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Drum-mate: interaction dynamics and gestures in
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This article investigates the role of interaction kinesics in human–robot interaction (HRI). We adopted a
bottom-up, synthetic approach towards interactive competencies in robots using simple, minimal com-
putational models underlying the robot’s interaction dynamics. We present two empirical, exploratory
studies investigating a drumming experience with a humanoid robot (KASPAR) and a human. In the first
experiment, the turn-taking behaviour of the humanoid is deterministic and the non-verbal gestures of
the robot accompany its drumming to assess the impact of non-verbal gestures on the interaction. The
second experiment studies a computational framework that facilitates emergent turn-taking dynamics,
whereby the particular dynamics of turn-taking emerge from the social interaction between the human and
the humanoid. The results from the HRI experiments are presented and analysed qualitatively (in terms
of the participants’ subjective experiences) and quantitatively (concerning the drumming performance of
the human–robot pair). The results point out a trade-off between the subjective evaluation of the drum-
ming experience from the perspective of the participants and the objective evaluation of the drumming
performance. A certain number of gestures was preferred as a motivational factor in the interaction. The
participants preferred the models underlying the robot’s turn-taking which enable the robot and human to
interact more and provide turn-taking closer to ‘natural’ human–human conversations, despite differences
in objective measures of drumming behaviour. The results are consistent with the temporal behaviour
matching hypothesis previously proposed in the literature which concerns the effect that the participants
adapt their own interaction dynamics to the robot’s.

Keywords: social robots; humanoids; robot drumming; human–robot interaction; interaction kinesics;
emergent turn-taking

1. Introduction

The development of socially intelligent and adaptive robots in human–robot interaction (HRI) is
an emerging interdisciplinary field across the boundaries of robotics, engineering and computer
science on the one hand, and psychology, ethology and social sciences on the other (Dautenhahn
2007a). The primary goal of our research is to design a ‘successful’ HRI, whereby the robot is
engaged in certain tasks and carries out these tasks in a manner that is socially appropriate, for
example, enjoyable and acceptable for its users (Dautenhahn 2007b). It remains an open research
challenge to design such ‘successful’ HRI: success is here defined in terms of both performance
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of the human–robot pair in a task-based scenario, as well as in terms of the user’s subjective
experience of the interaction. Intuitively one may assume that what matters in human–human
interaction should also matter in human–machine interaction. And indeed, research by Nass and
his colleagues (e.g. Reeves and Nass 1997; Nass and Lee 2000) has shown that people treat
interactive artefacts socially. However, robots and computers are not exactly like people and it
remains open when and to what extent models and theories of human–human interaction are
directly applicable to HRI (Dautenhahn 2007b).

In this article, we are particularly concerned with the dynamics of HRI. Specifically, we address
the question of whether details of the dynamics of interaction that have been shown to play a
fundamental role in human–human interaction are equally important in HRI. In human–human
interaction, details of timing and synchronisation of gestures, speech, turn-taking in interaction,
etc. influence the nature and meaning of interaction. But is the same also true of HRI? Imple-
menting sophisticated dialogue and interaction models between humans and machines requires
significant computational and research effort. In order to decide whether this effort is justified,
we need to demonstrate that details of HRI kinesics matter. To address this issue, we used in our
experiments simple and (algorithmically) arbitrary, minimal computational models underlying
the robot’s turn-taking dynamics, rather than trying to model faithfully complex mechanisms of
cognition and learning in humans. We argue that if our simple models show an effect, that is, if
we find that the details of simple interaction dynamics significantly influence the ‘success’ of the
interaction (both in terms of objective performance and subjective user evaluation), then these
results suggest that future research in HRI design needs to take into account the details of robot
interaction dynamics even when not strictly based on cognitively plausible models of turn-taking
and interaction.

The work discussed in this article is related to our wider research agenda where we study
the importance of timing, rhythms, turn-taking and entrainment, which are key factors in the
development of communication (cf. Robins et al. 2005; Robins, Dautenhahn, te Boekhorst, and
Nehaniv 2008). Communication is an integral part of human social interaction. Developmental
psychologists distinguish between: (a) a primary, expressive system which has semantic and
intentional content but does not take account of the communication partner,1 and (b) a pragmatic,
referential system which can predict, and infer intention in the communication partner (Nadel,
Guerini, Peze, and Rivet 1999). These two key processes are involved in supporting a transition
from primary to pragmatic communication which requires mastering interpersonal timing and the
ability to communicate about a shared topic. Research has identified the importance of contingency
in rhythm, timing and inter-subjectivity in early communicative interaction of infants with a
caregiver. Such protoconversation plays a key role in the natural developmental progression of
human infants (Trevarthen 1999). Detailed analyses of infant–caretaker interactions show that
turn-taking between adult and infant in these protoconversations are closely coordinated and
reach rapid mutual entrainment.

Even before the link has been made to infant development, researchers studying human–human
interaction had long recognised the importance of timing, turn-taking and synchronisation dynam-
ics (Condon and Ogston 1967; Kendon 1970; Hall 1983). Goldin-Meadow argues that the gestures
the people produce in their conversation are tightly intertwined in their timing and meaning, and
that non-verbal gestural components of people’s communication cannot be separated from the
content of conversation (Goldin-Meadow and Wagner 2005). According to Bernieri and Rosen-
thal, ‘[i]nterpersonal coordination is present in nearly all aspects of our social lives, helping us to
negotiate our daily face-to-face encounters… We also coordinate our non-verbal behavior with
others to communicate that we are listening to them and want to hear more’ (Bernieri and Rosen-
thal 1991, p. 401). In this context, interpersonal coordination is loosely defined as ‘…the degree
to which the behaviors in an interaction are nonrandom, patterned, or synchronised in both timing
and form’ (Bernieri and Rosenthal 1991, p. 403).
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Within the wider context of interpersonal coordination, in our work we focus on interaction
kinesics, which can be described as the study of the role and timing of non-verbal behaviour, includ-
ing body movements, in communicative and interactional dynamics. While numerous studies have
investigated how people adapt to other humans (e.g. Pickering and Garrod 2004), non-human
stimuli (e.g. Schmidt, Richardson, Arsenault, and Galantucci 2007) or computers (e.g. Suzuki
and Katagiri 2007), interaction kinesics in HRI is a relatively unexplored area of research (Robins
et al. 2005, 2008). And only few studies have focussed on experimental investigations of this
important topic. For example, Watanabe (2004) investigated the embodied entrainment between
speech and body motions such as nodding in face-to-face communication involving robotic and
virtual characters engaging with people.Yoshikawa, Shinozawa, Ishiguro, Hagita, and Miyamoto
(2006) highlighted the role of responsive gaze in human–humanoid interaction. Yamamoto and
Watanabe (2003) found the differences in people’s preferences concerning the timing of utter-
ances in human–robot greeting interactions. Robins et al. (2008) explored interaction kinesics in
child–robot interaction in a play context involving a robotic dog (Reeves and Nass 1997) and the
child-sized humanoid KASPAR.2 Yamaoka, Kanda, Ishiguro, and Hagita (2007) showed in an
experiment with the Robovie robot and student participants how the contingency of interaction
impacts participants’ perception of the autonomy of the robot, depending on the degree of com-
plexity of the interaction. The role of Robovie’s response time as well as strategies of how a robot
can cope with delays has been investigated by Shiwa, Kanda, Imai, Ishiguro, and Hagita (2008).
A recent study by Yamaoka, Kanda, Ishiguro, and Hagita (2008) with Robovie studies the effect
of the robot’s body position and orientation on people’s proxemics behaviour in joint attention
scenarios. Outside the context of interactive robots, the importance of timing and synchronisation
has also been studied in human–computer interaction (Suzuki and Katagiri 2007) and has been
applied to therapeutic walking devices (Miyake 2003), as well as in evolved artificial social turn-
taking agents (Iizuka and Ikegami 2004). The earlier-mentioned examples indicate the growing
interest of the HRI community in interaction kinesics.

