
A modular bio-inspired architecture for movement generation
for the infant-like robot iCub

Sarah Degallier, Ludovic Righetti, Lorenzo Natale, Francesco Nori, Giorgio Metta and Auke Ijspeert

Abstract— Movement generation in humans appears to be
processed through a three-layered architecture, where each
layer corresponds to a different level of abstraction in the
representation of the movement. In this article, we will present
an architecture reflecting this three-layered organization and
based on a modular approach to human movement generation.
We will show that our architecture is well suited for the online
generation and modulation of motor behaviors, but also for
switching between motor behaviors. This will be illustrated
respectively through an interactive drumming task and through
switching between reaching and crawling. This latter task has
been tested with the ODE-based simulator WebotsTM while
drumming has been implemented on the real robot iCub.

I. INTRODUCTION

In the framework of the European project RobotCub [1],
which aims at developing an infant-like robot, iCub, with
the motor and cognitive abilities of a 2 years-old child, we
are currently developing a functional model of the human
motor system, that is an architecture reflecting the different
processes involved in low-level movement generation. Our
motor architecture will be integrated within a larger cognitive
architecture developed by the RobotCub consortium [2].

To build our model of the human motor system, we define
a three-layered architecture whose layers are referred to as
the planner, the manager and the generator. Functionally, the
planner (i.e the motor cortex in humans) builds the mental
representation of the task. Indeed, according to Jeannerod,
when choosing to perform a given action, representations that
account for behaviors "must carry internal models of how
the external world is, how it will be modified by the action
of the organism, and how the organism will be modified
by that action" ([3],p.3). The manager (the brain stem, the
basal ganglia and the cerebellum in humans) is involved
in the selection, timing and coordination of the appropriate
behaviors (motor programs, see for instance [4], [5]). Finally,
the generator (the spinal cord) generates trajectories through
central pattern generators (CPGs), that we see as networks of
neurons involved in the production of movement primitives
(for a review on CPGs, see [6] or [7]).

Since our particular interest is on movement generation,
we will not focus on the high cognitive abilities needed to
define and choose the action; in terms of the architecture,

This work was supported by the European Commission’s Cognition Unit,
project no. IST-2004-004370: RobotCub and by the Swiss National Science
Foundation

S. Degallier, L. Righetti and A. Ijspeert are with the School of Computer
and Communication Science, Ecole Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland, sarah.degallier@epfl.ch

L. Natale, F. Nori and G. Metta are with the Italian Institute of Technol-
ogy, Genova, Italy

we do not focus on the implementation of the planner. These
issues are addressed by other partners in the framework of
the RobotCub project1.

In order to develop an efficient model reflecting these prin-
ciples, we make the assumption that movement generation
is highly modular, both in terms of motor primitives (i.e.
units of movement) and in terms of motor programs (i.e.
behaviors), as will be discussed more in details in Section
II. Indeed, modularity has proven to be a successful approach
for generating fast, complex movements (see [8], [9], [10],
[11]).

We assume the existence of two basic types of motor
primitives, i.e. discrete (aperiodic and finite) and rhythmic
(periodic) movements2 (as done previously by [8], [13], [9]).
We model these motor primitives as solutions of a dynamical
system with a globally attractive fixed point and an oscillator,
respectively. Such an approach allows us to use the stability
properties of dynamical systems to ensure a robust control
of the movements. We use a system similar to the one
that we had previously developed [14], [15] which allows
the generation of discrete (i.e. short-term) and rhythmic
movements and the combination of both (i.e. oscillations
around time-varying offsets).

In this article, we present our current implementation
of this functional architecture (Section II) and the future
improvements that we are planning (Section VI). The current
implementation allows for an easy and fast online modulation
of trajectories as well as the possibility of easily switching
between behaviors according to sensory information; this
will be illustrated through two applications, namely inter-
active drumming (Section IV), i.e. a user can specify on the
fly the score that the robot has to play, and the switching
between crawling, reaching on the fours and reaching while
crawling (Section V). Interactive drumming has been tested
on the real robot while switching between behaviors has been
tested using WebotsTM [16], a physics based simulator . The
infant-like robot iCub is briefly presented in Section III.

