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Cognitive vision: The case for embodied perception
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Abstract

This paper considers arguments for the necessity of embodiment in cognitive vision systems. We begin by delineating the scope of cognitive

vision, and follow this by a survey of the various approaches that can be taken to the realization of artificial cognitive vision systems, focussing on

cognitive aspects. These range from the cognitivist symbolic representational paradigm, through connectionist systems and self-organizing

dynamical systems, to the enactive cognition paradigm. We then consider various arguments for embodiment, beginning with paradigm-specific

cases, and concluding with a paradigm-independent argument for embodied perception and cognition. We explore briefly different forms of

embodiment and their relevance to the foregoing viewpoints. We highlight some of the key problems associated with embodied cognitive vision,

including the phylogeny/ontogeny trade-off in artificial systems and the developmental limitations imposed by real-time environmental coupling.

Finally, we conclude by considering some aspects of natural cognitive systems to see how they can provide insights to help in addressing these

problems.
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1. The scope of cognitive vision

The term cognitive vision has recently been introduced to

encapsulate an attempt to achieve more robust, resilient, and

adaptable computer vision systems by endowing them with

cognitive capabilities. A cognitive vision system should be able

to engage in purposive goal-directed behaviour, it should be

able to adapt robustly to unforeseen changes of the visual

environment, and it should be able to anticipate the occurrence

of objects or events [1–3]. The characteristic of anticipation

and prospective behaviour in a cognitive vision system is very

important as it requires the system to operate across a variety of

time-scales, extending into the future, so that it is capable of

more than reactive behaviour (which can be quite complex in

its own right).

Some authors in discussing cognitive aspects of systems

go even further than this. For example, it has been suggested

that a cognitive system should be able to view a problem in

more than one way and to use knowledge about itself and
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the environment so that it is able to plan and modify its

actions on the basis of that knowledge [4]. Others suggest

that a cognitive computer system should—as well as being

able to reason, to learn from experience, to improve its

performance with time, and to respond intelligently to things

it’s never encountered before—be able to explain what it

was doing and why it was doing it [5]. This would enable it

to identify potential problems in following a current

approach to carrying out a task or to know when it needed

new information in order to complete it.

Cognitive vision is in essence a combination of computer

vision and cognition.1 Consequently, to make sense of

cognitive vision, we must first address the issue of cognition.

This is where the trouble begins. Unfortunately, the term

cognition has several interpretations, each of which is

dependent on the very disparate underlying models, and the

discipline of cognitive science is itself going through some-

thing of a metamorphosis [7]. The following attempts a very

brief overview of the broad range of approaches that can be

brought to bear on cognition; for a more extensive treatment,

see [1].
Image and Vision Computing xx (2006) 1–14
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1 See [6] for an alternative viewpoint on the possible nature of cognitive

vision.
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2. A survey of cognition paradigms

There are several quite distinct approaches to understanding

and synthesis of cognitive systems, including physical symbol

systems, connectionism, artificial life, dynamical systems, and

enactive systems [7,8]. Each of these makes significantly

different assumptions about the nature of cognition, its

purpose, and the manner in which cognition is achieved.

Among these, however, we can discern two broad classes: the

cognitivist approach based on symbolic information processing

representational systems; and the emergent systems approach,

embracing connectionist systems, dynamical systems, and

enactive systems, and based to a lesser or greater extent on

principles of self-organization.

2.1. Symbolic information processing representational cogni-

tivist models

Cognitivism asserts that cognition involves computations

defined over symbolic representations, in a process whereby

information about the world is abstracted by perception,

represented using some appropriate symbol set, reasoned

about, and then used to plan and act in the world. This

approach has also been labelled by many as the information

processing approach to cognition [9–14]. The discipline of

cognitive science is often (erroneously) identified exclusively

with this particular approach [14]. It is, however, by no means

the only paradigm in cognitive science and there are

indications that the discipline is migrating away from its

stronger interpretations [7].

For cognitivist systems, cognition is representational in a

strong and particular sense: it entails the manipulation of

explicit symbolic representations of the state and behaviour of

an objective external world [15] to facilitate appropriate,

adaptive, anticipatory, and effective interaction, and the storage

of the knowledge gained from this experience to reason even

more effectively in the future. Vision in particular and

perception in general are concerned with the abstraction of

faithful spatio-temporal representations of the external world

from sensory data. Reasoning itself is symbolic: a procedural

process whereby explicit representations of an external world

are manipulated and possibly translated into language.

In most cognitivist approaches concerned with the creation

of artificial cognitive systems, the symbolic representations are

the product of a human designer. This is significant because it

means that they can be directly accessed and understood or

interpreted by humans and that semantic knowledge can be

embedded directly into and extracted directly from the system.

However, it has been argued that this is also the key limiting

factor of cognitivist vision systems: these designer-dependent

representations are the idealized descriptions of a human

cognitive entity and, as such, they effectively bias the system

(or ‘blind’ it [15]) and constrain it to an domain of discourse

that is dependent on and, a consequence of, the cognitive

effects of human activity. This approach works well as long as

the system does not have to stray too far from the conditions

under which these descriptions were formulated. The further
one does stray, the larger the ‘semantic gap’ [16] between

perception and possible interpretation, a gap that is normally

plugged by embedding programmer knowledge or enforcing

expectation-driven constraints [17] to render a system

practicable in a given space of problems.

One can see how this approach usually goes hand-in-hand

with the fundamental assumption that ‘the world we perceive is

isomorphic with our perceptions of it as a geometric

environment’ [18]. The goal of cognition, for a cognitivist, is

to reason symbolically about these representations in order to

effect intelligent, adaptive, anticipatory, goal-directed, beha-

viour, and the goal of cognitive vision is to provide these

symbolic representations in the first place.

The vast majority of computer vision systems, both

cognitive and classical, adopt an essentially cognitivist

position, especially with regard to their approach to represen-

tational issues. Since real perceptual systems work with

inherently uncertain, time-varying, and incomplete infor-

mation, computer vision systems are increasingly turning to

the use of machine learning to improve the resilience of these

systems (e.g. [19]). However, this does not alter the fact that the

representational structure is still predicated on the descriptions

of the designers. The significance of this will become apparent

in later sections.

An example of the use of explicit symbolic (or conceptual)

knowledge in cognitivist systems can be found in [20]. This is a

model-based cognitive vision system, developed for the

interpretation of video sequences of traffic behaviour and the

generation of a natural language description of the observed

environment. It proceeds from signal represententations to

symbolic representations through several layers of processing,

including gradient-based optical flow, edge detection, 3D

model fitting, Kalman filter based computation of object

vehicle trajectories. These trajectories are categorized as

elementary vehicle movements or manoeuvers. Finally, vehicle

behaviour is represented by situation graph trees (SGT) based

on these manoeuvers. Automatic interpretation of this

representation of behaviour is effected by translating the SGT

into a logic program (based on fuzzy metric temporal Horn

logic). Note that the flow of control between the sub-symbolic

and symbolic levels is bi-directional so that, for example, the

behaviour representational level can provide input to improve

the performance of the Kalman filter tracking during periods of

occlusion (Kalman filters are normally driven only by sensory

data). See also [21–25] for related work.

The cognitivist assumptions are also reflected well in the

model-based approach described in [26,27] which uses

Description Logics, based on First Order Predicate Logic, to

represent and reason about high-level concepts such as spatio-

temporal object configurations and events.

