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Abstract. The increasing complexity of humanoid robots and their ex-
pected performance in real dynamic environments demand an equally
complex, autonomous and dynamic solution. Our approach for the cre-
ation of real autonomy in artificial systems is based on the use of nonlin-
ear dynamical systems. The purpose of this research is to demonstrate
the feasibility of using coupled chaotic systems within the area of cogni-
tive developmental robotics.

Using a robotic head, we demonstrate that the visual input coming into
the head’s eyes is enough for the self-organization of the axes controlling
the motion of eyes and neck. No specific coding of the task is needed,
which results in a very fast adaptation and robustness to perturbations.
Another equally important goal of this research is the possibility of hav-
ing new insights about how the coordination of multiple degrees of free-
dom emerges in human infants. We show that the interaction between
body and environment modifies the inner connections of the controlling
network resulting in the emergence of a tracking behavior.

1 INTRODUCTION

Most of today’s humanoid platforms follow an almost 50-year-old tradition of
control theory that started with the industrial automation at the beginning of
the 1960s. The methodology followed by this approach is based on modeling as
precise as possible both the plant and the controller; and filtering or processing
as noise the different unexpected circumstances that could occur during the op-
eration of the system. This approach has worked pretty well when the system is
in a fixed framework and the environmental conditions are known and controlled;
however, this will not be the case for humanoid robots of the future. It is abso-
lutely necessary to start working on a different approach if we want to design
and build systems that move and act in the same kind of dynamic environments
where humans move and act. A more adaptive and flexible theory is needed in
order to ’control’ a device that is supposed to move within an ever-changing en-
vironment. These are our first steps towards the design and implementation of a
real autonomous cognitive architecture based on nonlinear dynamical systems.



Although the study of nonlinear dynamical systems and chaos has also a long
history, real applications that make direct use of chaos theory have not been fully
developed. The purpose of this research is to demonstrate the feasibility of using
coupled chaotic systems [1] within the area of cognitive developmental robotics.
Based on the model of behavior emergence introduced by Kuniyoshi et al. [2],
we study the coordination of multiple degrees of freedom in humanoid robots.

The task of tracking an object has been fully studied and many solutions
presented before. Based either in position errors or velocity mismatches, some
approaches try to control the activation of motors by means of robust PID
controllers [3–5], while others base their controllers in fuzzy logic [6] or neu-
ral networks [7]. In any case, the common methodology in these approaches is
to compute expensive Jacobian and kinematic expressions thinking in all the
possible circumstances the system could encounter.

All these works comprehend the state of the art in motor control for tracking
systems; therefore it would not be necessary to develop new solutions. However,
the tracking problem represented the simplest test bed for the study of coupled
chaotic systems, both in a simulated environment and for its implementation in
a real platform. Our approach differs from previous work mainly in two aspects:
first, our system does not need to deal with complex equations of kinematics and
dynamics; second, the main goal behind our research is not to improve the per-
formance of existing algorithms but, through our experiments, start building the
basis of a dynamic model for motion emergence that embrace as a single entity
body and environment. Following Esther Thelen and Linda Smith’s suggestion
that “action and cognition are also emergent and not designed” [8], another
equally important goal of this research is the possibility of having new insights
about how the coordination of multiple degrees of freedom emerges in human
infants.

The following section contains a short introduction on chaos and coupled
chaotic systems; as well as a description of the model of behavior emergence
proposed in [2]. Section III describes the experimental setup and the results
of our experiments from the implementation of our model when working with
constant parameters. In Section IV it is presented the results of a developmental
process in a five degree of freedom implementation of our approach. Finally,
conclusions and guidelines for future work are summarized in section V.

2 Coupled Chaotic Systems

2.1 A Short Introduction to Chaos

The word ’chaos’ has been used to represent a part of nonlinear dynamical sys-
tems theory that deals with the unpredictable behavior of a system governed by
deterministic rules, [9]. One of the most common, and probably the simplest,
deterministic rule that generates chaos is the logistic map (1). This second-order
difference equation was studied by the biologist Robert May as a model of pop-
ulation growth [10]. In this equation, the parameter α controls the nonlinearity



of the system. In order to keep the system bounded between -1 and 1, α takes
values between 0 and 2, Fig. 1.

f(xn) = 1 − αx2
n−1 (1)

A stand-alone logistic map (internal feedback whitout external influences)
stabilizes in an specific behavior depending on its initial condition and the value
of α. This very simple rule can generate fixed points, Fig. 1a; periodic oscillations
of period two, Fig. 1b; period four, Fig. 1c; and following the period doubling
path until reaching a choatic behavior, Fig. 1d.
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Fig. 1. Left, bifurcation plot for logistic map. Right, different outputs for Logistic Map
depending on α

2.2 Coupled Maps with Adaptive Connections

Coupled Map Lattices (CML) and Globally Coupled Maps (GCM), were intro-
duced by Kunihiko Kaneko in the middle of the 1980’s as an alternative for the
study of spatiotemporal chaos [1]. In short, this kind of dynamical systems use
discrete partial difference equations to study the evolution of a process described
by discrete steps in space and time but with continuous states. Two parameters
control the dynamics of these maps: a chaoticity factor and the strenght of con-
nections among their elements.