The particular experimental context chosen in our work is that of human–robot drumming. We
decided to choose a joint drumming task since collaborative music performance, in general, lends
itself to the study of interaction between humans and robots involving a variety of social aspects
including imitation, gestures, turn-taking and synchronisation, occurring in an overall playful and
enjoyable context. From a robotics point of view, drumming is a very suitable means of performing
music, since it is relatively straightforward to implement and test, and can be realised technically
without special actuators like fingers or special skills or abilities specific to drumming. Thus,
the drumming scenario provides a playful and interactive context that allows to constrain and
manipulate different experimental parameters easily.

Several researchers have studied drumming in the context of human–robot music performance.
In Weinberg, Driscoll, and Parry (2005), Weinberg and Driscoll (2006) and Crick, Munz, and
Scassellati (2006), robotic percussionists play drums in collaboration with interaction partners.
In Weinberg et al. (2005), an approach based on movement generation using dynamical systems
was tested on a Hoap-2 humanoid robot using drumming as a test case. Similarly, in Kotosaka and
Schaal (2001), humanoid drumming is used as a test bed for exploring synchronisation. However,
none of the prior work has specifically studied the socially interactive aspects in general, or
interaction kinesics in particular, in the context of human–humanoid drumming, which are the
focus of this article.

In this article, we present the results from two empirical studies involving adult participants3

interacting with the humanoid robot KASPAR in an imitation-based interaction game based on
drumming. The two experiments highlight the different aspects of HRI: (a) the role of (non-verbal)
gesture communication in a joint drumming task, and (b) the dynamics of emergent turn-taking
games. In Section 1.1, we will motivate the first experiment based on gesture communication
which used non-verbal gestures as social cues. This approach is discussed in the light of related
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work on several robotic percussionists, as well as other work in the wider context of social
robotics. In Section 1.2, we motivate our work on emergent dynamics of turn-taking interaction,
in the context of literature highlighting the importance of turn-taking in conversations and inter-
action games. The actual experiments will be described in Sections 2 and 3. Note that the field
of social robotics and HRI is very active, with a variety of different robotic systems used in
interaction studies. A complete review of the literature in this field goes beyond the scope of
this experimental paper; so we will focus our discussion of related work on research specifically
relevant to our research questions. For a very recent review of the field of HRI, see Goodrich and
Schultz (2007).

1.1. Gesture communication: motivation and related work

A robot that engages with people in interaction games could benefit from behaviour that specif-
ically motivates the user and sustains the interaction while coping with a wide range of users.
One way of motivating people to interact is through the use of social cues such as gestures. In
human–human interaction, gestures play an important role in communication, coordination and
regulation of joint activities. Indeed, in the related field of virtual agents, researchers have shown
the beneficial effects of gestures and expressions used by virtual agents, both in short-term and in
long-term interactions, in maintaining user involvement with the tasks encouraged by the agent
(Bickmore and Cassell 2005; Bickmore and Picard 2005).

Applied to robotics, this suggests that a robot may require social cues and gestures to moti-
vate users to interact with it, for example, in the field of assistive robotics (Tapus and Matarić
2006). A variety of robotic systems have been using social cues and gestures to encourage HRI.
A well-known example is KISMET, where facial expressions were used to regulate the interac-Q1
tion with people inspired by interactions of infants with their caretakers (Breazeal 2002). Other
recent examples include small cartoon-like robotic ‘creatures’ such as KEEPON and ROILLO,
designed to be used in interaction with children (Kozima, Nakagawa, Yasuda, and Kosugi 2004;
Michalowski, Sabanovic, and Michel 2006). These small robots have a limited action repertoire,
but can produce selected gestures to engage in interaction with children in the playground. The
fixed gestures are either random or tele-operated by a hidden puppeteer via a Wizard of Oz tech-
nique, as a part of social interaction. ROILLO is a simple robot with a rubber coated foam head,
body and an antenna. It has three wires connected to simple servos, which move the head and
body in various directions. It is used in experiments to study the interactions between the robot
and the children (Michalowski et al. 2006). KEEPON is a minimalist expressive robot that only
has a rubber head and an oval body. It has a small CCD camera and a microphone on it. It can
move its head, turn its body and make bobbing actions to show its ‘feelings’. It has both attentive
and emotive actions. It is simple but robust enough to be used in play rooms in interaction with
children (Kozima et al. 2004; KEEPON 2007, http://univ.nict.go.jp/people/xkozima/infanoid/

robot-eng.html#keepon).Q2
Related work on human–robot drumming includes HAILE (Weinberg et al. 2005; Weinberg

and Driscoll 2006), a robot arm designed specifically to drum in dynamic and musically sophis-
ticated collaboration with creative human musicians. HAILE does not use fixed deterministic
rules, but uses autonomous methods to create variant rhythms. It perceives a variety of complex
features of the human partner’s drumming, analyses the sound patterns and produces rhythms in
response. Compared with HAILE, in Crick et al. (2006) a less musically sophisticated humanoid
robot called NICO with an upper half body torso plays a drum together with human drummers.
It has visual and audio sensing to determine an appropriate tempo adaptively using a simple
threshold mechanism to parse the human partner’s beats, and can distinguish its own performance
with audio sensing, integrating the two sources of information to predict when to perform the
next beat.
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The above motivation and background led to our first experiment, where the humanoid robot
KASPAR plays the drums autonomously with a human ‘partner’ (interactant), trying to imitate the
rhythms produced by the human while using non-verbal gestures to motivate the human. In this
experiment, KASPAR’s behaviour is deterministic in the sense of producing the same (actuator)
output given the same input from its sensors.4 KASPAR produces non-verbal (head) gestures
from a limited repertoire and eye-blinking as it drums. Our approach is tested using different
degrees of such non-verbal gesturing with adult participants in several drumming sessions, and the
experimental results are reported and analysed below (Section 2) in terms of imitation, turn-taking
and the impact of non-verbal gestures as social cues.5

1.2. Emergent turn-taking dynamics: motivation and related work

Turn-taking is an important ingredient of human–human interaction and communication, whereby
the role switch (‘leader’ and ‘follower’) is not determined by external sources but emerges from
the interaction. Human beings generally ‘know’ when to start and stop their turns in the social
interactions, based on various factors including the context and purpose of the interaction, feedback
from the social interaction partners, emotional and motivational factors, etc. They use different
criteria for these decisions. In this work, our aim is to build a framework which enables emergent
turn-taking, and role-switching between a human and a humanoid in an imitation game, and to
understand how differences in robot turn-taking strategy can influence the emergent dynamics of
HRI. We do not aim to produce psychologically plausible models of human turn-taking behaviour
in this work, but employ simple, minimal generative mechanisms to create different robotic
turn-taking responses/strategies.

Related work that studied turn-taking in games and conversations focussed on different aspects.
An example from developmental psychology is described in Hendriks-Jansen (1996), which
discusses emergent turn-taking between a mother and a baby without any explicit ‘control’ mech-
anism (e.g. the mother starts jiggling in response to her baby’s sucking to encourage her baby
to resume sucking). This results in emergent turn-taking between the jiggling and the sucking
actions. Turn-taking also has important implications in robot-assisted therapy. Indeed, one ther-
apeutically relevant issue in teaching and education of children with autism is to teach children
the concept of ‘turn-taking’. Turn-taking games have been used to engage children with autism in
social interactions (Dautenhahn and Billard 2002; Robins, Dautenhahn, te Boekhorst, and Billard
2004a).