Probabilistic frameworks have been proposed as an

alternative (or sometimes an adjunct [26]) to these types of

deterministic reasoning systems. For example, a cognitive

vision system for interpreting the activities of expert human

operators is described in [28–30]. It exploits dynamic decision

networks (DDN)—an extension of Bayesian belief networks to

incorporate dynamic dependencies and utility theory [31]—for
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recognizing and reasoning about activities, and both time delay

radial basis function networks (TDRBFN) and hidden markov

models (HMM) for recognition of gestures. Although this

system does incorporate learning to create the gesture models,

the overall symbolic reasoning process, albeit a probabilistic

one, still requires the system designer to identify the contextual

constraints and their causal dependencies (for the present at

least: on-going research is directed at removing this restriction)

[28-30].2 Recent progress in autonomously constructing and

using symbolic models of behaviour from sensory input using

inductive logic programming is reported in [32].

The dependence of cognitivist approaches on designer-

oriented representations is also well exemplified by knowl-

edge-based systems such as those based on ontologies. For

example, see [33] which describes a framework for an

ontology-based cognitive vision system that focusses on

mapping between domain knowledge and image processing

knowledge using a visual concept ontology incorporating

spatio-temporal, textural, and colour concepts.

An adaptable system architecture for observation and

interpretation of human activity that dynamically configures

its processing to deal with the context in which it is operating is

described in [34] while a cognitive vision system for

autonomous control of cars is described in [35].

A cognitive framework that combines low-level processing

with high-level processing using a language-based ontology

and adaptive Bayesian networks is described in [36]. The

system is self-referential in the sense that it maintains an

internal representation of its goals and current hypotheses.

Visual inference can then be performed by processing sentence

structures in this ontological language. It adopts a quintessen-

tially cognitivist symbolic representationalist approach, albeit

that it uses probabilistic models, since it requires that a

designer identify the ‘right structural assumptions’ and prior

probability distributions. The authors say the model represents

an approach to solving the symbol grounding problem and the

frame problem (see also Section 6.4).
2.2. Emergent systems

Emergent systems, embracing connectionist, dynamical,

and enactive systems, take a very different view of cognition.

Here, cognition is a process of self-organization whereby the

system is continually re-constituting itself in real-time to

maintain its operational identity through moderation of mutual

system–environment interactions and co-determination [37].

Co-determination implies that the cognitive agent is specified

by its environment and at the same time that the cognitive

process determines what is real or meaningful for the agent. In

a sense, co-determination means that the agent constructs its

reality (its world) as a result of its operation in that world. This

has significant implications for the nature of perception and

cognitive vision. ‘Perceiving is not strictly speaking in the
2 See [31] for a survey of probabilistic generative models for learning and

understanding activities in dynamic scenes.
animal or an achievement of the animal’s nervous system, but

rather is a process in an animal–environment system’ [14]. Co-

determination is one of the key differences between the

emergent paradigm and the cognitivist paradigm, wherein an

objective reality common to all cognitive agents is assumed.

For emergent systems, vision provides appropriate sensory data

to enable effective action [37] but it does so as a consequence

of the system’s actions. In the emergent paradigm, cognitive

vision is functionally dependent on the richness of the action

interface [38].

2.2.1. Connectionist models

One of the original motivations for work on emergent

systems was disaffection with the sequential, atemporal, and

localized character of symbol-manipulation based cognitivism

[8]. Emergent systems, on the other hand, depend on parallel,

real-time, and distributed architectures. One of the key features

of emergent systems, in general, and connectionism, in

particular, is that ‘the system’s connectivity becomes insepar-

able from its history of transformations, and related to the kind

of task defined for the system’ [8]. Whereas in the cognitivist

approach the symbols are distinct from what they stand for, in

the connectionist approach, ‘meaning relates to the global state

of the system’ [8]. Indeed, the meaning is something attributed

by an external third-party observer to the correspondence of a

system state with that of the world in which the emergent

system is embedded.

Connectionist approaches are for the most part associative

learning systems in which the learning phase is either

unsupervised (self-organizing) or supervised (trained). For

example, hand-eye coordination can be learned by a Kohonen

neural network from the association of proprioceptive and

exteroceptive stimuli [39,40]. As well as attempting to model

cognitive behaviour, connectionist systems can self-organize to

produce feature-analyzing capabilities similar to those of the

first few processing stages of the mammalian visual system

(e.g. centre-surround cells and orientation-selective cells) [41].

An example of a connectionist system, which exploits the co-

dependency of perception and action in a developmental

setting can be found in [42]. This is a biologically motivated

connectionist system that learns goal-directed reaching using

colour-segmented images derived from a retina-like log-polar

sensor camera. The system adopts a developmental approach:

beginning with innate inbuilt primitive reflexes, it learns

sensori–motor coordination. Radial basis function networks

have also been used in cognitive vision systems, for example,

to accomplish face detection [29].

2.2.2. Dynamical models

Dynamical systems theory is very general and can be

deployed to model many different types of systems in such

diverse areas as biology, astronomy, ecology, economonics,

physics, and many more. It has been used to complement

classical approaches in artificial intelligence [43] and it has

also been deployed to model natural and artificial cognitive

systems [13,14,44]. Advocates of the dynamical systems

approach to cognition argue that motoric and perceptual
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systems are both dynamical systems, each of which self-

organizes into meta-stable patterns of behaviour. Perception-

action coordination can also be characterized as a dynamical

system.

A dynamical system defines a particular pattern of

behaviour. The system is characterized by a state vector q

and its time derivative _q is a function of the state vector, control

parameters p and noise n. It is a self-organizing system because

the system dynamics are defined by and only by the system

state _qZNðq; p; nÞ.

In general, a dynamical system is an open dissipative non-

linear non-equilibrium system: a system in the sense of a large

number of interacting components with large number of

degrees of freedom, dissipative in the sense that it diffuses

energy (its phase space decreases in volume with time implying

preferential sub-spaces), non-equilibrium in the sense that it is

unable to maintain structure or function without external

sources of energy, material, information (and, hence, open).

The non-linearity is crucial: as well as providing for complex

behaviour, it means that the dissipation is not uniform and that

only a small number of the system’s degrees of freedom

contribute to its behaviour. These are termed order parameters

(or collective variables). Each order parameter defines the

evolution of the system, leading to meta-stable states in a

multi-stable state space (or phase space). It is this ability to

characterize the behaviour of a high-dimensional system with a

low-dimensional model that is one of the features that

distinguishes dynamical systems from connectionist systems

[14].

Proponents of dynamical systems point to the fact that they

provide one directly with many of the characteristics inherent

in natural cognitive systems such as multi-stability, adapta-

bility, pattern formation and recognition, intentionality, and

learning. These are achieved purely as a function of dynamical

laws and consequent self-organization. They require no

recourse to symbolic representations, especially those that are

the result of human design.

Clark [7] has pointed out that the antipathy which

proponents of dynamical systems approaches display toward

cognitivist approaches rests on rather weak ground insofar as

the scenarios they use to support their own case are not ones

that require higher level reasoning: they are not ‘representation

hungry’ and, therefore, are not well suited to be used in a

general anti-representationalist (or anti-cognitivist) argument.

At the same time, Clark also notes that this antipathy is actually

less focussed on representations per se (dynamical systems

readily admit internal states that can be construed as

representations) but more on objectivist representations,

which form an isomorphic symbolic surrogate of an absolute

external reality.

It has been argued that dynamical systems allow for the

development of higher order cognitive functions, such as

intentionality and learning, in a straight-forward manner, at

least in principle. For example, intentionality—purposive or

goal-directed behaviour—is achieved by the superposition of

an intentional potential function on the intrinsic potential

function [14]. Similarly, learning is viewed as the modification
of already-existing behavioural patterns that take place in a

historical context whereby the entire attractor layout (the

phase-space configuration) of the dynamical system is

modified. Thus, learning changes the whole system as a new

attractor is developed.

Although dynamical models can account for several non-

trivial behaviours that require the integration of visual stimuli

and motoric control, including the perception of affordances,

perception of time to contact, and figure-ground bi-stability

[14,45–48], the principled feasibility of higher-order cognitive

faculties has yet to be validated. Rectifying this situation is one

of the most important research issues in dynamical systems

models of cognition and cognitive vision.