II. PRESENTATION OF THE ARCHITECTURE

We present here the current implementation of the archi-
tecture, which is depicted in Fig. 1. Note that since it is an
ongoing work, many improvements are planned and will be
discussed in Section VI.

1See http://www.robotcub.org/misc/review3/index.
html for a complete list of publications

2Note that Schaal et al. [12] have shown that rhythmic movements are
not a particular case of discrete movements by using fMRI techniques;
some brain areas involved in discrete task are not active during rhythmic
movements.



Overall, we want to design an architecture that allows
for the generation of complex, adaptive behaviors and for
switching between these behaviors. This requires the ability
to pertinently integrate sensory feedback and high level
commands, but also the ability to deal with constraints.

In order to do so, we propose here a three layer ar-
chitecture where each layer is an independent process that
communicates with the others (see Fig. 1). Such a struc-
ture allows for the distribution of the tasks relatively to
their cognitive level, but also to their computational need.
Indeed, the role of the generator consists in our case only
in integrating the dynamical systems, a task which requires
low computational needs and can be implemented on the
DSP controllers of the robot with fast feedback loops. Such
an approach ensures that the generation of the trajectories
is not perturbed by highly demanding processes such as
optimization and planning which are solved at higher levels
(i.e. the planner in our case). The manager ensures the
coherence of the movements (both in terms of spatial and
time constraints) and the communication between the high
and the low level processes.

Fig. 1. Schematic of the functional organization of the architecture. At
the manager level, the MPs are launched by the manager according to
the contextual information and the commands sent by the planner. At the
generator level, the unit generators, composed of a discrete system (D) and
an oscillator, are coupled in network to form CPGs. Two possible types of
coupling are represented. As said in the text, a clock can be added if an
absolute timing is needed.

We now present in more details our implementation of the
three layers. As stated before, we focus mainly on the low-
level motor generation, i.e. on the manager and the generator.
Feedback issues will be discussed in Section VI.

A. Generator

The generator, which is responsible for the generation of
the trajectories, is built on the concept of central pattern
generators (CPGs), that we take in the sense of a network
of unit generators (UGs) of basic movements called motor
primitives.

Unit generators are modeled in our architecture by dynam-
ical systems; two types of primitives are defined, namely
discrete and rhythmic, that correspond respectively to the
solution of a globally attractive fixed point system and of a
limit cycle system. The two main advantages of using such
dynamical systems is that (i) the trajectories are generated

online by integration, and thus their parameters can be
modified smoothly on the fly, and (ii) the solutions obtained
are robust to perturbations, and thus feedback can be easily
included.

All trajectories (for each joint) are generated through a
unique set of differential equations, which is designed to
produce complex movements modeled as a periodic move-
ment around a time-varying offset. More precisely, complex
movements are generated through the superimposition and
sequencing of simpler motor primitives generated by rhyth-
mic and discrete unit generators. The discrete primitive is
injected in the rhythmic primitive as an offset, although
other combinations of them could be considered such as a
sequencing or a simple addition of their output.

Thanks to the use of limit cycle systems, the different
unit generators of each joints can be coupled in a network
to obtain a more complex, synchronized behaviors. Such
networks, that we call central pattern generators (CPG),
are well suited to ensure fixed time relations between the
different rhythmic outputs3, a feature which is particularly
convenient for generating different gaits for locomotion, for
instance (see [18]). A reference limit cycle system can be
added in the system to serve as a clock (as we did in
drumming for instance).

Discrete UG.The discrete UG, which is inspired from the
VITE model [19], is modeled by the following system of
equations

ḣi = d(p− hi) (1)
ẏi = h4

i vi (2)

v̇i = p4−b2

4
(yi − gi)− b vi. (3)

The system is critically damped so that the output yi of Eqs 2
and 3 converges asymptotically and monotically to a goal gi

with a speed of convergence controlled by b, whereas the
speed vi converges to zero. p and d are chosen so to ensure
a bell-shaped velocity profile; hi converges to p and is reset
to zero at the end of each movement.

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

2

3

4

Time [s]

Fig. 2. Using simple variations of mi (dash line), gi (dotted line) and
ωi (not represented on the figure), a periodic trajectory around a time-
varying offset can be generated. Setting mi to a negative value turns off
the oscillatory behavior thanks to the Hopf bifurcation.