Due to the chaotic nature of the system, it is possible to see one of the main
properties of chaotic systems: two slightly different initial conditions amplify
their difference through time. On the other hand, the system tries to synchronize
the activations of all its chaotic elements by coupling them. In between these two
states of complete chaos and complete synchronization, interesting states emerge
like the formation of clusters oscillating in different phases and amplitudes.

The study of dynamically varying the connections among the elements in a
GCM was done by Ito and Kaneko [11, 12]. The model is described by the set of
equations in (2). The first equation correspond to a GCM, where f represents



a chaotic map; (2b) updates each unit’s connections coming from other units
in the network; and (2c) specifies the hebbian rule governing the relationship
between all units.
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g(x, y) = 1 − 2 |x − y| (2c)

In (2b), δ represents the degree of plasticity of the connections and ranges
from 0 to 1. The weights wij in (2b) refer to the influence from unit j going
into unit i. All self-connections were set to 0; and the initial condition for all
remaining connections are equal to 1/(N − 1), N being the number of chaotic
units.

2.3 A Model for Behavior Emergence

The states of each of the elements in a GCM, or a CML, depend only on the
internal dynamics of these systems; they are not influenced in any moment by an
external force. When taking these concepts to robotic applications it is necessary
to think in a way of including the environment within the dynamics of the system.

The model used in this project is based on the approach followed by Ku-
niyoshi and Suzuki [2]. Their model uses both, the local interaction (CML) and
the global interaction (GCM) but with the environment as the external force in-
fluencing the internal dynamics of the network. In our case, only GCM was used
since no extra benefit was seen when including local connections; nevertheless
the overall approach is the same, Fig. 2.
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Fig. 2. Body-environment interaction through coupled chaotic fields



3 Implementation

A copy of the iCub’s head, the humanoid platform of the Robotcub’s project [13],
was used in the present work. The head’s hardware and software components
will be described in the following subsections together with the implementation
of the algorithms used to create a dynamic smooth pursuit.

3.1 Hardware and Software

The head has six degrees of freedom: yaw, pitch and roll for the neck, a sin-
gle pitch motion for both eyes and independent yaw motors for each eye. DC-
micromotors are used for moving the different joints; each motor contains an
incremental encoder that provides the position of the joint at any time. All mo-
tors and sensors are controlled by a suite of DSP chips which channel data over
a CAN bus to a computer in charge of iCub’s high-level behavioral control [14].

Due to the large amount of sensori-motor information generated within the
platform the iCub’s software was configured to run in parallel on a distributed
system of computers. An open-source framework for robotics named YARP (Yet
Another Robot Platform) [15] was used for the implementation of the algorithms.
It is important to mention that the focus of this project is not the extraction
of saliencies from moving images, which is in itself a hard problem in computer
vision. A tracking algorithm available in the YARP repository was used as the
visual component in charge of providing us with the horizontal and vertical
coordinates of a moving object. With this information we focus our efforts on
the motor control problem.

3.2 Methodology

Each camera provides two quantities: the position of the target in vertical and
horizontal directions. These values modify the position of each motor; thus gen-
erating a coupled chaotic system with 6 logistic maps, Fig. 3. The algorithm
governing the dynamics of the system is governed by (3).

ui
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wij
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Where m is the output applied to each motor as speed values, s and u are
inputs and outputs respectively of the chaotic field block, and r is the raw value
coming from the sensors. Finally, Gm, Gs, Om, and Os are gains and offsets of the
sensors and motors respectively; these values are applied in the same magnitude
to all elements in the system.

The methodology for tuning offsets was done by approximating the average
of the raw output from the logistic map towards a zero average of the motor
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Fig. 3. iCub’s sensorimotor diagram, 5dof actuation.

activation values. In other words, offsets should be chosen in such a way that
the activations from the logistic map oscillate around zero. Gains Gm were chosen
depending on the speed limits of the motors. The following parameters were fixed
during all experiments:Gs=1.0, Os=-0.8, GLY = GRY = GEP =25.0, GNY =70,
GNP =35, and Om= 0.0; α = 1.9, and ε = 0.1.

3.3 Results

The motion of both eyes and the motion of the head is shown in Fig. 4. This
plot shows the motion of the eyes relative to the head and the motion of the
head relative to its fixed position. In this plot is possible to see the coordination
between eyes and neck. The target was moved in random directions and at
different speeds. Since the joints of the neck give approximately an extra 60
degrees on each side and on each direction, an object can be tracked in a wider
space. It was also observed an increase of the tracking speed when compared to
the 3dof case (2-eye tracking). The motors in the neck help the motors in the
eyes to follow the object in a faster way, especially in the yaw direction.