Dynamical approaches differ from connectionist systems in

a number of ways [14,13,44]. Suffice it here to note that the

connectionist system is often defined by a general differential

equation, which is actually a schema that defines the operation

of many (neural) units. That is, the differential equation applies

to each unit and each unit is just a replication of a common

type. This also means that there will be many independent state

variables, one for each unit. Dynamical systems, on the other

hand, are not made up of individual units all having the same

defining equation and cannot typically be so decomposed.

Typically, there will be a small number of state variables that

describe the behaviour of the system as a whole.

2.2.3. Enactive systems models

Cognitivism, by definition, involves a view of cognition that

requires the representation of a given objective pre-determined

world [8,44]. Enaction [8,15,37,49–52] adopts a fundamentally

different stance: cognition is a process whereby the issues that

are important for the continued existence of the cognitive entity

are brought out or enacted: co-determined by the entity as it

interacts with the environment in which it is embedded. Thus,

nothing is ‘pre-given’, and hence there is no need for

representations. Instead, there is an enactive interpretation: a

context-based choosing of relevance. In this sense, the

philosophical ground of enaction is Husserlian phenomenol-

ogy, in contradistinction to the objectivist realism of the

cognitivist approach. Whilst this might sound vaguely out of

place in a vision paper, and indeed irrelevant for those

interested in engineering cognitive vision systems, it has very

practical implications. It comes down to a simple choice of

axioms upon which to build a cognitive vision system. Is the

role of cognition to abstract objective structure and meaning

through perception and reasoning? Or, is it to uncover

unspecified regularity and order that can then be construed as

meaningful because they facilitate the continuing operation

and evolution of the cognitive system?

Enaction adopts the second stance, one that is actually more

neutral, assuming only that there is the basis of order in the

environment in which the cognitive system is embedded. From

this point of view, cognition is exactly the process by which

that order or some aspect of it is uncovered (or constructed) by

the system. This allows that there are different forms of reality

(or relevance) that are dependent directly on the nature of the

dynamics making up the cognitive system and its space of
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interaction with the environment. The advantage for cognitive

vision systems is that the enactive approach focusses on the

dynamics by which robust interpretation and adaptability arise.

The enactive systems research agenda stretches back to the

early 1970 in the work of computational biologists Maturana

and Varela and has been taken up by others, including some in

the main-stream of classical AI [8,15,37,49–52].

The goal of enactive systems research is the complete

treatment of the nature and emergence of autonomous,

cognitive, social systems. It is founded on the concept of

autopoiesis–literally self–production–whereby a system

emerges as a coherent systemic entity, distinct from its

environment, as a consequence of processes of self-organiz-

ation. Three orders of system can be distinguished. First-order

autopoietic systems correspond to cellular entities that achieve

a physical identity through structural coupling with their

environment. Second-order systems engage in structural

coupling, this time through a nervous system that enables the

association of many internal states with the different

interactions in which the organism is involved. Third-order

systems exhibit coupling between second-order (i.e. cognitive)

systems, i.e. between distinct cognitive agents. These third-

order couplings give rise to new phenomonological domains:

language and a shared epistemology that reflects (but not

abstracts) the common medium in which they are coupled.

Such systems are capable of three types of behaviour: (i) the

instinctive behaviours that derive from the organizational

principles that define it as an autopoietic system (and that

emerge from the phylogenic3 evolution of the system), (ii)

ontogenic behaviours that derive from the development of the

system over its lifetime, and (iii) communicative behaviours

that are a result of the third-order structural coupling between

members of the society of entities. Linguistic behaviours are

the emergent consequence of the third-order structural

coupling of a socially cohesive group of cognitive entities.

A key postulate of enactive systems is that reasoning, as we

commonly conceive it, is the consequence of reflexive use of

the linguistic descriptive abilities to the cognitive agent itself

[37]. This is significant: reasoning in this sense is a descriptive

phenomenon and is quite distinct from the self-organizing

mechanism (i.e. structural coupling and operational closure

[37]) by which the system/agent develops its cognitive and

linguistic behaviours. Since language (and all inter-agent

communication) is a manifestation of high-order cognition,

specifically co-determination of consensual understanding

amongst phylogenically identical and ontogenically compa-

tible agents, reasoning is actually a product of higher-order

social cognitive systems rather than a generative process.

The emergent position is supported by recent results which

have shown that a biological organism’s perception of its body

and the dimensionality and geometry of the space in which it is

embedded can be deduced (learned or discovered) by the
3 Phylogeny is concerned with the configuration of a systems as it evolves

from generation to generation. Ontogeny is concerned with the development of

the system and its structure within any one generation, i.e. over its life-time.
organism from an analysis of the dependencies between

motoric commands and consequent sensory data, without any

knowledge or reference to an external model of the world or the

physical structure of the organism [53,54]. Thus, the perceived

structure of the agent’s environment could therefore be a

consequence of an effort on the part of brains to account for the

dependency between their inputs and their outputs in terms of a

small number of parameters. There is in fact no need to rely on

the classical idea of an objective a priori model of the external

world that is mapped by the sensory apparatus to ‘some kind of

objective archetype’. The conceptions of space, geometry, and

the world that the body distinguishes itself from arises from the

sensori–motor interaction of the system, exactly the position

advocated in [13]. Furthermore, it is the analysis of the sensory

consequences of motor commands that gives rise to these

concepts. Significantly, the motor commands are not derived as

a function of the sensory data. The primary issue is that sensory

and motor information are treated simultaneously, and not from

either a stimulus perspective or a motor control point of view.

The enactive approach is mirrored in the ideas of self-

maintenant system and recursive self-maintenant systems [55].

Here, autonomy is defined as the property of a system to

contribute to its own persistence. Since there are different

grades of contribution, there are therefore different levels of

autonomy. Self-maintenant systems make active contributions

to their own persistence but do not contribute to the

maintenance of the conditions for persistence. Conversely,

recursive self-maintenant systems do contribute actively to the

conditions for persistence and can deploy different processes of

self-maintenance depending on environmental conditions.

2.3. Hybrid models

Considerable effort has gone into developing approaches,

which combine aspects of the emergent systems and cognitivist

systems [3,38,56]. These hybrid approaches have their roots in

strong criticism of the use of explicit programmer-based

knowledge in the creation of artificially intelligent systems [57]

and in the development of active ‘animate’ perceptual systems

[58] in which perception-action behaviours become the focus,

rather than the perceptual abstraction of representations. Such

systems still use representations and representational invar-

iances but it has been argued that these representations should

only be constructed by the system itself as it interacts with and

explores the world rather than through a priori specification or

programming [38]. Thus, a system’s ability to interpret objects

and the external world is dependent on its ability to flexibly

interact with it and interaction is an organizing mechanism that

drives a coherence of association between perception and

action. Action precedes perception and ‘cognitive systems

need to acquire information about the external world through

learning or association’ [3]. Hybrid systems are in many ways

consistent with emergent systems while still exploiting

programmer-centred (but not programmer-populated) rep-

resentations (for example, see [19]).

Recent results in building a cognitive vision system on these

principles can be found in [59–61]. This system architecture
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combines a neural-network perception-action component (in

which percepts are mediated by actions through exploratory

learning) and a symbolic component (based on concepts—

invariant descriptions stripped of unnecessary spatial con-

text—which can be used in more prospective processing such

as planning or communication). A biologically motivated

system, modelled on brain function and cortical pathways and

exploiting optical flow as its primary visual stimulus, has

demonstrated the development of object segmentation,

recognition, and localization capabilities without any prior

knowledge of visual appearance though exploratory reaching

and simple manipulation [62]. This hybrid extension of the

connectionist system [42] also exhibits the ability to learn a

simple object affordance and use it to mimic the actions of

another (human) agent. An embodied robotic system that can

achieve appearance-based self-localization using a catadioptric

panoramic camera and an incrementally constructed robust

eigenspace model of the environment is described in [63].