Another example of turn-taking games is given from a cognitive robotics view in R.A. Brooks
(personal communication, August 28, 1997). In this work, a ball game between a humanoid
robot COG and the human experimenter is described. COG and the human were reaching out
and grasping a ball in alternation. Note that in this case the experimenter led the turn-taking
behaviour in reaction to the robot’s visually driven actions. Ito and Tani (2004) studied joint
attention and turn-taking in an imitation game played with the humanoid robot QRIO, where the
human participants tried to find the action patterns, which were learned by QRIO previously, by
moving synchronously with the robot.

From a linguistics point of view, some of the important features of turn-taking in human
conversation identified are as follows (Sacks, Schegloff, and Jefferson 1974):

• Speaker-change recurs, or at least occurs.
• Mostly, one party talks at a time.
• Occurrences of more than one party speaking at the same time are common but brief.
• Transitions (from one turn to the next) with no gap and no overlap are common (slight gap or

slight overlap is accepted).
• Turn order is not fixed, but varies.
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• Turn size is not fixed, but varies.
• Length of conversation is not specified in advance.
• What parties say is not specified in advance.
• Relative distribution of turns is not specified in advance.
• Number of parties can vary.
• Talk can be continuous or discontinuous.

Built on these features, Thórisson (2002) developed a turn-taking mechanism for conversations
based on his previous work on the so-called Ymir mind model for communicative creatures and
humanoids. He proposed, implemented and tested a generative, multi-modal turn-taking model for
a face-to-face dialogue. The model was based on literature in human–human dialogue. The above-
mentioned expressive humanoid robot KISMET (Breazeal 2002, 2003) which used social cues for
regulating turn-taking in non-verbal interactions with people used a sophisticated robot control
architecture modelling motivation, emotions and drives to satisfy KISMET’s internal ‘needs’.Q3
Turn-taking between KISMET and humans emerged from the robot’s internal needs and goals and
its perceptions of cues from its interaction partner. Rather than trying to model any particular turn-
taking behaviour as observed in human–human dialogue (as it has been done e.g. in Thórisson’s
(2002) work mentioned above), we pursued a synthetic, bottom-up approach by defining very
simple models of turn-taking based on basic mathematical functions. Such a bottom-up approach
is in line with other approaches in the research field of Embodied Artificial Intelligence (Steels
and Brooks 1995; Pfeifer and Scheier 1999) and is here applied to human–humanoid interaction
aiming at developing socially interactive behaviour for a humanoid robot.

Also, different from the above-mentioned work with KISMET, where the interaction was the
goal in itself, we wanted to include a certain (enjoyable) task that needs to be achieved jointly by
the human–robot pair, to provide the overall context.

Important in this context is the temporal behaviour matching hypothesis as proposed in Robins
et al. (2008), which predicts that in HRI games, people will adapt to and match the robot’s temporal
behaviour, similar to the effects that can be found in the literature of human–human interaction.
The hypothesis has been supported in experiments with children who were playing imitation
games with KASPAR (the same robot as used in our experiments; Robins et al. 2008). While
this hypothesis may at first seem trivial since people and other animals are very adaptive and
adapt to the dynamics of a variety of stimuli (see, e.g. Schmidt et al. 2007), for roboticists it is
very important to actually know whether people do indeed adapt and respond to the dynamics of
robot behaviour – if it were false then one would not need to take robot interaction dynamics and
kinesics into account – which would substantially simplify HRI design. Moreover, what types of
impact robot kinesics can have on interaction and the degree and manner in which different people
might be influenced differently are open issues. Thus, for HRI researchers, this is an important
question to study experimentally, and, as discussed in more detail above, it has only recently
attracted attention in the field of robotics and HRI (c.f. Robins et al. 2005, 2008; Crick et al. 2006;
Yoshikawa et al. 2006).

Based on the above motivation and background, we designed a second experiment where
KASPAR plays the drums autonomously with a human ‘partner’ (interactant), trying to imitate
the rhythms produced by the human (as a follower) and trying to motivate (as a leader in the
game) the human to respond. Using different simple, probabilistic models, KASPAR decides
when to start and stop its turn. It observes the human playing and uses its observations as
parameters to decide whether to listen to the human or to take the turn actively in the game.
This is different from Experiment I where we tested deterministic turn-taking. This work was
tested with adult participants and the results were studied in terms of imitation, interaction and
turn-taking.6
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The two experiments are described below in detail separately due to clear differences in
research questions and implementation of the interaction games. However, both experiments
share a common methodological approach.

We chose a within-participant design for both studies for two main reasons: (a) the study
of individual differences as such is an interesting challenge in HRI research (Breazeal 2004)
and (b) previous research has indeed found significant individual differences in HRI studies, for
example, concerning personality traits (Walters, Syrdal, Dautenhahn, te Boekhorst, and Koay
2008), gender and personality (Syrdal, Koay, Walters, and Dautenhahn 2007), human and robot
personality matching (Tapus, Tapus, and Mataric 2008), and user personality and robot personality
style (Wrede, Buschkaemper, and Li). Since the literature shows individual differences of how
people respond in HRI studies (e.g. based on the participants’ gender, age, individual personality
traits, etc.), a within-participant design approach thus seemed most suitable for understanding the
range and variability, and impact of robot kinesics on interactions.

In both experiments, we evaluate the objectively measured performance of the human–robot
pair as well as the subjective interaction experience as judged by the human participants.

The rest of this article is organised as follows. In Section, the first experiment on deterministic
turn-taking is presented, followed by Section 3, which describes the second experiment on emer-
gent dynamics of turn-taking. Each of these two experimental sections includes the corresponding
research questions as well as descriptions of the experimental setup, experimental results and dis-
cussions of the results. Section 4 presents the overall conclusion. The final section of this article
outlines the ideas for future work.

2. Experiment I: deterministic turn-taking

2.1. Methodology

In the first experiment, the human partner played a rhythm which KASPAR tried to replicate, in
a simple form of imitation (mirroring). KASPAR has two modes: listening and playing. In the
listening mode, it recorded and analysed the played rhythm, and in the playing mode, it played
the rhythm back by hitting the drum positioned in its lap. Then the human partner played again.
This (deterministic) turn-taking continued for the fixed duration of the game. KASPAR did not
imitate the strength of the beats but only the number of beats and duration between beats. For beat
frequencies beyond its skill, it used instead minimum values allowed by its capabilities.7 It also
needed a few seconds before playing any rhythm to get its joints into correct reference positions.

Figure 1 presents the basic model of KASPAR–human interaction. The model requires the
gestures of both human and humanoid for social interaction, as well as drumming. Human gestures
or body movements were not detected in our experimental setup and were therefore not considered
in the implementation.

One of the fundamental problems in this scenario is the timing of the interaction; as discussed
above, timing plays a fundamental role in the regulation of interaction. It is not always clear when
the robot or human partner should start interaction in taking a turn. In this experiment, the model
used some predefined fixed time duration heuristics for synchronisation. KASPAR started playing
if the human partner was silent for a few seconds, and tried to motivate the participant with simple
gestures.

2.2. Research questions and expectations

Our primary research question concerned the possible impact of robot gestures on the imitation and
turn-taking game (in terms of performance), but also on the participant’s subsequent evaluation of
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Figure 1. The model for KASPAR–human interaction.

the game. We expected that the participants would be more engaged and would evaluate the inter-
actions more positively in experimental conditions where KASPAR used non-verbal head gestures.
Moreover, we expected that too many gestures may distract people from the drumming task.

2.3. Experimental conditions

We studied three conditions with increasing amounts of robot gesturing:

(1) No-gesture: KASPAR did not use any gestures, it only imitated the human drumming beats
it detected.