The coordination between both eyes and between eyes and neck in each di-
rection can be more easily appreciated in Fig. 5. Since the tracking algorithm
works on independent threads in each camera, different points in space are de-
livered to the GCM. This ’computer vision’ problem creates the errors observed
during some points during the experiments.

The activations of all units grouped in yaw, Fig. 6, and pitch Fig. 6 directions
show the dynamics of the system. Here is also possible to see the coordination of
chaotic units since all activations are gathered along the diagonal of each plot.
The nonlinearity of the chaotic units give them enough freedom to use the rest of
the space when needed but always staying and returning back to this diagonal.

The development of weak and strong connections among the chaotic units
depend on the level of interaction they have through time, Fig. 7. Even though all



−40 −30 −20 −10 0 10 20 30 40
−50

−40

−30

−20

−10

0

10

20

30

40

Yaw motion [degrees]
P

itc
h 

m
ot

io
n 

[d
eg

re
es

]
 

 
Right eye
Left eye
Neck

Fig. 4. Motion of both eyes and neck.

0 500 1000 1500 2000 2500 3000 3500 4000
−40

−20

0

20

40

Y
aw

 m
ot

io
n 

[D
eg

re
es

]

Timeline [~50sec]

 

 
Right eye
Left eye
Yaw neck
Object right
Object left

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

P
itc

h 
m

ot
io

n 
[D

eg
re

es
]

Timeline [~50sec]

 

 

Eye Pitch
Pitch neck
Object right
Object left

Fig. 5. Position of target w.r.t. center of eye: yaw motion, top; and pitch motion,
bottom.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Left eye

Output chaotic units (yaw joints)

Right eye

N
ec

k

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Left eye

Output chaotic units (pitch joints)

Right eye

N
ec

k

Fig. 6. Left, phase space (yaw). Right, phase space (pitch)



connections start with the same value, the system takes only a few time steps to
separate in groups of strong and weak connections. A very interesting observation
from this plot is that after approximately 500 steps, the connections arriving to
any unit oscillate around the middle of the permitted strength. Extreme cases
are with pitch units in each eye LP and RP which develop a very strong influence
from the pitch motion of the neck NP but a zero influence from one to another.
Yaw units develop a more balanced influence in their network, oscillating always
around 0.5.
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At time step 3500 the system has entered in an almost fully developed state
where its internal connections vary very little. In the end, each unit is influenced
by no more than two other units within the whole network, Fig. 8. As expected,
two independent sub networks emerge after approximately 20 seconds. In one
side all chaotic units fed by yaw motions strengthen their connections while
weakening those towards and from ‘pitch’ units; and the same happens with
those units fed by pitch motions when compared to ‘yaw’ units.

4 Conclusions and Future work

Conclusions

A very simple experiment for demonstrating the feasibility of applying coupled
chaotic systems in the area of cognitive developmental robotics has been shown
in this project. Tracking an object moving in front of a camera has been solved
in several ways previously, from using very simple trigonometric solutions to
advanced control algorithms. However, this task represented the simplest test
bed for the study of emergence of a reactive behavior in a real platform.
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A copy of the iCub’s head [13], a 6 DOF robotic platform, was used to repli-
cate the sensori-motor configuration of a real head. The tracking algorithm used
in all experiments was taken from the YARP repository [15]. The experience
obtained in previous experiments with the simulation and implementation of
a single eye tracking [16] gave us enough confidence to increase the complex-
ity of our model. The present work contains the results on the development of
connections in the eyes-neck coordination problem (5 DOF).

We have demonstrated that a visual input is enough for the self-organization
of a globally coupled map whose outputs are used as speed values activating each
of the joints of our device. No specific coding of the task is needed, which results
in a very fast reactive behavior. A very simple Hebbian rule was used to study
the development of connections within the core of the system, a globally coupled
map. From normalized initial connections we saw them changing through time,
restructuring the ’brain’ according to the experiences with the environment. In
the final stage, two independent sub networks were formed, one containing yaw-
related chaotic units only and the other pitch-related chaotic units only. The
smooth pursuit behavior emerged during this process.

Future work

The iCub’s head includes also an inertial sensor which will be used in the future
as another element influencing the chaotic field. Several questions should be ad-
dressed regarding the correspondences between this research and the biological
counterpart; for example, if a smooth pursuit behavior emerged from the inter-
action of chaotic units, could it be possible to obtain other visual behaviors like
vestibulo-ocular reflex (VOR), vergence or saccades in the same way?

The tracking algorithm used in all experiments does not focus on the same
point in both cameras; consequently a displacement is observed when comparing
the centers of both images. Therefore, this algorithm will be modified in order
to visually track the same point in space.
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