2.4. A short critique

It is important to realize that the foregoing paradigms are not

equally mature. Each approach has its own strengths and

weaknesses, and its proponents and critics. The arguments in

favour of dynamical systems and enactive systems are

compelling but the current capabilities of cognitivist systems

are actually more advanced. However, cognitivist systems are

also quite brittle. It has been argued [64] that cognitivist

systems suffer from three problems: the symbol grounding

problem (see Section 6.4), the frame problem (the need to

differentiate the significant in a very large data-set and then

generalize to accommodate new data), and the combinatorial

problem. These problems are one of the reasons why cognitivist

models have difficulties in creating systems that exhibit robust

sensori–motor interactions in complex, noisy, dynamic

environments. They also have difficulties modelling the

higher-order cognitive abilities such as generalization, creativ-

ity, and learning [64]. Enactive and dynamical systems should

in theory be much less brittle because they emerge through

mutual specification and co-development with the environ-

ment, but our ability to build artificial cognitive systems based

on these principles is actually very limited at present. To date,

dynamical systems theory has provided more of a general

modelling framework rather than a model of cognition [64] and

has so far been employed more as an analysis tool than as a tool

for the design and synthesis of cognitive systems [65,64]. The

extent to which this will change, and the speed with which it

will do so, is uncertain. Hybrid approaches seem to offer the

best of both worlds but it is unclear how well one can combine

what are ultimately highly antagonistic underlying philos-

ophies. Opinion is divided, with arguments both for (e.g.

[7,60,66]) and against (e.g. [64]).

3. The case for embodiment

Having set the scene, we now turn to the issue of

embodiment in cognitive systems and cognitive vision
systems. Specifically, we wish to decide whether embodiment

is a necessary condition of cognitive vision systems and, if so,

what that means in practice. We begin by looking at the issue

from both the cognitivist and the emergent perspectives, and

then argue the case from a paradigm-independent viewpoint.

3.1. The cognitivist case for embodiment

From the perspective of the cognitivist paradigm, there is no

case for embodiment, at least none for it as a mandatory

requirement of cognition. Cognitivist systems do not necess-

arily have to be embodied. The very essence of the cognitivist

approach is that cognition comprises computational operations

defined over symbolic representations and these computational

operations are not tied to any given instantiation. They are

abstract in principle. It is for this reason that it has been noted

that cognitivism exhibits a form of mind-body dualism [13,67].

Symbolic knowledge, framed in the concepts of the designer,

can be programmed in directly and does not have to be

developed by the system itself through exploration of the

environment. As we have seen, some cognitivist systems do

exploit learning to augment or even supplant the a priori

designed-in knowledge and thereby achieve a greater degree of

adaptiveness, reconfigurability, and robustness. Embodiment

may therefore offer an additional degree of freedom to facilitate

this learning, but it is by no means necessary.

The clear advantage of this position is that a successful

cognitivist model of cognition could be instantiated in any

context and, theoretically at least, be ported to any application

domain.

3.2. The emergent case for embodiment

The perspective from emergent systems is diametrically

opposed to the cognitivist position. Emergent systems, by

definition, must be embodied and embedded in their

environment in a situated historical developmental context

[13].

To see why embodiment is a necessary condition of

emergent cognition, consider what cognition means in the

emergent paradigm. It is the process whereby an autonomous

system becomes viable and effective in its environment. In this,

there are two complementary things going on: one is the self-

organization4 of the system as a distinct entity, and the second

is the coupling of that entity with its environment. ‘Perception,

action, and cognition form a single process’ [67] of self-

organization in the specific context of environmental pertur-

bations of the system. This gives rise to the co-determination of

the cognitive system and its environment and thereby to the

ontogenic development of the system itself over its lifetime.

This development is identically the cognitive process of

establishing the space of mutually consistent couplings. Put
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simply, the system’s actions define its perceptions but subject

to the strong constraints of continued dynamic self-organiz-

ation. The space of perceptual possibilities is predicated not on

an objective environment, but on the space of possible actions

that the system can engage in whilst still maintaining the

consistency of the coupling with the environment. These

environmental perturbations do not control the system since

they are not components of the system (and, by definition, do

not play a part in the self-organization) but they do play a part

in the ontogenic development of the system. Through this

ontogenic development, the cognitive system develops its own

epistemology, i.e. its own system-specific knowledge of its

world, knowledge that has meaning exactly because it captures

the consistency and invariance that emerges from the dynamic

self-organization in the face of environmental coupling. Thus,

we can see that, from this perspective, cognition is inseparable

from ‘bodily action’ [67]: without physical embodied

exploration, a cognitive system has no basis for development.

Although this argument is compelling, it has one weakness:

it requires you to accept the legitimacy of the emergent thesis.

Many do not. If you do accept it, then the necessity of

embodiment follows directly. Can one make an argument for

embodiment that does not depend on the axioms of emergent

cognition? We make an attempt in Section 3.3.

3.3. A paradigm-independent case

We begin with an assumption: that a cognitive system is an

autonomous observer—an entity that sees and perceives. Its

empirical knowledge of its environment is, as a consequence,

contingent upon its operation in that environment and upon its

perception and cognition. This knowledge, therefore, is

descriptive: dependent on, and a consequence of, the system’s

cognitive activities. It is not a causal mechanism by which

cognition is effected: it is the product of cognition, not the

producer of cognition. It follows that the innate generative

process of cognition cannot be based on such descriptions,

otherwise, infinite regress ensues: cognition would be a

function of description and description would be a function

of cognition. Since descriptions are a defining feature of

cognition and since descriptions are not intrinsic (and therefore

cannot be directly instantiated by outside agencies), the system

must be capable of creating its own descriptions. Furthermore,

these descriptions must of necessity capture some essence of

order and regularity—consistency and invariance—in the

environment and of the system’s interaction with that

environment. Hence, a cognitive system must be capable of

exploring and defining the space of interaction between itself

and its environment. Thus, it must be embedded in the

environment and an active part of that environment. That is, it

must be embodied.

Two points should be noted about this argument.

First, we qualified the type of knowledge to be empirical.

One can argue that theoretical knowledge, just like empirical

knowledge, is also descriptive. However, in this case it is

plausible that such knowledge is the product of a reflexive

cognitive process involving the same linguistic deliberation
that characterizes inter-agent communication, but in this

instance turned back on itself in introspective discourse [37].

Second, we assumed the cognitive system is autonomous.

This seems to be a natural thing to assume, since all natural

cognitive systems display autonomous behaviour. It is a pivotal

point, however, since it implies that the system is organiza-

tionally distinct from other cognitive systems and, therefore,

does not directly share another cognitive system’s components,

processes, or knowledge (it may communicate with another

system and because of that communication acquire knowledge,

but that’s a different matter altogether). If we abandon this

assumption, all bets are off as it is not at all obvious that

cognition in the absence of the robustness implied by autonomy

is meaningful.

4. Shades of embodiment

If either of the two arguments above for embodied

perception are valid then it is necessary to consider what

exactly it is to be embodied. One form of embodiment, and

clearly the type envisaged by proponents of the dynamical

systems approach to cognition, is a physically active body

capable of moving in space, manipulating its environment,

altering the state of the environment, and experiencing the

physical forces associated with that manipulation [67]. This

‘strong’ form of embodiment clearly satisfies the conditions of

both arguments for embodiment and it seems to be a good place

to begin because, having satisfied the boundary conditions, one

can then focus on the core problem: the development of

rigorous models of cognitive and perceptual processing.