Rhythmic UG. The rhythmic UG is modeled as a modi-

3The interested readers are referred to the work of Golubitsky for the
construction of networks of coupled oscillator, see for instance [17].



fied Hopf oscillator:

ẋi = a
(
mi − r2

i

)
(xi − yi)− ωizi (4)

żi = a
(
mi − r2

i

)
zi + ωi (xi − yi) +

∑
kijzj + ui(5)

ωi =
ωdown

e−fzi + 1
+

ωup

efzi + 1
(6)

where ri =
√

(xi − yi)
2 + z2

i . When mi > 0, Eqs. 4 and 5
describe a Hopf oscillator whose solution xi is a periodic
signal of amplitude

√
mi and frequency ωi with an offset

given by gi. A Hopf bifurcation occurs when mi < 0 leading
to a system with a globally attractive fixed point at (gi,0). The
term

∑
kijzj controls the couplings with the other rhythmic

UGs j; the kij’s denote the gain of the coupling between the
rhythmic UGs i and j. The expression used for ωi allows
for an independent control of the speed of the ascending and
descending phases of the periodic signal, which is useful
for adjusting the swing and stance duration in crawling for
instance [18]. Finally the term ui is a control term generated
by feedback information [20].

Qualitatively, by simply modifying on the fly the param-
eters gi and mi, the system can thus switch between purely
discrete movements (mi < 0, gi 6= cst), purely rhythmic
movements (mi > 0, gi = cst), and combinations of both
(mi > 0, gi 6= cst) as illustrated on Fig. 2 (see [14] for
more details). More elaborate movements can be achieved
by sending time-varying parameters (~m(t), ~g(t), ~ω(t)) to the
system and by integrating feedback signals to the generator,
as will be described in Section V.

B. Manager

The manager is built upon the concept of motor program,
which is defined as "a set of muscle commands which
are structured before a movement begins and which can
be sent to the muscle with the correct timing so that the
entire sequence is carried out in the absence of peripheral
feedback" by Marsden et al. [21]. This concept is a nice way
of explaining the rapidity with which we react to stimuli and
the stereotypy present in human movements. Moreover, the
notion of generalized motor program (MP), that is motor
programs with open parameters, allows the generation of
movements adapted to the environment (see [5] for instance).

Functionally speaking, the manager is mainly responsible
for sending the right parameters (in joint space) to the
generator, at the right timing. We define a (generalized)
motor program (MP) as a sequence of parameters sent to
the generator to produce the desired trajectories, that is
in our case ~g(t), ~m(t), ~ω(t) and the couplings between
the oscillators (i.e. the topology of the network). Some of
the parameters are fixed (the coupling between the limbs
for crawling for instance), others are open and need to be
defined relatively to the environment and the task (the desired
angles in reaching). An inverse kinematics is also needed to
transform task space goals into target joint angles.

Every time a MP is launched by the manager, the first
command sent corresponds to a predefined initial position.
The parameters are then sent at regular time intervals to

the generator. At the end of the sequence, a command
corresponding to a final target position is sent. This makes
the switching between tasks easier, as will be illustrated
with crawling and reaching. A MP can be elicited, and
interrupted, either by the planner (voluntary movements) or
by the contextual sensory information (automatisms).

C. Planner

The planner is for now a simple GUI that allows the user to
specify the task the robot has to perform in terms of cartesian
space. However, higher cortical abilities can be implemented
to define the task to be performed. The output that should
be given to the manager is the target goal (or the target
trajectory) in cartesian space as well as the parameters of
the rhythmic movement.

III. PRESENTATION OF iCub

The iCub is the humanoid robot developed as part of the
RobotCub project [1]. It has been designed to mimic the
size of a three and a half year old child (approximately 1m
tall). It has 53 degrees of freedom. A good part of them are
allocated to the upper torso, especially to the hands (18 in
total) to allow manipulation of objects. The iCub is strong
enough to crawl on all fours and sit to free the hands for
manipulating objects.

A. Hardware specifications

The iCub is based on electric motors for actuation. The
major joints are actuated by brushless DC motors cou-
pled with frameless Harmonic Drive gears. This guarantees
torques up to 40Nm at the shoulders, spine and hips. The
head and hands are actuated by smaller brushed-DC motors.