(2) Gesture: Simple head gestures (e.g. moving the head to the right or left, moving the head
up or down, tilting the head slightly to different angles) and eye blinking were included in
KASPAR’s movements. KASPAR started drumming using one of a fixed set of gestures. If
the human partners did not play their turn, then KASPAR did not respond either, and then
the turn passed back to the partner. A fixed order of n gestures was used, and this order was
repeated for every n turns. It was intended that the value for n should be large enough so
that the participant would not realise that this was a fixed pattern but rather that the gestures
seem either ‘meaningful’or random (in the experiment, n was set to seven based on simulated
experiments, i.e. carried out with the experimenter as the interaction partner).

(3) Gesture+: This condition is the same as gesture, except that KASPAR displayed on its turn
in the interaction gestures even when neither the robot nor the participant played the drum.
The gestures used were the same as in the gesture condition, and the drumming part was the
same in all the three conditions.

2.4. Experiment, results and analysis

2.4.1. Robot

The experiment was carried out with the humanoid robot called KASPAR (Figure 2). KASPAR is
a humanoid robot that has been designed specifically for HRI studies. It possesses a minimal set
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Figure 2. The humanoid robot KASPAR and its toy drum that were used in the experiments.

of expressive robot features (cf. Blow, Dautenhahn, Appleby, Nehaniv, and Lee 2006) for more
information on its design rationale. KASPAR has eight degrees of freedom (DOF) in the head and
neck, and six in the arms and hands. The face is a silicon-rubber mask, which is supported on an
aluminium frame. It has 2 DOF eyes fitted with video cameras, eye lids that allow blinking and a
mouth capable of opening and smiling; see Blow et al. (2006) for a more detailed description.

2.4.2. Experimental setup

The experiment was carried out in a separate room isolated from other people and noises which
could affect the drumming interaction. KASPAR was seated on a table with the drum positioned
on its lap. The participants were seated in front of the robot using another drum that was fixed
on the table (Figure 3). The participants used a pencil to hit the drum. Although we suggested to

Figure 3. A video snap shot from the experiments.
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the participants to use one pencil and hit on the top of the drum, sometimes they used two pencils
with a single hand or with both hands, and several times they used the tambourine-style bells
around the drum’s sides.

2.4.3. Software features

The implementation of robot perception and motor control used the YARP environment (Metta,
Fitzpatrick, and Natale 2006). YARP is an open-source framework that supports distributed com-
putation that emphasises robot control and efficiency. It enables the development of software
for robots, without considering a specific hardware or software environment. Portaudio (2007;
http://www.portaudio.com/trac/wiki/) software was used to grab the audio from the audio
device, within the YARP framework. See Appendix 1 for details of the audio analysis.

2.4.4. Participants

Twenty-four participants (7 female and 17 male) took part in the study. Due to logistical reasons,
the trials were carried out in 2 sets (a few months apart) with 12 participants each. All the
participants worked in computer science or similar disciplines at the university. Only six of them
had interacted with KASPAR prior to the experiment, and most of the participants were not
familiar with robots in general. Note that we initially did not plan to study the influence of gender
in the experiment; for this reason, the sample is not gender-balanced. However, where appropriate
we mention gender differences that were observed. Four of our participants had children.

2.4.5. Interaction game setup

We used a 1 min demonstration of the robot without any drumming game play, where the partic-
ipants were shown how to interact with KASPAR. This was followed by three games reflecting
the three experimental conditions described above each lasting 3 min, without pointing out to
the participants any differences between the conditions. We presented the game conditions in
all the possible six different orders to analyse the effect of the order of the games. To account
for possible fatigue or habituation, in the sequential order section below, we analysed the games
according to their order number in the sequence experienced by the participants (independent of
the particular experimental condition), as being the first game, second or third, disregarding their
game types, for example, for one participant the first game (number 1) would be the no-gesture
game, and for another participant, no-gesture would be the third game (number 3). After each
participant finished the three games, they were asked to complete a questionnaire to assess how
they subjectively evaluated the three different games.

2.4.6. Results

2.4.6.1. Evaluation of questionnaire data. The participants were invited to evaluate their inter-
action with KASPAR using a questionnaire. There were two items inviting the participant to choose
which game was the most and least preferred overall. There were also three five-point Likert scales
which allowed the participant to rate each drumming game in terms of (1) how much they enjoyed
the game, (2) how well KASPAR drummed and (3) how sociable they perceived KASPAR to be.
Open-ended questions were included to allow participants to explain their reasoning for their
preferences. Most and least preferred games according to game types and sequential order were
statistically analysed using a χ2 test.
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Most and least preferred games according to game type: The frequencies of participants which
rated each game as most preferred and least preferred are presented in Table 1 along with residuals
based on an expected count of 7.7. The differences from the expected counts were significant
for both the most preferred game type (χ2(2) = 6.61, p = 0.037) and the least preferred game
type (χ2(2) = 9.74, p = 0.008). The majority of the participants preferred the gesture game and
disliked the no-gesture game. Their general opinion was that the game without gestures was also
poor in terms of social interaction and enjoyment, which encouraged them to play more. For the
gesture game, they said they prefer the right balance of drumming and interaction.

Most and least preferred games according to sequential order: A significant difference was
found between the first and third games in terms of sequential order (χ2(1) = 4.57, p = 0.033).
There is no significant difference overall between the three games if the second game is included
(Table 2). Open-ended responses highlighted that the majority would become more familiar with
the game as they played more, allowing them to interact more efficiently with KASPAR in terms
of the drumming tasks. Another issue raised in the open-ended responses was that the participants
would become fatigued and bored after doing the repetitive drumming task for a prolonged period
of time, which may explain the lack of a significant difference between the second and third
games.

Preferences: While the method of counterbalancing is an accepted means of protecting against
confounders due to presentation order (Miller 1984), the clear main effect of presentation order
was considered a threat to this assumption. To control for this threat, mixed model ANOVAs were
run using game type to investigate possible interaction effects of presentation order and game
type on both questionnaire responses and behavioural data. These were mainly non-significant,
supporting the notion of independence between presentation order and game-type overall in the
sample. The one exception is addressed in Section 2.4.6.2.

Sample similarities: In terms of differences between the first sample of 12 and the second
sample of 12 participants, a mixed-model ANOVA found no significant differences in terms of
preferences (F(1,22) = 0.772, p = 0.39). Thus, in the following we present the results from the
overall sample of 24 participants.

Table 1. Most and least preferred games according to game types.

Participants

Game Type Most preferred Residual Least preferred Residual

No-gesture 3 −4.7 12 5.3
Gesture 12 5.3 1 −6.7
gesture+ 7 −0.7 9 1.3
No preference 2 N/A 2 N/A

Table 2. Most and least preferred games according to sequential order.

Participants

Order Most preferred Residual Least preferred Residual

1 3 −4.3 10 −4.3
2 8 5.3 5 −0.7
3 11 −0.7 8 3.7
No preference 2 N/A 1 N/A
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Preferences according to sequential order: The preferences according to order within the sample
as a whole were assessed using a repeated measures ANOVA. There was an effect approaching
significance in how participants rated KASPAR’s drumming according to the order of the game
(F(2,46) = 3.11, p = 0.054). No significant effects on game order were found in terms of the
robot’s sociality or enjoyment ratings. Participants tended to rate the last game more favourably
across the different rating types (despite the fatigue reported by some participants during later
games), see Figure 4. The results from the ANOVA, as well as the descriptives described in
Figure 4, suggest that this trend was the most pronounced in the way the participants rated
KASPAR’s drumming.

Preferences according to game type: The repeated measures ANOVA for preferences dependent
on game type found an effect approaching significance in terms of how KASPAR’s drumming
was rated according to game type (F(2,46) = 2.71, p = 0.077) as well as for general enjoyment
of the game (F(2,46) = 2.81, p = 0.07). We found a significant effect for game type in terms of
how KASPAR’s sociality was rated (F(2,46) = 5.01, p = 0.011), see Figure 5.