However, many computer vision and cognitive systems

researchers have concerns about accepting this scenario as it

seems to suggest that the only possible cognitive vision

systems are ones that are part of robotic systems. This goes

against much of the motivation for the creation of cognitive

vision systems: resilience, robustness, re-configurability, open-

ended improvement of performance, and especially automatic

adaptability to unforseen operating conditions. Robotic

applications are certainly not the only ones that can benefit

for these capabilities. But yet we seem to be concluding that

this is the only domain in which a cognitive system can be

developed. There are two issues at stake here: first, is there a

‘weaker’ form of embodiment that still satisfies the needs of

emergent systems, and second, even if there is not, does this

necessarily imply that the only domain of application of

cognitive systems is robotics?

The first issue comes down to the question of what it means

to act in the environment. Is a speech act an action? Does action

requires mobility? Does action require any physical contact

with the environment? Or, is it simply sufficient for a system to

be able to effect some change in the environment? And, if this

is the case, what exactly constitutes a change in the

environment: a change in physical configuration or just a

modification in its state, such as switching on and off some

electrical device?

If one looks closely at the emergent paradigm, one finds two

cornerstones: the operational closure (or circular causality) of
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robots which are embedded in the world but do not deal with abstract

descriptions, and embodied creatures or robots which possess a physical body

and experience the world directly through the influence of the world on that

body [68].
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system, and the structural coupling of the system with its

environment. Operational closure by itself does not imply a

need for embodiment: it is an organizational principle and

applies to systems of many temporal and spatial scales.

Coupling with the environment is a little trickier. The key

requirement is that the mutual perturbations implied by the

coupling, i.e. the mutual system–environment interactions,

should be rich enough to drive the ontogenic development but

not destructive of the self-organization [37]. It would seem

then, that there is nothing in principle that requires the ‘action’

to be physical in any strong sense and, therefore, that it should

be possible to develop an embodied cognitive vision system in

any application that offers a suitably rich set of interactions.

There is, however, an important caveat. In such a system, there

is no guarantee that the resultant cognitive behaviour will be in

any way consistent with human models or preconceptions of

cognitive behaviour (but that may be quite acceptable, as long

as the system performs its task adequately). If we want to

ensure compatibility with human cognition, then it would seem

that we do indeed have to admit the stronger version of

embodiment and adopt a domain of discourse that is the same

as the one in which we live: one that involves physical

movement, forcible manipulation, and exploration, and

perhaps even human form [68].

This brings us to the second issue: is a cognitive vision

system that has been developed in a robotics setting only of use

in that setting. Probably not: once the cognitive capacity has

been developed, removal of the robotic interaction does not

diminish the capacity, though it may inhibit further develop-

ment. Thus, in principle, a cognitive vision system might be

developed in a robotic setting and then transplanted to an

embedded passive setting.

So, exactly what kinds of embodiment are possible? Ziemke

has introduced a framework to characterize five different types

of embodiment [69,70]. In order of increasing restriction, they

are:

Structural coupling between agent and environment in the

sense a system can be perturbed by its environment and can in

turn perturb its environment.

Historical embodiment as a result of a history of structural

coupling;

Physical embodiment in a structure that is capable of

forcible action (this excludes software agents);

‘Organismoid’ embodiment, i.e. organism-like bodily form

(e.g. humanoid robots); and

Organismic embodiment of autopoietic living systems.

A few notes about structural coupling are in order. First, it

should be noted that the concept of structural coupling

originates with Maturana and Varela [51] who also require

that the system involved is an autopoietic system. This

additional requirement is left implicit in Zimke’s papers.

Second, autopoiesis is a special type of self-organization

(requiring self-specification and self-generation). An autopoie-

tic system is a special type of homeostatic system (i.e. self-

regulating system) in that the regulation applies not to some

system parameter but to the organization of the system itself.

This is reminscent of recursive self-maintenant systems [55],
and the concept of circular causality [14]. A significant aspect

of autopoiesis is that its function is to ‘create and maintain the

unity that distinguishes it from the medium in which it exists’.

Despite the current emphasis on embodiment, Ziemke

argues that many current approaches in cognitive/adaptive/e-

pigenetic robotics still adhere to the functionalist hardwar-

e/software distinction in the sense that the computational

model does not in principle require an instantiation (cf. Newell

and Simon [71]). Zimke suggests that this is a real problem

because the idea of embodiment is that the morphology of the

system is actually a key component of the systems dynamics. In

other words, morphology not only matters, it is a constitutive

part of the self-organization and the structural coupling with

the environment. This tight relationship between system

morphology and system dynamics (i.e. cognition) is frequently

reflected too in biological cognitive systems (see Section 6).

There is another aspect to embodiment of a system. This is

the environment in which the system is embedded: its physical

and social context. In [72], ‘cognition in context’ is contrasted

with ‘cognition without context’. The latter is associated with

the information processing cognitivist approaches, and is

characterized as a process that can be divorced from the entity

and the environment with which it is associated. The former is

associated with embodied or situated cognition: variously

described as ‘cognition in the wild’ [73], ‘situated cognition’,

and ‘natural cognition’.5
5. Implications

Apart from the issues of embodiment discussed in the

previous section, there are other consequences of adopting an

embodied emergent systems approach to the development of

cognitive vision systems. We address two of these here.

The first issue is the trade-off between phylogenic

configuration and ontogenic development. Phylogeny—the

evolution of the system configuration from generation to

generation—determines the sensory–motor capabilities that a

system is configured with at the outset and that facilitate the

system’s innate behaviours. Ontogenic development—the

adaptation and learning of the system during its lifetime—

gives rise to the cognitive capabilities that we seek. Since, we

do not have the luxury of having evolutionary timescales to

allow phylogenic emergence of a cognitive system (we cannot

wait around to evolve a cognitive system from nothing) we

must somehow identify a minimal phylogenic state of the

system. In practice, this means that we must identify and effect

visuo-motor capabilities for the minimal behaviours that

ontogenic development will subsequently build on to achieve

cognitive behaviour. Put simply, we need to decide what visual

processing capabilities are needed for a minimal emergent

cognitive vision system. It is a major problem to accomplish
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this without reverting to cognitivism: i.e. system identification

based on representations derived from external observers.

However, there is also a second question that is relevant here:

what is the correct balance between phylogenic configuration

and ontogenic development for a cognitive system in a

particular environment? These are difficult questions and we

will look at natural systems for some guidance in Section 6.

The requirements of real-time synchronous system–environ-

ment coupling and historical, situated, and embodied develop-

ment have important implications. Specifically, the maximum

rate of ontogenic development is constrained by the speed of

coupling (i.e. the interaction) and not by the speed at which

internal processing can occur [15]. Natural cognitive systems

have a learning cycle measured in weeks, months, and years and,

while it might be possible to condense these into minutes and

hours for an artificial system because of increases in the rate of

internal adaptation and change, it cannot be reduced below the

time-scale of the interaction.

6. Learning from nature

In attempting to understand and build cognitive systems, it

can help to look at how nature deals with cognition. For

example, the study of biological systems can help resolve some

of the issues surrounding the balance between phylogeny and

ontogeny in developing cognitive skills.

In the particular case of cognitive vision systems, although

some have argued that basing models on the human visual

system has not been very effective [74], the trend today is to

exploit new knowledge gained from research in the neuro-

sciences based on, for example, neuroimaging studies using

fMRI and PET. For instance, the human expert object

recognition pathway has been modelled with multi-scale

Gabor filters, feature detectors, non-accidental feature trans-

forms, unsupervised clustering, and subspace projection [75].

Neuroimaging studies have also provided new answers to some

long-standing problems in visual attention, a critical issue in

cognitive vision [76]. For example, neuroscience has taught us

that attention and control of eye position and movement are

interlinked, neurophysiologically as well as functionally [77].

Visuospatial attention is significantly modulated by the

position of the eye and ‘attention cannot be directed towards

spatial locations that are difficult for the eye to access’ [78].

