory-motor maps

for redundant robots.

Motivated to further interact with objects, in a second phase

the system develops a closed-loop control behavior capable

of precise grasping. The method consists in two phases: an

open-loop controller putting the hand close to the object, and

a closed-loop vision-based controller for precisely touching

the object. This method does not need calibration and can be

learned on-line in a very efficient way. It also creates a map

of the interesting objects in the surrounding space.

In the final developmental phase, people acting in the

environment are the major source of information. The system

is able to look at gestures and repeat them. In a much more

complex problem the system is able to see someone interacting

with objects and extract an abstract description of this task.

Then, the system can repeat the task at a later time, relying

on all the information learned previously.

Needless to say, several modules we described can be

improved in the future. Also, new skills and mechanisms can

be incorporated in the system, following this developmental

perspective. Further improvements of the grasping system will

allow the system to explore the properties of objects in a richer

manner. When interacting with people, mechanisms for joint

attention can be very important from a communication point

of view. Finally, the whole issue of learning task descriptions

from observation has a lot of room for additional develop-

ments.

There are a number of far reaching open questions for

future endeavors. What kind of events should guide or trigger

development? When is the system “ready” to go to a next

stage? To attempt answering these questions, one option is to

explore the role of time, quality or event driven processes to

guide the behavior and development of the robot during its

lifetime and through the interaction with the environment and

other agents.
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