Figure 5 suggests different trends for the different game types. The trend approaching signi-
ficance for KASPAR’s drumming suggests that the drumming aspect of the interaction for the
no-gesture game was rated the most favourable, followed by the gesture game, with the gesture+
game receiving the lowest rating.

In terms of the social aspect of the interaction, the opposite effect was found. The no-gesture
game was rated the lowest, with the gesture and gesture+ games rated higher. For overall enjoy-
ment, the gesture games were rated the highest, followed by gesture+. The no-gesture game was
rated the lowest.

2.4.6.2. Evaluation of behavioural data. The behavioural data required for the evaluation of
the participant’s and the robot’s performance during the games were collected based on the data on
the robot’s own drumming behaviour and video recordings of the human’s drumming behaviour
which were annotated manually and then analysed quantitatively. The behavioural data include the
number of turns in a specific game, the number of drumming bouts performed by the participants
and the robot, and the ‘drumming errors’. The errors are the differences between KASPAR’s

Figure 4. Ratings for games according to order in terms of (1) KASPAR’s drumming, (2) KASPAR’s sociality and (3)
enjoyment of the game.
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Figure 5. Ratings for games according to game type in terms of (1) KASPAR’s drumming, (2) KASPAR’s sociality and
(3) enjoyment of the game.

actual drumming (i.e. the number of beats KASPAR plays in a particular turn) and the number of
beats the participant plays. We calculated an average error per turn. Thus, ‘errors’ do not reflect
any mistakes in the system as such, but reflect the discrepancy between human’s and robot’s
drumming performance.

Behavioural data according to sequential order: We found a significant effect for sequential
order in terms of average number of errors (F(2,46) = 6.18, p = 0.004). This effect is seen in
Figure 6 and suggests that the errors were in general lower for later games.

Generally, the participants either tried very long and fast patterns or they did not beat loud
enough to be detected reliably (KASPAR uses a high-level noise filter to filter out high inner
noise coming from its joints, so it can only sense loud beats) when they started to play initially.
Interestingly, without any external encouragement, as they got used to the game, they progressively
synchronised their drumming to the robot. Details of the results are presented in Table 3. As such,

Figure 6. Average error according to sequential order.
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Table 3. Observed human drumming behaviour according to order.

Order Average error Maximum no. of beats Average no. of beats Average no. of turns

1 3.30 ± 3.15 41 6.67 ± 4.22 15.88 ± 5.23
2 2.80 ± 3.36 37 5.58 ± 3.57 17.63 ± 5.84
3 1.92 ± 1.86 20 4.70 ± 2.61 19.13 ± 4.64

the preference for the third game among the participants could be explained by the lower number
of errors for this game.

Behavioural data according to game type: Figure 7 shows a trend approaching statistical sig-
nificance (F(2,46) = 2.15, p = 0.13) where the gesture+ game had the highest average error,
followed by the gesture game. The no-gesture game had the smallest error rate.

The maximum number of beats decreased with the increasing amount of gestures in the game
(Table 4). There was a slight increase in the average number of beats with the increasing amount of
gestures in the game, but this was not significant. The average number of turns tended to decrease as
the amount of gestures in the game increased. This significant effect (F(2,46) = 4.41, p = 0.018)
is described in Figure 8. The only interaction effect observed in this experiment between order of
presentation and game type occurred for this variable (F(2,44) = 6.020, p = 0.005). This effect
is described in Figure 9 and suggests that for participants who were introduced to the gesture+
condition in the first or second game had a higher number of turns for the no-gesture and gesture
game than those who encountered this game type last, while the reverse was true for the no-gesture
condition.

Figure 7. Average number of errors according to game type.

Table 4. Observed human drumming behaviour according to game type.

Game type Average error Maximum no. of beats Average no. of beats Average no. of turns

No-gesture 2.22 ± 2.52 41 5.24 ± 3.54 19.00 ± 5.49
Gesture 2.62 ± 3.16 37 5.60 ± 3.67 17.83 ± 4.63
Gesture+ 3.12 ± 3.01 31 6.21 ± 3.89 15.58 ± 5.61
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Figure 8. Average number of turns according to game type.

Figure 9. Interaction between game type and presentation order for number of turns.

2.4.7. Discussion of results

Experiment I not only investigated the possible impact of using robot gestures on drumming game
(in terms of performance), but also on the participants’ subsequent evaluation of the game. We
expected that an intermediate level of gestures would benefit the interaction game.

Results show that the humans were indeed motivated by gestures and did, overall, enjoy the
drumming experience. There did, however, seem to be a saturation level for the amount of gestures
used to encourage interaction, where the amount of gestures in the gesture+ condition seemed
to interfere with the participants’ concentration. Drumming with no gestures, while considered
efficient in terms of the drumming task, was not rated as successful in terms of social interaction.
The reason for the high error rates at the start of the games is likely in part due to the partici-
pants’ high expectations from the game. According to the questionnaire results, male participants
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appeared to view the experiment not as a game, but rather as a task to complete. Participants also
may have tried to ‘test’ the robot’s limitations during the initial stages of the trials, leading to
higher error-rates, as this could involve playing rapidly in long sequences, or using different parts
of the drum to create different sounds and enriching their play. They also expected that KASPAR
could watch, understand and imitate them (most thought that the robot could detect them with its
cameras, positioned in the eyes, and that the gestures were meaningful). As the game progressed,
the understanding of the limited capabilities of the robot would increase, leading them to mod-
ify their drumming to synchronise more efficiently with the robot. This effect might have been
mitigated by participant fatigue, however, as boredom was also mentioned by some participants
when answering questions regarding the later games.

The data also suggest that the participants changed their style of play with the increasing level
of robot gestures, playing fewer, yet longer sequences of beats.

Our sample, overall, rated the gesture condition as the most enjoyable, which, interestingly, had
worse error rates in the evaluations of the objective performance than those without gesture. This
is likely due to the gesture condition incorporating gestures making the interaction enjoyable to
those participants who valued this aspect of the interaction, while having a lower error rate than
the gesture+ condition, and so is less adversely impacted by a task-based evaluation than this
condition.

This shows that the right amount of gestures would serve to attract the attention of one por-
tion of the participants, and make their experience enjoyable, although it did not actually help
their drumming (in objective terms). This draws attention to the marked distinction between the
subjective evaluations and objective performance measures.

Overall, the results from Experiment I confirmed our initial expectations (see Section
2.2), but pointed out the different effects of gesture on the dynamics of drumming perfor-
mance and participants’ subjective evaluation. These results helped in designing the next study
(Experiment II).

3. Experiment II: emergent turn-taking

3.1. Methodology

As motivated earlier, one of the fundamental problems in the human–robot drumming scenario
is the timing of the interaction, as timing plays a fundamental role in the regulation of human
interaction. It is not always clear when the robot or human should initiate interaction in taking
a turn. Therefore, in Experiment I, some predefined fixed time duration heuristics were used for
synchronisation, whereby KASPAR started playing if the participant was silent for a few seconds,
and would also try to motivate the participant with simple non-verbal gestures.

In Experiment II, we took a different approach and used a novel, probability-based mechanism
for timing and turn-taking so that the temporal dynamics of turn-taking emerge from the interaction
between the human and the humanoid. As explained earlier, the computational models were
deliberately chosen to be simple, minimal and (algorithmically) arbitrary. Thus, these models are
not meant to faithfully model turn-taking, cognition or learning in humans. Our research agenda
is to study whether even such simple and arbitrary computational models will evoke different
types of interaction and adaptation of people to the robot’s behaviour.