This co-dependency of perception and action is a recurrent

theme in contemporary cognitive systems research and bolsters

even further the case for embodied perception [65].

In the following, we revisit the phylogeny/ontogeny trade-

off from the perspective of natural species, we look at some

examples of innate phylogenically derived capabilities, and we

consider some of the issues–such as motivation, imitation, and

interation–that are relevant for ontogenic development.

6.1. The phylogeny/ontogeny trade-off: precocial and altricial

species

Two types of natural species can be distinguished: precocial

and altricial. Precocial species are those that are born or
hatched with well-developed behaviours, skills, and abilities,

which are the direct result of their genetic make-up (i.e. their

phylogenic configuration). As a result, precocial species tend to

be quite independent at birth. Altricial species, on the other

hand, are born or hatched with poor or undeveloped behaviours

and skills, and are highly dependent for support. However, in

contrast to precocial species, they proceed to learn complex

cognitive skills over their life-time (i.e. through ontogenic

development).

Sloman and Chappell argue that, rather than view the

precocial/altricial distinction as a simple dichotomy in

phylogenic configuration and ontogenic potential, we should

view the precocial and altricial as two ends of a spectrum of

possible configurations: ‘precocial skills can provide sophis-

ticated abilities at birth. Altricial capabilities have the potential

to adapt to changing needs and opportunities. So it is not

surprising that many species have both’ [79].

The challenge then is threefold: to identify the innate

precocial skills (which need not come ready-made and may

need tuning through reinforcement learning), to establish how

altricial capabilities are developed, and to establish the right

combination of both when designing systems. The next few

sections provide some illustrations of the light that studies of

natural systems have shed on these concerns.

6.2. Phylogeny: innate capabilities

The study of the capabilities of newborn human infants

(neonates) can be instructive. For example, neonates have a

repertoire of coordinated movements which are triggered by

sensory stimuli. These movements are not solely action-related

but also serve to establish a relationship between vision and

proprioception [42]. Neonates also have the ability to control

their gaze and direct it to significant sources of information. In

addition, they also have an established link between the eye

and the hand: newborn infants aim their extended arm

movements towards an object upon which they are fixating

[80,81] although visual feedback, especially that based on

foveal vision, does not play a role [82,83]. Neonates have the

ability to perform saccadic tracking of moving objects, using

more saccades for smaller objects. As age increases, the

number of saccades decreases. They can also perform smooth

pursuit, a capability that improves with age but does not

depend on object size [84]. Neonates do not have high visual

acuity or stereoscopic vision at birth but develop it quickly: but

by the fourth or fifth month, visual acuity has increased greatly

and about two thirds have stereoscopic vision and depth

perception [82]. In humans, colour plays a dual role of both

aiding sensory processing, such as segmentation, and cognitive

processing, such as representation and recall [85]. Studies in

salamanders and rabbits, and extrapolated to humans, have

shown that motion anticipation is accomplished at the retinal

level and not at the cortical level where other motion

processing is done [86].

Inspired by the behaviour of insects (honeybees), one

robotic navigation system uses low resolution optical flow to

effect a set of reactive navigation behaviours which allow
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higher level navigation systems to focus on the goal-oriented

tasks [87].
6 But not necessarily in the sense of the physical symbol system hypothesis

[71].
6.3. Ontogeny: modes of learning, and the importance of

motivation and exploration

Precocial and altricial skills develop through different types

of learning. Precocial skills, based on innate capabilities, are

honed through continuous knowledge-free reinforcement-like

learning. In this sense, precocial learning is somewhat akin to

parameter estimation. On the other hand, altricial skills—

which expoit precocial skills—develop through a different

form of learning, driven not just by conventional reward/pun-

ishment cost functions (positive and negative feedback) but

through spontaneous play and exploration which are not

directly reinforced [79,88].

Sloman and Chappell argue that the goal of exploration is to

discover ‘discrete, re-usable, and (recursively) recombinable

chunks of information’ [79,88]. They note too that the variety

of sensory and motor chunks that can be learned will depend

crucially on

(1) the morphology, i.e. the physical structure and capabilities

of the system (organism/robot);

(2) the richness of the system’s environment during learning;

(3) the set of genetically determined internal operations

whereby chunks of knowledge can be combined, both

with reference to external action and, significantly, with

respect to representations of internal actions.

In the same vein, Spelke [89] has suggested that complex

cognitive skills may be based on the combination of cognitive

capabilities that emerge early in human ontology and

phylogeny. She calls these ‘core knowledge systems’:

mechanisms for representing and reasoning about certain

types of event and entities that are important in the ecology of

the agent, such as inanimate objects that can be manipulated,

people, and places, including the motion of these entities, their

cardinality, and spatial and numerical relations between them.

Spelke argues that since the core systems of infants are very

similar to those of non-human animals, it makes sense

therefore to study infants and animals to learn more about

these core systems, even if non-human animals never develop

complex cognitive skills and humans do.

The view that exploration is crucial to altricial or ontogenic

development is supported by research findings in develop-

mental psychology. For example, von Hofsten has pointed out

that it is not necessarily success at achieving task-specific goals

that drives development in neonates but rather the discovery of

new modes of interaction: the acquisition of a new way of

doing something through exploration [80,90]. In order to

facilitate exploration of new ways of doing things, one must

suspend current skills. Consequently, ontogenic development

differs from learning in that (a) it must inhibit existing abilities,

and (b) it must be able to cater for (and perhaps effect) changes

in the morphology or structure of the system [82]. The

inhibition does not imply a loss of learned control but an
inhibition of the link between a specific sensory stimulus and a

corresponding motor response.

In addition to the development of altricial skills through

exploration (reaching, grasping, and manipulating what’s

around it), there are two other very important ways in which

cognition develops. These are imitation [91,92] and social

interaction, including teaching [93]. Unlike other learning

methods such as reinforcement learning, imitation—the ability

to learn new behaviours by observing the actions of others—

allows rapid learning [92]. Metzoff and Moore [94,95] suggest

that infants learn through imitation in four phases:

(1) body babbling, involving playful trial-and-error move-

ments;

(2) imitation of body movements;

(3) imitation of actions on objects;

(4) imitation based on inferring intentions of others.

Neonates use body babbling to learn a rich ‘act space’ in

which new body configurations can be interpolated although its

significant that even at birth newborn infants can imitiate body

movements [92].

In summary, cognitive skills emerge progressively through

ontogenic development as it learns to make sense of its world

through exploration, through manipulation, imitation, and

social interaction, including communication [96]. Proponents

of the enactive approach would add the additional requirement

that this development take place in the context of a circular

causality of action and perception, each a function of the other

as the system manages its mutual interaction with the world:

essentially co-development of action and perception, and co-

determination of the system through self-organization in an

ecological and social context.

6.4. The symbol grounding problem

If a cognitive vision system has (or develops) some form of

symbolic representation of the world around it—and it seems

that in some sense6 that cognitive systems do develop symbolic

representations—how does the representation acquires mean-

ing? How do purely symbolic representations acquire semantic

content? This is the so-called symbol grounding problem.

Harnad [97] suggests that symbolic representations must be

grounded bottom-up in non-symbolic representations of two

kinds: (a) iconic representations, which are derived directly

from sensory data, and (b) categorical representations, based

on the output of both learned and innate processes that detect

invariant features of object and event categories from these

sensory data. Higher-order symbolic representations can then

be derived from these elementary symbols.