The robot is equipped with cameras, microphones, gyro-
scopes & linear accelerometers, force/torque sensors, posi-
tion and temperature sensors. A fully sensorized skin and
fingertips are under development.

The electronics of the iCub have been developed specifi-
cally to fit within the limited space available. Each controller
card runs a 1KHz (position or velocity) control loop on a
dedicated DSP. All cards are connected to a main relay CPU
via four CAN bus lines. These lines end into a multi-purpose
I/O card which communicates to the relay CPU (PC104)
located in the robot head. More demanding computation can
be performed on a PC cluster connected to the PC104 via a
gigabit ethernet.

Additional electronics have been designed to sample and
digitize the iCub sensors. Also in this case, everything
converges to the PC104 by means of various additional
connections (e.g. serial, firewire, etc.).

B. Software architecture

The iCub software architecture uses YARP, an open source
library written to support software development and integra-
tion in robotics [22]. The core of YARP is an inter-process
communication layer which allows processes on different
machines to exchange data across an Ethernet network.
Communication in YARP is transport independent; details



about the underlying network and protocol are hidden to the
user. Similarly, YARP offers device driver wrappers, which
help separating user-level code from vendor-dependent code
related to sensors and actuators. Overall this contributes to
achieve loose coupling between algorithms and hardware,
and, in turn, favors modularity. In short, communication in
YARP takes place through connections, called ports. Ports
are named entities which move data from one process to
another (or several others).

iCub capabilities are implemented as a set of modules,
interconnected through YARP ports. Each module is an exe-
cutable which implements a given functionality, and creates
a set of ports to receive and send data. Some modules pro-
vide access to the hardware. For example the iCubInterface
module exports a set of ports to give access to the motors
and broadcast the encoder feedback from all joints. Other
modules in the architecture control the robot by sending
messages to these ports. Commands can be specified as joint
space position or velocity.

IV. APPLICATION TO INTERACTIVE DRUMMING

Interactive drumming is an interesting task combining
discrete and rhythmic movements and requiring all four,
precise timing, coordination between limbs and also the
online modulation of the trajectories subject to constraints.
As it does not require high level cognitive abilities or balance
issues, it is well suited for a first test of the architecture on
the real robot.

Fig. 3. Snapshots of the iCub drumming at the conference CogSys 2008.
Top: Side view of the complete robot. Bottom: Downward view of the legs
hitting the pedals.

Drumming has been implemented on the real iCub and
presented as a demonstration at the CogSys 2008 conference
in April (see Fig. 3 for some pictures of the setting). The
robot is fixed to a metallic structure by the hips and plays on
an electronic drum set. The four limbs together with the head
are controlled. The sticks are grasped by the hands which
remain fixed afterwards. We control actively four joints for
each limb and one for the head.

The planner is simply implemented as a GUI that allows
a user to define the score that the robot has to play; more
precisely, the user can specify either a predefined score or the
drum that has to be beaten next by each of the limbs. There is
a "Hold" position corresponding to the mode where the limb

does not beat anything. Moreover, the coordination between
the limbs (i.e. their phase relation) and the frequency of the
beating can be modified on the fly.

At the manager level, there is a unique motor program for
each limb (MP) whose parameters are controlled through
the GUI. The manager is then responsible for translating
the commands sent by the planner in terms of joint space
parameters for the generator. In the current application, the
target discrete postures for hitting each drum are predefined;
the integration of visual localization of the drums is planned
as a future work. These parameters are sent at a specific
timing corresponding to the beat (i.e. the tempo) of the score,
this beat being given by the clock at the generator level.

Concerning the generator, each dof is controlled by the
discrete and rhythmic pattern generators that we have pre-
sented in Section II. The couplings between the dofs, which
are specified through a configuration file, are the following:
• for the legs, both hips are unilaterally coupled to the

clock and bilaterally coupled to the knees;
• for the arms, both shoulders are unilaterally coupled to

the clock and bilaterally coupled to the elbows.
The bilateral couplings between limbs allows for a precise
synchronization between them. After a Hopf bifurcation, one
can observe a phase resetting of the oscillators; the clock can
be seen as a metronome that ensures that the limbs stay in
synchronization with the absolute tempo despite those phase
resettings.