We selected three different simple and minimal computational models to control the starting and
stopping of the robot’s regular drumming beats. This response is based on the duration time of the
previous turn and on the number of beats played in the previous turn by the interaction partner. We
denote the models as Model 1, Model 2 and Model 3. Model 1 uses a step function, Model 2 a simple
triangular function and Model 3 a hyperbolic function that generates probabilities for starting or
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Algorithm 1 The turn-taking algorithm 
1. Human plays (turn # i=1) 
2. Kaspar plays after  waiting 2 seconds when human stops 
3. FOR i=2 to n DO
4.         ThTimei= KasparPlayingTimei-1

5. IF modelj (HumanPlayingTimei,ThTimei) = 1 
6. THEN KASPAR STARTS PLAYING 
7.                          ThBeati= # of HumanBeatsi

8.                   IF modelj (# of  KasparBeatsi,ThBeati) = 1 
9.                  THEN KASPAR STOPS PLAYING
10. END FOR (end of the game)

Figure 10. The turn-taking algorithm used in Experiment II.

stopping the robot’s drumming based on these inputs from previous interaction (Figure 10). The
output is bounded by maximum and minimum limits to ensure that KASPAR and the participant
have time to play at least once in every turn. For every turn, the robot assesses the probability of
start or stop, and takes action accordingly. For starting, the robot uses the time duration of its last
bout of playing and for stopping it takes the number of beats of the human participant from the
previous turn into account. The minimum number of beats KASPAR will play is one even if the
resulting number of the beats recommended by any of the models is below one. The participant
starts the game and KASPAR uses its turn-taking strategy when the human participant is silent
for 2 s (only for the first turn). After the first turn, the turn-taking strategy is always determined
by the robot’s probabilistic models. Depending on the previous duration and number of beats
in the interaction, according to their respective probability functions (1), (2) and (3), the return
value of the three models triggers the starting or stopping in the turn-taking algorithm (Algorithm
1 in Figure 10). The probability functions for the three computational models are presented in
Equations (1), (2) and (3), and visualised in Figure 11.

p(x) =
{

0, x < Th

1, x ≥ Th
(Step: Model 1), (1)

p(x) = x

Th
(Linear: Model 2), (2)

p(x) = 1 − 1

x
(Hyperbolic: Model 3). (3)

Here, x is measured in units of time for the case of starting, or, respectively, as the number of
beats for stopping. Similarly, Th represents the threshold parameter of time for starting and the

Figure 11. Computational models for START/STOP actions. For START actions, Th=ThTime, since the x-axis variable
is the time (t). For STOP actions, Th=ThBeat. The x-axis variable is the number of beats (b). For START, Th is the duration
of KASPAR’s previous drumming bout, and for the STOP action, Th is the number of beats in the human’s previous
drumming bout; except that the minimum value for Th is 1.5 s (experimentally determined) for START and 1 beat for
STOP actions. The only model which does not have the threshold limitations is Model 3 due to its hyperbolic nature. The
y-axis gives the probability of START/STOP as a function of time/number of beats based on previous interaction.
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number of beats for stopping, respectively. For each model, a decision function is called returning
a 0 (‘no’) or 1 (‘yes’) is called to decide whether to change the robot’s current behaviour. ThatQ4
is, the function model i (x,Th) is called to start or stop KASPAR playing using the respective
p(x) function for that model as in Algorithm 1. In Model 1, if p(x) is 1 then the model triggers
starting or stopping, and this depends only on Th and the current value of x. Models 2 and 3 have
probability functions that can take values other than just 0 and 1, so a random value r in [0,1]
is generated and if r is not less than the function output, then the model returns 1 (otherwise 0).
Thus, in effect, in all three of these simple models, a starting or stopping action, given the current
values of parameters x and Th, occurs at appropriate points with probability p(x) according to
the respective model, so that the model then triggers the start or stop of drumming, or otherwise
no change in the behaviour occurs – see the conditionals (IF-statements) of the robot control in
pseudocode of Figure 10.8 In future, other models could also easily be assessed.

Consequently, at every turn, the robot decides when to start and stop according to the perfor-
mances of both the human player and itself. Thus, the game and its dynamics are not deterministic
but emerge from the moment-to-moment status of both KASPAR and the participant.

Complementary to Experiment I, we decided not to introduce any robot gestures in Experiment
II but to focus our analysis on the turn-taking behaviour. Therefore in Experiment II, KASPAR
did not use any gestures.

3.2. Research questions and expectations

In order to investigate the effect of three different generative computational models on emergent
turn-taking dynamics in an imitation game, our primary research questions were as follows:

• How do different robot turn-taking strategies based on different minimal computational
probabilistic models impact on the drumming performance of the human–robot pair?

• How do the different robot turn-taking strategies impact on the participants’ subjective
evaluation of the drumming experience?

We expected to have ‘successful’ games in terms of turn-taking emerging from the interaction
between the human and the humanoid, and that the different computational models would show
different degrees of success in terms of engaging and sustaining interaction. Our ‘success’ criteria
were as follows: (1) the number of turns with no or slight overlaps and gaps and (2) the number
of human beats detected by the robot and the number of beats played by the robot itself that will
give us hints about the quality of the games.

3.3. Experimental conditions

We studied three models with different parameters (Figure 11) in three different experimental con-
ditions. We set up simulated experiments before the live experiments, to define the maximum and
minimum limits and thresholds for the actual experiments with humanoid and human participants.
Each model is used both for starting and stopping the robot’s play and represents an experimental
condition. For start the time duration of the previous turn is used, and for stop the number of
beats of the previous turn is used as a threshold. As described in the previous section, Model 1
was a step function, where the return value of the function is ‘1’ if the input value of the function
is not smaller than the threshold; thus, we expect this model to give more play time and a higher
number of beats than the other models. Ideally, if the human beats long sequences, this model
would reach very high values so we put a maximum time limitation (both interactants cannot play
longer than 10 s per turn). Unlike Model 1, Model 2 has a triangular shape which has the threshold
as an upper boundary. Since we have a probabilistic approach we can have values smaller than the
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threshold. In fact, we expect this model to give the least play time and lowest resulting number
of beats for the participants; so we foresee that the model would not be as popular as the other
two models. The last condition is Model 3, a hyperbolic model, which cannot be limited by the
thresholds. It reaches high values (close to one) very fast compared with Model 2. Therefore,
we predict that it would result in more play time (i.e. enable the robot to play more beats than
Model 2). Also, in our simulations, we noticed that it could enable ‘coordinated games’ (i.e. with
a very low number of overlaps and conflicts between the human’s and the robot’s drumming)
if we played short sequences, but since the model is not limited by thresholds, it ‘reacts’ to the
human but does not exactly ‘imitate’ the human’s drumming games, which we suspected that the
participants might not find acceptable.

3.4. Experiment, results and analysis

3.4.1. Robot

The experiments were carried out with the humanoid robot KASPAR that was also used in
Experiment I (see Section 2.4.1).

3.4.2. Experimental setup

The experimental setup was the same as in Experiment I (see Section 2.4.2).

3.4.3. Software features

The same software features were used as in Experiment I (see Section 2.4.3).

3.4.4. Participants

Twenty-four participants (8 female and 16 male) took part in the study. Due to logistical reasons,
the trials were carried out in 2 sets (a few months apart) with 12 participants each. All participants
worked in computer science or similar disciplines at the university. Only two of them had interacted
with KASPAR prior to the experiment, and most were not familiar with robots in general. Six of our
participants had children. (Regarding gender balance of the sample, see comment in Section 2.4.4).