Sloman [79] has argued against this viewpoint. He notes that

the internal symbolic representations that are the result of

altricial learning (i.e. ontogenic development) are attached to

the world through sensory perception rather than grounded.
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The distinction is an important one. Symbol grounding implies

that the meaning of a symbol is derived bottom-up by

abstraction from direct sensory experience. The need for

symbol grounding in this sense is a direct consequence of

adopting the more conventional cognitivist approach to

cognition (e.g. see [26,36]), exactly because cognitivism

invokes this process of abstraction of isomorphic represen-

tations of the world. Symbol attachment is quite different. It

arises through a rich process of structural coupling with the

world. With symbol attachment, the symbols do not derive

directly from the sensory data, they derive from the altricial

learning (or ontogenic development), the process of developing

new chunks of knowledge that are specific to the type of

organism or system one is dealing with: its particular set of

precocial skills, its altricial learning mechanism, the richness of

its surrounding environment, and the particular morphology

possessed by the system in its sensory and motoric apparatus.

Thus, symbol grounding is required only if one adopts a

cognitivist approach; symbol attachment is more neutral in the

sense that it makes no strong claims about the isomorphism

between world and respresentation, or the necessary unique-

ness of these representations. It is also consistent with the

enactive viewpoint and the concept of structural coupling and

co-determination.7

6.5. Perception/action co-dependency

We have already remarked on the co-dependency of

perception and action in biological systems. Perceptual

development is determined by the action capabilities of a

developing child and what observed objects and events afford

in the context of those actions [80,98]. It is worth reinforcing

this again, especially in the light of recent neurological

evidence. For example, the presence of a set of neurons—

mirror neurons—is often cited as evidence of the tight

relationship between perception and action [99,100]. Mirror

neurons are activated both when an action is performed and

when the same or similar action is observed being performed

by another agent. These neurons are specific to the goal of the

action and not the mechanics of carrying it out [80].

In summary, the development of action and perception, the

development of the nervous system, and the development

(growth) of the body, all mutually influence each other as

increasingly sophisticated and increasingly prospective

(future-oriented) capabilities in solving action problems are

learned [80].

An example of a system, which exploits this co-dependency

in a developmental setting can be found in [42]. This is a

biologically motivated connectionist system that learns goal-

directed reaching using colour-segmented images derived from

a retina-like log-polar sensor camera. The system adopts a

developmental approach: beginning with innate inbuilt
7 Sloman also points out that the symbol grounding viewpoint is identical

with the philosophy of concept empiricism, a philosophy that has been refuted

by Kant. On the other hand, symbol attachment is consistent with the

phenomonology of Husserl and Heidegger.
primitive reflexes, it learns sensori–motor coordination. Other

biologically motivated work, modelled on brain function and

cortical pathways and exploiting optical flow as its primary

visual stimulus, has demonstrated the development of object

segmentation, recognition, and localization capabilities with-

out any prior knowledge of visual appearance though

exploratory reaching and simple manipulation [62]. The

system also exhibits the ability to learn a simple object

affordance and use it to mimic the actions of another (human)

agent.

7. Conclusions

In this paper, we have identified cognitive vision and

cognitive systems with two broad positions. For the first —

cognitivist—position, cognition entails the manipulation of

explicit representations of the state and behaviour of the

external world to facilitate appropriate, adaptive, anticipatory,

and effective interaction, and the storage of the knowledge

gained from this experience to reason even more effectively in

the future. Reasoning itself is symbolic: a procedural process

whereby explicit representations of an external world are

manipulated to infer likely changes in the configuration of the

world arising from causal actions.

For the second–emergent–position, cognition is a process of

self-organization whereby the system is continually re-

constituting itself in real-time to maintain its operational

identity through moderation of mutual system-environment

interaction and co-determination, particularly over extended

timescales. Reasoning (perhaps deliberation would be a more

appropriate term in this context) is the consequence of

recursive application of the linguistic descriptive abilities

(developed as a result of the consensual co-development of an

epistemology in a society of phylogenically identical agents) to

the cognitive agent itself.

Considering the basis of each approach to cognition, we

argued that cognitivist cogitive vision systems do not have to

be embodied. On the other hand, emergent self-organizing

cognitive vision systems do have to be embodied. In an attempt

to break this apparent impasse, we constructed a paradigm-

independent argument in support of embodied perception. This

argument turned on the necessity for a cognitive system to be

able to generate its own empirical knowledge.

Accepting the case for embodiment, we then looked at the

nature of embodiment and what it means in practice. We

concluded that, in principle and by both arguments for

embodied perception, embodiment only implies an ability to

interact with the environment (rather than physically and

forcibly exploring it) but that in practice if we wish the system

to be compatible with human cognition then physical

embodiment involving movement, manipulation, and explora-

tion is in fact necessary. However, we also concluded that, in

such an eventuality, the resultant cognitive vision system could

still be subsequently exploited in embedded passive settings.

We noted two further implications of embodied perception.

First, the need to identify and implement the minimal visuo-

motor skills required for subsequent ontogenic development



D. Vernon / Image and Vision Computing xx (2006) 1–1412

+ model ARTICLE IN PRESS
and the need to do so in a way that does not prejudice the self-

organization of an emergent system but at the same time is

sufficient to facilitate it. Second, we noted that embodied

development imposes a hard limitation on the speed of

development: since the system is dynamically locked to real-

time interaction, development progresses at least no faster than

the rate of interaction and this is constrained by the dynamics

of the system’s visual environment.

Finally, we saw how the study of natural systems can shed

light on some of the problems posed by cognitive vision.
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Research report, Linköping University (2002).

[57] H.L. Dreyfus, From micro-worlds to knowledge representation in:

J. Haugland (Ed.), Mind Design: Philosophy, Psychology, Artificial

Intelligence, Bradford Books, MIT Press, Cambridge, MA, 1982,

pp. 161–204. Excerpted from the Introduction to the second edition of

the author’s What Computers Can’t Do, Harper and Row, 1979.

[58] D.H. Ballard, Animate vision, Artificial Intelligence 48 (1991) 57–86.

[59] G. Granlund, A cognitive vision architecture integrating neural networks

with symbolic processing, KI-Zeitschrift Künstliche Intelligenz, Special

Issue on Cognitive Computer Vision.

[60] G. Granlund, Organization of architectures for cognitive vision systems

in: H.I. Christensen, H.-H. Nagel (Eds.), Cognitive Vision Systems:

Sampling the Spectrum of Approaches, LNCS, Springer, Heidelberg,

2005, pp. 39–58.

[61] G. Granlund, A. Moe, Unrestricted recognition of 3D objects for robotics

using multilevel triplet invariants, AI Magazine 25 (2) (2004) 51–67.

[62] G. Metta, P. Fitzpatrick, Early integration of vision and manipulation,

Adaptive Behavior 11 (2) (2003) 109–128.

[63] M. Jogan, M. Artac, D. Skocaj, A. Leonardis, A framework for robust

and incremental self-localization of a mobile robot in: J. Crowley,

J. Piater, M. Vincze, L. Paletta (Eds.), Proceedings of the Third

International Conference on Computer Vision Systems, ICVS 2003,

LNCS 2626, Springer, Berlin, 2003, pp. 460–469.

[64] W.D. Christensen, C.A. Hooker, Representation and the meaning of life,

in: Representation in Mind: New Approaches to Mental Representation,

The University of Sydney, 2000.

[65] G. Metta, D. Vernon, G. Sandini, The robotcub approach to the

development of cognition: implications of emergent systems for a common

research agenda in epigenetic robotics, in: Proceedings of the Fifth

InternationalWorkshop on Epigenetic Robotics (EpiRob2005), (to appear)

[66] J.P. Crutchfield, Dynamical embodiment of computation in cognitive

processes, Behavioural and Brain Sciences 21 (5) (1998) 635–637.

[67] E. Thelen, Time-scale dynamics and the development of embodied

cognition in: R.F. Port, T. van Gelder (Eds.), Mind as Motion—

Explorations in the Dynamics of Cognition, Bradford Books, MIT Press,

Cambridge, MA, 1995, pp. 69–100.