20 40 60 80 100

−60

−40

−20

0

P
os

iti
on

 [D
eg

]

Left Shoulder Flexion/Extension

20 40 60 80 100
−1

−0.5

0

0.5

Time [s]

M
ot

or
 P

ro
gr

am

Fig. 4. Up: Trajectories generated by the generator for one arm obtained
with iCub when drumming. Plain lines are desired trajectories and dotted
lines are the actual trajectories. Down: Corresponding parameters sent by
the manager to the generator.

Results. The implementation of the real iCub has suc-
cessfully shown that the architecture was well-suited to
allow for the online modulation of trajectories subject to
time constraints (Fig. 4) as well as for the generation of
synchronized movements between the limbs (Fig. 5). See
[23] for a movie of the robot drumming.

On Fig. 4, it can be seen that the parameters are mod-
ulated in real time and that those modulations end up in a
smooth adaptation of the generated trajectories. Moreover,
the modifications occurs at specific times corresponding to
the end of a beat thanks to the manager that deals with time
constraints.

On Fig. 5, trajectories from the two legs are shown to
illustrate coordination between limbs. It can be seen that



120 130 140 150 160
−5

0

5

10

15

20

25

30

35

40

Time [s]

P
os

iti
on

 [D
eg

]

(a) Modulation of the frequency

10 20 30 40 50 60
−5

0

5

10

15

20

25

30

35

40

Time [s]

P
os

iti
on

 [D
eg

]

(b) Modulation of the coordination

Fig. 5. (a) The left leg (plain line) and the right leg (dash line) are in
anti-phase. This phase shift remains constant even when frequency of the
system is modified (at 130s and 155s, vertical dash line). Moreover, the
convergence to the new frequency is less than on cycle. (b) The left and
the right legs (resp. plain and dash lines) are in phase at the beginning
of the movement. Then at time 15s, 28s, and 44s (vertical dash lines) the
phase shift of the right leg relatively to the clock is modified. The trajectory
converges in less than a cycle to the desired one.

the two legs stay synchronized even when the frequency
is changed (Fig. 5(a)). Moreover, when the coordination of
the legs is changed, the transition is fast and the trajectories
remain smooth (Fig. 5(b)).

To enhance the performance, the addition of several types
of feedback is planned in the future, as will be discussed in
Section VI.

V. APPLICATION TO CRAWLING AND REACHING

In this application, we want to test the ability of the
architecture to switch and combine behaviors. Contrarily to
the drumming task, here behaviors are triggered by sensory
information, i.e. no planner is involved. More precisely, we
define three tasks (motor programs): reaching, crawling and
reaching while crawling; each of this task is triggered by
color marks on the ground, i.e. a red mark on the ground
launches reaching, a blue mark reaching while crawling and
no mark crawling. No visual processing is considered here;
the position and color of the mark are directly provided to
the robot. The robot crawls in an environment where it has
to switch between those three behaviors according to marks
arbitrarily placed on the ground. Combinations of crawling
and reaching have been tested in simulation using the ODE-
based software WebotsTM.

Fig. 6. Snapshots of the three behaviors with feedback. Upper line: Only
crawling; middle line: Crawling while reaching; bottom line: iCub crawls,
stops and then reaches the mark.

Each behavior is simply triggered through the specification

of the amplitudes ~m and the offsets ~g by the manager (~ω
is fixed). More precisely, the three motor programs are the
following:
• Crawling (~m > ~0, ~g = ~0). Analysis of crawling infants

has shown that most infants crawl on hands and knees,
using a walking trot gait [20]. The couplings are thus
set so to obtain a trot gait and g is set to a fixed value
(0 here) so to obtain a purely rhythmic movement.

• Reaching (~m < ~0, ~g 6= ~0). Once a mark is close enough
to be reachable, ~m is turned to a negative value to stop
crawling. A target position ~g suitable to reach the mark,
calculated using an inverse kinematic, is then sent to the
generator.

• Reaching while crawling (~m > ~0, ~g = ~g(t)). When a
mark is reachable and when the arm is in an appropriate
state (i.e. is in the swing phase), the desired position g is
sent to the generator by the manager; the actual position
of the system is then compared to the desired position
so to reach the correct position through a modification
of the offset (see [15] for details). ~m is kept to a positive
value so that the resulting movement is rhythmic with
a time varying offset.