3.4.5. Interaction game setup

We used a 1 min demonstration of the robot without any drumming game involved, where the par-
ticipants were shown how to interact with KASPAR. This was followed by three games reflecting
the three experimental conditions described above each lasting 3 min, without indicating to the
participants anything about the differences between the conditions. The participants were simply
instructed that they could play drumming games with KASPAR. As we did in Experiment I, we
used all six possible different presentation orders of the games to analyse the effect of the order
of the games on the humans. To account for possible fatigue, habituation or learning by the par-
ticipants, in the sequential order section below, we analysed the games according to their order
number in the sequence experienced by the participants (independent of the particular experimen-
tal condition): thus calling them the first game, second or third, disregarding their game types,
for example, for one participant the first game (order 1) would be the Model 1 game, and for
another participant, Model 1 would be the third game (order 3). After finishing the three games,
the participants completed a questionnaire.
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3.4.6. Results

3.4.6.1. Evaluation of questionnaire data. The participant evaluations were elicited in a
questionnaire in the same manner as in Experiment I (see Section 2.5.1).

Most and least preferred games according to game type: See Table 5 for the number of par-
ticipants which rated each game as most preferred and least preferred. There was a significant
deviation from the expected counts for the most preferred game type (χ2(2) = 7.76, p = 0.021)
as well as for the least preferred game type (χ2(2) = 10.89, p = 0.004). Table 5 shows that both
the Model 1 and Model 3 games were preferred by a comparable amount of participants, while
fewer participants preferred Model 2 most.

Table 5 also shows that the highest number of the participants considered the Model 2 game
as the least preferred, while the Model 1 and Model 2 games had a small number of participants
which considered them the least preferred. The Model 3 game was slightly more popular than the
Model 1 game.

Most and least preferred games according to sequential order: The number of participants
which rated each game as most preferred and least preferred according to the sequential order
can be seen in Table 6. The deviations from the expected count were approaching significance for
the most preferred game (χ2(2) = 5.25, p = 0.07). Table 6 suggests that the most popular game
type was the third game, while first and second games were less preferred. Table 6 also suggests
that all ordinal positions of occurrence in the sequence of the games had a similar number of
participants which considered them the least preferred.

As for Experiment I, in order to control for the threat against the assumptions of the counter-
balancing method, mixed model ANOVAs were run using game type to investigate the possible
interaction effects of presentation order and game type on both questionnaire responses and
behavioural data. These were non-significant, supporting the notion of independence between
presentation order and game-type overall in the sample.

Other preferences: The order of the games did not have a significant impact on the participants
in terms of evaluation of the game. There were, however, significant differences according to
the model used in terms of how participants evaluated the games. The participants did not rate
KASPAR’s drumming significantly differently across the models (F(2,46) = 1.64, p = 0.20).
There was an effect approaching significance for how they rated KASPAR in terms of sociality

Table 5. Most and least preferred games according to type.

Participants

Game Type Most preferred Residual Least preferred Residual

Model1 9 1.7 6 −4.3
Model2 2 −6.3 17 −0.7
Model3 13 4.7 4 3.7

Table 6. Most and least preferred games according to sequential order.

Participants

Order Most preferred Residual Least preferred Residual

1 4 −4.0 9 0.035
2 7 −1.0 8 −0.7
3 13 5.0 9 0.035



1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

Connection Science 21

Figure 12. Ratings for the three measurements: (1) KASPAR’s drumming, (2) KASPAR’s perceived sociality and (3)
participant enjoyment.9

(F(2,46) = 3.12, p = 0.054), and participants significantly differentiated between the models in
terms of enjoyment (F(2,46) = 7.59, p = 0.001). These effects are shown in Figure 12, which
suggests that for all three, there was a tendency for the participants to rate the interactive aspects
of the games lower when the linear model was used.

Sample similarities: The possibility of systematic differences between the first sample of 12 and Q5
the subsequent sample of 12 was assessed using mixed-model ANOVA. This ANOVA found no
significant systematic differences between the two groups (F(1,22) = 0.070, p = 0.79). Since
an identical experimental protocol was used for both groups of participants, this result supports
the analysis of both samples as one larger sample.

3.4.6.2. Evaluation of behavioural data. The behavioural data regarding the performance of
the human partner during the games consisted of KASPAR’s own detection of the human’s drum-
ming (denoted as ‘KASPAR’s view’), and video recordings of the human’s drumming that were
annotated and analysed manually (referred to as ‘human’s view’). The behavioural data includes
the number of zero turns (where KASPAR could not register any beat performed by the human
partner but played at least one beat, and passed the turn to the human), non-zero turns (KAS-
PAR would register at least one drum beat of the human participant), the number of drum beats
performed by human participant and KASPAR, and turn durations (referred to as ‘time’in the text).

Behavioural data according to sequential order: There was no significant difference between
the games according to the order (e.g. for number of turns, F(2,22) = 0.007, p = 0.99, with
ANOVA). Only the human’s total number of beats per game increased with the order of the games
as they got used to the scenario while they played more (Table 7, KASPAR’s perspective, and
Table 8, human’s perspective).

Behavioural data according to game type: The game types are compared in detail in Tables 9
(human’s drumming) and 10 (KASPAR’s drumming).



1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

22 H. Kose-Bagci et al.

Table 7. Observed behaviour of KASPAR according to order.

Average no. of Maximum/minimum Total no. Average time Maximum/minimum Total
Order beats per turn no. of beats of beats per turn time per turn time

1 1.7 ± 0.8 6/1 135 ± 33 1.08 ± 0.1 3/1 97.6 ± 41
2 1.72 ± 0.8 6/1 136 ± 30 1.07 ± 0.1 3/1 96 ± 40
3 1.76 ± 0.7 7/1 138 ± 26 1.07 ± 0.1 4/1 95.8 ± 41

The repeated measures ANOVA found significant differences between Model 2 (linear model)
and the other models, across a range of variables. In terms of the total number of beats there was a
marked difference in the number of beats by the human registered by KASPAR (F(2,46) = 58.95,
p < 0.001), as well as the total beats by KASPAR (F(2,46) = 470.63, p < 0.001), between the
models used. There was no difference, however, between the models in terms of the actual number
of beats played by the human participants (F(2,46) = 0.037, p = 0.96). Referring to Figure 13,
we can see the relationship between detected human beats, beats produced by KASPAR and the
actual beats played by the participants across the models.

The graph suggests that while the actual number of beats played by the humans remains more
or less constant across the models, the registered number of beats decreases dramatically between
the stepwise model and the other two models, while the number of beats by KASPAR increases.
Thus, in the cases of linear and hyperbolic models KASPAR appeared less responsive to the
playing of the participants. This result may account for the participants’ higher evaluation scores
for the stepwise model, compared with the linear model.

Significant differences were found between the models in terms of the ratio of turns in which
KASPAR registered the beats from the human participant to the total number of turns (F(2,46) =
77.18, p < 0.001), see Figure 14.

Figure 15 suggests that KASPAR registered more human activity in terms of turns with both
the stepwise and the hyperbolic models than with the linear model. According to Table 9, this is
also clear in terms of the actual number of non-zero turns, despite the much higher number of total
turns with the linear model. The difference in the actual number of turns was highly significant
as well (F(2,46) = 28.78, p < 0.001). The above results suggest that in terms of turn-taking,
KASPAR was more ‘aware’ (in terms of detection of beats) of the participants’ behaviour in
the stepwise and hyperbolic conditions than in the linear condition. The time spent drumming
by the participant as registered by KASPAR may also serve to differentiate between the linear
models and the two other models. There were significant differences between the three models
(F(2,46) = 1897.71, p < 0.001), see Figure 15.

Figure 15 suggests that the amount of time in which KASPAR registered the human participant
as drumming differs dramatically across the three models. The stepwise model is the most effective
in this sense, followed by the hyperbolic model with the linear model being the least efficient.