[68] R.A. Brooks, Flesh and Machines: How Robots Will Change Us,

Pantheon Books, New York, 2002.

[69] T. Ziemke, Are robots embodied? in: Balkenius, Zlatev, Dautenhahn,

Kozima, Breazeal (Eds.), Proceedings of the First International

Workshop on Epigenetic Robotics —Modeling Cognitive Development

in Robotic Systems, 85, Lund University Cognitive Studies, Lund,

Sweden, 2001, pp. 75–83.

[70] T. Ziemke, What’s that thing called embodiment? in: Alterman, Kirsh

(Eds.), Proceedings of the 25th Annual Conference of the Cognitive

Science Society, Lund University Cognitive Studies, Lawrence

Erlbaum, Mahwah, NJ, 2003, pp. 1134–1139.

[71] A. Newell, H.A. Simon, Computer science as empirical inquiry: Symbols

and search, Communications of theAssociation for ComputingMachinery,

tenth Turing award lecture, ACM 1975 vol. 19 (1976) pp. 113–126.

[72] E. Hollnagel, The substance of cognitive modelling 2002. Available

from: http://www.ida.liu.se/weriho/CognitiveModels_M.htm

[73] E. Hutchins, Cognition in the Wild, MIT Press, Cambridge, MA, 1995.

[74] M. Shah, Guest introduction: the changing shape of computer vision in

the twenty-first century, International Journal of Computer Vision 50 (2)

(2002) 103–110.

[75] B.A. Draper, K. Baek, J. Boody, Implementing the expert object

recognition pathway in: J. Crowley, J. Piater, M. Vincze, L. Paletta

(Eds.), Proceedings of the Third International Conference on Computer

Vision Systems, ICVS 2003, LNCS 2626, Springer, Berlin, 2003, pp. 1–11.

http://http://www.ida.liu.se/~eriho/CognitiveModels_M.htm


D. Vernon / Image and Vision Computing xx (2006) 1–1414

+ model ARTICLE IN PRESS
[76] J.K. Tsotsos, Cognitive vision need attention to link sensing with

recognition in: H.I. Christensen, H.-H. Nagel (Eds.), Cognitive Vision

Systems: Sampling the Spectrum of Approaches, LNCS, Springer,

Heidelberg, 2005, pp. 27–38.

[77] L. Itti, C. Koch, Visual attention: insights from brain imaging, Nature

Reviews 2 (2001) 194–203.

[78] L. Craighero, M. Nascimben, L. Fadiga, Eye position affects orienting of

visuospatial attention, Current Biology 14 (2004) 331–333.

[79] A. Sloman, J. Chappell, The altricial-precocial spectrum for robots, in:

IJCAI’05—19th International Joint Conference on Artificial Intelli-

gence, Edinburgh. 2005. www.cs.bham.ac.uk/research/cogaff/alt-prec-

ijcai05.pdf

[80] C. von Hofsten, An action perspective on motor development, Trends in

Cognitive Science 8 (2004) 266–272.

[81] C. von Hofsten, Eye-hand coordination in newborns, Developmental

Psychology 18 (1982) 450–461.

[82] G. Sandini, G. Metta, J. Konczak, Human sensori-motor development

and artificial systems, 1997

[83] B. Sivak, C.L. MacKenzie, Integration of visual information and motor

output in reaching and grasping: the contribution of peripheral and

central vision, Neuropsychologica 28 (1990) 1095–1116.

[84] K. Rosander, C. von Hofsten, Development of gaze tracking of small and

large objects, Experimental Brain Research 146 (2002) 257–264.

[85] K.R. Gegenfurtner, J. Rieger, Sensory and cognitive contributions of

color to the recognition of natural scenes, Current Biology 10 (2002)

805–808.

[86] K.R. Gegenfurtner, The eyes have it, Nature 398 (1999) 291–292.

[87] J. Santos-Victor, G. Sandini, Embedded visual behaviours for

navigation, Robotics and Autonomous Systems 19 (1997) 299–313.

[88] A. Sloman, J. Chappell, Altricial self-organising information-processing

systems, in: International Workshop on the Grand Challenge in Non-

classical Computation, York, 2005, www.cs.bham.ac.uk/research/

cogaff/summary-gc7.pdf

[89] E.S. Spelke, Core knowledge, American Psychologist (2000) 1233–1243.
[90] C. von Hofsten, On the development of perception and action in:

J. Valsiner, K.J. Connolly (Eds.), Handbook of Developmental

Psychology, Sage, London, 2003, pp. 114–140.

[91] A. Billard, Imitation in: M.A. Arbib (Ed.), The Handbook of Brain

Theory and Neural Networks, MIT Press, Cambridge, MA, 2002,

pp. 566–569.

[92] R. Rao, A. Shon, A. Meltzoff, A bayesian model of imitation in infants

and robots in: K. Dautenhahn, C. Nehaniv (Eds.), Imitation and Social

Learning in Robots, Humans, and Animals: Behaviour, Social and

Communicative Dimensions, Cambridge University Press, MA, 2004.

[93] K. Dautenhahn, A. Billard, Studying robot social cognition within a

developmental psychology framework, in: Proceedings of the Eurobot

99: Third European Workshop on Advanced Mobile Robots, Switzer-

land, 1999, pp. 187–194.

[94] A.N. Meltzoff, M.K. Moore, Explaining facial imitation: a theoretical

model, Early Development and Parenting 6 (1997) 179–192.

[95] A.N. Meltzoff, The elements of a developmental theory of imitation in:

A.N. Meltzoff, W. Prinz (Eds.), The Imitative Mind: Development,

Evolution, and Brain Bases, Cambridge University Press, Cambridge,

2002, pp. 19–41.

[96] G. Sandini, G. Metta, D. Vernon, Robotcub: an open framework for

research in embodied cognition, in: IEEE-RAS/RSJ International

Conference on Humanoid Robots (Humanoids 2004), 2004, pp. 13–32.

[97] S. Harnad, The symbol grounding problem, Physica D 42 (1990) 335–

346.

[98] E.J. Gibson, A. Pick, An Ecological Approach to Perceptual Learning

and Development, Oxford University Press, Oxford, 2000.

[99] V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti, Action recognition in the

premotor cortex, Brain 119 (1996) 593–609.

[100] G. Rizzolatti, L. Fadiga, V. Gallese, L. Fogassi, Premotor cortex and the

recognition of motor actions, Cognitive Brain Research 3 (1996) 131–

141.

[101] H.I. Christensen, H.-H. Nagel, Report on dagstuhl seminar 03441:

Cognitive Vision Systems 2003 Available from: http://www.dagstuhl.

de/03441/Report/

http://www.cs.bham.ac.uk&sol;research&sol;cogaff&sol;alt-prec-ijcai05.pdf
http://www.cs.bham.ac.uk&sol;research&sol;cogaff&sol;alt-prec-ijcai05.pdf
http://www.cs.bham.ac.uk/research/cogaff/summary-gc7.pdf
http://www.cs.bham.ac.uk/research/cogaff/summary-gc7.pdf
http://http://www.dagstuhl.de/03441/Report/
http://http://www.dagstuhl.de/03441/Report/

	Cognitive vision: The case for embodied perception
	The scope of cognitive vision
	A survey of cognition paradigms
	Symbolic information processing representational cognitivist models
	Emergent systems
	Hybrid models
	A short critique

	The case for embodiment
	The cognitivist case for embodiment
	The emergent case for embodiment
	A paradigm-independent case

	Shades of embodiment
	Implications
	Learning from nature
	The phylogeny/ontogeny trade-off: precocial and altricial species
	Phylogeny: innate capabilities
	Ontogeny: modes of learning, and the importance of motivation and exploration
	The symbol grounding problem
	Perception/action co-dependency

	Conclusions
	Acknowledgements
	References