Feedback integration. A phase dependent sensory feed-
back is also included in the rhythmic PG to make the crawl-
ing locomotion more robust and adaptive to the environment.
Information from the load sensors located on the hands and
knees of the robot is used to modulate the onset of the swing
and stance phases, as mammals do [24]. Depending on the
values of the sensors and of the phase of the limb, the term
ui of Eq 5 is defined as

ui =




−sign(yi)F fast transitions
−ωxi −

∑
kijyj stop transition

0 otherwise
(7)

where F controls the speed of the transition. The feedback
term modifies the phase plan of the oscillator according to
the following rule: the transition from stance to swing phases
is delayed as long as the other limbs cannot support the
body weight (using the feedback term for fast transition) and
is triggered sooner when the limb leaves unexpectedly the
ground (using the feedback term to stop the transition). An
analogous policy is used for the swing to stance transition.
More details can be found in [25].

Results. Results obtained in simulation have shown that
the architecture allows for smooth transitions between motor
behaviors; in both reaching while crawling and reaching,
the trajectory smoothly resume to crawling after the mark
has been reached. Fig. 6 shows some snapshots of the three
tasks; for the corresponding movies, see [26].

Note that the implementation that we are using here is
slightly different from the one that we presented in [15] as
the discrete system is embedded in the rhythmic one rather
than added to it and as we have introduced a feedback term
here to deal with the perturbation introduced in the different
phase of locomotion by the modification of the offset of the
reaching limb. Thanks to this feedback term, the resulting
trajectory is smoother (as can be seen on the movie at [26])



0 2 4 6 8
70

80

90

100

110

120

130

P
os

iti
on

 [d
eg

]

Time [s]

(a) Reaching

0 2 4 6 8
40

50

60

70

80

90

100

110

P
os

iti
on

 [d
eg

]

Time [s]

(b) Reaching while Crawling

Fig. 7. Trajectories the shoulder felxion/extension joint (left arm, plain
line) and the corresponding parameter g (dotted). Bold line means that the
mark is reached. (a) The robot switches from crawling to reaching when the
mark is reachable and then start crawling again.(b) The robot reaches the
mark while crawling through a modification of the offset of the oscillation.

and we were able to remove some constraints that were added
to prevent self collision.

VI. DISCUSSION

The architecture that we have presented has been proven to
be successful for both the specification on the fly of a behav-
ior as well as the switching between behaviors accordingly
to sensory information. Moreover, the architecture is suitable
for the online generation of complex trajectories and can
serve as the low level basis for any type of motor behaviors
just by modifying the planner layer.

Different improvements of the architecture are planned in
the future, among which the integration of several feedback
signals (both at the generator and at the manager level)
and the integration of constraints such as balance and self
collision avoidance in the manager, and joint limits in the
generator.

At the generator level, feedback from touch sensors has
already been implemented and tested in a simulation environ-
ment, as discussed in Section V. We are currently adding a
force feedback to detect collisions; this feedback is modeled
as a repulsor which is activated when a sudden increase in the
force sensor is detected. Such a feedback results in slowing
down rapidly the movement to maintain it in its current
position. Note that as soon as the perturbation disappears,
the movement resumes to its trajectory without time delay.
Eventually, force feedback will also be tested on the iCub
robot. At the manager level, we are going to implement a
visual feedback to allow target and obstacle detection.

VII. CONCLUSION

We have presented here a three-layer architecture suitable
for the generation of various motor tasks, as interactive
drumming, reaching and crawling. It has been shown that
it allows for the online specification of a given motor task
as well as for switching between motor tasks. Moreover, the
distributed nature of the architecture makes it well suited for
its integration on real robots, as shown with the iCub.

REFERENCES

[1] N.G. Tsagarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,
L. Righetti, J. Santos-Victor, A.J. Ijspeert, M.C. Carrozza, and D.G.
Caldwell. iCub - The Design and Realization of an Open Humanoid
Platform for Cognitive and Neuroscience Research. Journal of
Advanced Robotics, Special Issue on Robotic platforms for Research
in Neuroscience, 21(10):1151–1175, October 2007.

[2] Giulio Sandini, Giorgio Metta, and David Vernon. The cub cogni-
tive humanoid robot: An open-system research platform for enactive
cognition. In 50 Years of Artificial Intelligence, pages 358–369, 2006.

[3] M. Jeannerod. The Cognitive Neuroscience of Action. Oxford:
Blackwell, 1997.

[4] E. R. Kandel, J.H. Schwartz, and T. M. Jessell. Principles of Neural
Science. Mc Graw Hill, 2000.

[5] R.A. Schmidt and T.D. Lee. Motor control and learning: A behavioral
emphasis. Human Kinetics, Champaign, IL, USA, 2005.

[6] S. Grillner. Biological pattern generation: The cellular and computa-
tional logic of networks in motion. Neuron, 52(5):751–766, December
2006.

[7] A. J. Ijspeert. Central pattern generators for locomotion control in
animals and robots: a review. Neural Networks (to appear), 2007.

[8] S. Schaal, S. Kotosaka, and D. Sternad. Nonlinear dynamical systems
as movement primitives. In International Conference on Humanoid
Robotics (Humanoids00), pages 117–124. Springer, 2000.

[9] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor
landscapes for learning motor primitives. In S. Thrun S. Becker
and K. Obermayer, editors, Neural Information Processing Systems
15 (NIPS2002), pages 1547–1554, 2003.

[10] M. Kawato. Learning internal models of the motor apparatus. In
SP Wise JR Bloedel, TJ Ebner, editor, The Acquistion of Motor
Behavior in Vertebrates, pages 409–430. Cambridge MA: MIT Press,
1996.

[11] J. Tani, Y. Ito, and Y. Sugita. Self-organization of distributedly
represented multiple behavior schemata in a mirror system: reviews
of robot experiments using rnnpb. Neural Networks, 17:1273–1289,
2004.

[12] S. Schaal, D. Sternad, R. Osu, and M. Kawato. Rhythmic arm
movement is not discrete. Nat. Neuroscience, 7(10):1136–1143, 2004.

[13] D. Sternad, W.J. Dean, and S. Schaal. Interaction of rhythmic and
discrete pattern generators in single joint movements. 19:627–665,
2000.

[14] S. Degallier, C. P. Santos, L. Righetti, and A. Ijspeert. Movement
generation using dynamical systems: a humanoid robot performing a
drumming task. In IEEE-RAS Inter. Conf. on Humanoid Robots, pages
512–517, 2006.

[15] S. Degallier, L. Righetti, and A. Ijspeert. Hand placement during
quadruped locomotion in a humanoid robot: A dynamical system
approach. In IEEE-RAS International Conference on Intelligent Robots
and Systems (IROS07)., 2007.

[16] O. Michel. Webots tm: Professional mobile robot simulation. Inter-
national Journal of Advanced Robotic System, 1:39–42, 2004.

[17] M. Golubitsky, I. Stewart, and A. Torok. Patterns of synchrony in
coupled cell networks with multiple arrows. SIAM J. Appl. Dynam.
Sys., 4(1):78–100, 2005.

[18] L. Righetti and A.J. Ijspeert. Design methodologies for central pattern
generators: an application to crawling humanoids. In Proceedings of
Robotics: Science and Systems, Philadelphia, USA, August 2006.

[19] D. Bullock and S. Grossberg. The vite model: a neural command
circuit for generating arm and articulator trajectories. pages 206–305,
1988.

[20] L. Righetti, A. Nylén, K. Rosander, and A.J. Ijspeert. Kinematics of
crawling in infants. In preparation.

[21] C.D. Marsden, P.A. Merton, and H. Morton. The use of peripheral
feedback in the control of movements. Trends Nerosci., 7:253–258,
1984.

[22] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-
lived robot genes. Robot. Auton. Syst., 56(1):29–45, 2008.

[23] Movie of Drumming. http://birg2.epfl.ch/users/
degallier/movies_BioRob/icubdrum.mpg.

[24] S. Frigon and S. Rossignol. Experiments and models of sensorimotor
interactions during locomotion. Biological Cybernetics, 95(6):607–
627, 2006.

[25] L. Righetti and A.J. Ijspeert. Pattern generators with sensory feedback
for the control of quadruped locomotion. In Proceedings of the 2008
IEEE International Conference on Robotics and Automation ICRA.
Accepted.

[26] Movie of Crawling and Reaching. http://birg2.epfl.ch/
users/degallier/movies_BioRob/crawl.avi.