These measures do suggest that some of the participants’ preferences for the stepwise and
hyperbolic model can be explained by objective measures of KASPAR’s responsiveness to the
actual drumming of the human participants. They do not, however, explain why the participants
equated the stepwise and hyperbolic models in terms of enjoyment.

3.5. Discussion of results

Overall, the results confirm our initial expectations, namely that different computational models
will lead to different human–humanoid drumming interactions (as evaluated subjectively and
objectively).
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Figure 13. Total number of beats for (1) detected human beats (2) KASPAR’s beats and (3) actual human beats.

Figure 14. Ratio of turns with registered human beats to total number of turns according to the model.

As stated in the previous section, Model 2 gave the least play time to the human and KASPAR.
The impression that the participants may have got is one where KASPAR did not seem to imitate
the human participants’ game at all, but rather ‘played on its own’ (KASPAR would play at
least one beat even when it did not detect a response from the human participant; Figure 16).
As a consequence, KASPAR acted as a leader in the game most of the time. There were also
many overlaps between KASPAR’s play turns and the human participants’ play turns in Model 2.
This could be because either KASPAR or the human participants interrupted each other. More
importantly, this would also cause the loss of detection of humans’ beats (as described above,
KASPAR would not ‘listen’ when it was playing). Replies to the open-ended questions in the
post-game questionnaires related to this game described KASPAR’s behaviour using the terms
like ‘annoying’ or ‘rude’. Thus, both the behavioural data as well as the questionnaire results
describe an interaction in which the interaction’s rules for turn-taking was not apparent to the
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Figure 15. Total time registered for drumming according to the models.

Figure 16. Representation of two beats in an example sound wave.

human participant leading to repeated breakdowns in the social interaction, which in a human–
human interaction would be described as impolite and a source of stress. Together, these measures
provide an explanation as to why the participants disliked the Model 2 game.

As stated in the previous sections, since Model 1 uses the previous play time as a threshold, it

Q6

ensures that the current play time is at least as long as the previous play time for the human player.
This longer play time (compared with other games) led to both players playing longer turns which
may have created the impression that the tempo of the game was slower than in the other games.
This could explain the preferences for Model 3 since the tempo of this game would be experienced
as faster, having more exchanges and being perceived as more interactive. While the observed
play time for the human participants was shorter than for Model 1, it was still long enough to
allow for a coordinated game. This, coupled with the emergent nature of KASPAR’s drumming
in Model 3, led it to being viewed as more ‘natural’ by participants. In this game, both the human
and the KASPAR played 3–4 beats in every turn (the model’s probability distribution favours
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Figure 17. A single drumming bout is presented in detail. It is not a single peak but consists of many local
minima/maxima.

high values), with fewer gaps in-between the participants’ drumming compared with Model 1,
and far fewer overlaps compared with Model 2 between two turns. But Model 3 was not bound by
thresholds by nature, so it seemingly exhibited a degree of independence in regards to the human
participants’ performance, which some of the participants reported as being annoying. Some
participants, however, did express a liking for this, though, for example, one participant described
this phenomenon like ‘teaching her son to play a drum’. Similarly, another participant asked if
she should consider KASPAR as a professional drummer or a child while she commented on the
games, since it ‘looks like a child drumming rather than a professional’ (Figure 17). Statements

Q6

like this support the notion, suggested by the quantitative data, that the emergent turn-taking of
Model 3 was perceived to have more in common with a human–human interaction than that of
the other models.

In Model 1 the human participant was given more play time than KASPAR, but KASPAR played
more beats than the human participants. However in Model 3, KASPAR and the participant were
given almost equal durations and opportunities to play. So in the case of Model 3, KASPAR could
act equally as a follower as well as a leader and thus had more impact on the play and played
longer rhythms.

One should also note that there is a considerable amount of zero turns in all the three models.
However, only in the case of Model 2 was this amount high enough to affect the overall game.
When these turns were distributed among normal turns as in Model 1 and Model 3, they did not
dominate the behaviour but were compensated for by the non-zero turns. But for Model 2, zero
turns seemed to dominate the whole game and were described by the participants as a source of
dislike for the model/game type.

Although there were gaps between the humans’ and the robot’s turns in Model 1, while in
Model 3 KASPAR did not seem to imitate the human participants in every turn, both models were
successful in terms of emergent turn-taking. As a consequence, according to the participants’
questionnaire feedback, they preferred Model 1 and Model 3 to Model 2.

As seen in the previous study, the participants actively explored the limits of KASPAR’s drum-
ming as well as the rules of the game, and adapted themselves to the games over time, which
resulted in better games in terms of turn-taking and synchronisation in the later games. Thus, we
observed longer sequences of playing without any overlaps or gaps between the turns. This sug-
gests that the human participants were not passive participants in this game, but actively adapted
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themselves to the capabilities of the robot on their own initiative. This finding is consistent with
the notion of recipient design, a concept from ethnomethodology, where we find that natural
speech is always designed for its recipient (i.e. the interaction partner) and interpreted as having
been so designed. Here, the speaker creates his or her turn ‘with recipients in mind, and listeners
are motivated to “hear” a turn that is for them and all participants closely and constantly track
the trajectory of the talk to hear “their” turn’ (Boden 1994, p. 71). According to conversation
analysis, this turn-taking is integral to the formation of any interpersonal exchange (Boden 1994,
p. 66). While in our study the robot’s behaviour was controlled and based on simple computational
models, we found that the participants used their recipient design skills in the interaction. The
issue of recipient design will be explored further in our future research.

4. Conclusions

This article presented basic research into the regulation of interaction dynamics during
social/playful HRI. We introduced an experimental setup based on human–humanoid drumming
games as a suitable scenario for HRI research on non-verbal cues, synchronisation, timing and
turn-taking using drumming games. Generally, the results showed that believable and enjoy-
able human–humanoid interaction dynamics can be created with minimal models underlying the
robot’s turn-taking behaviour.

Specifically, the results from this experiment suggest that there was active adaptation on the
part of the participants, throughout the games. However, the efficiency of such adaptation may be
countered by the participant fatigue/boredom reported in the later games, which highlights the
essential role of research into how to maintain a user’s interest in the interaction with a robot. One
should note, however, that the results also indicate a trade-off between the subjective evaluation of
the drumming experience from the perspective of the participants and the objective evaluation of
the drumming performance, as well as individual differences in how the participants approached
the game. The participants as a whole preferred a certain amount of robot gestures as a motivating
factor in the drumming games that provided an experience of social interaction. However, the
sample was divided in terms of what degrees of gestures were appropriate. The results highlight
the need to ascertain to what degree the strategies used by a robot to encourage and maintain interest
in such interactions, interfere with the task the interaction is centred around, as well as consider the
role of individual differences in the appropriateness of these strategies. Experiment II showed that
the different minimal, probabilistic models that controlled the robot’s interaction dynamics led
to different subjective evaluations by the participants and different dynamics in the performances
of the games. The results from the questionnaires and behavioural data analysis suggest that the
participants preferred the models which enable the robot and human to interact more and provide
turn-taking closer to ‘natural’ human–human conversations, despite the differences in objective
measures of drumming behaviour.

Overall, the results from our studies are consistent with the temporal behaviour matching
hypothesis (Robins et al. 2008) which concerns the effect that the participants adapt their own
interaction dynamics to the robot’s. Note that our child-sized robot KASPAR, despite some human-
like features such as a face, arms and few facial expressions, is still mechanical in nature (e.g. the
movements are not following the biological models of movement generation, the facial expres-
sions are minimal and not based on the models of human facial expressions, and in terms of its
appearance the robot has a slightly cartoon-like appearance where we deliberately did not cover
up metals and wires, e.g. protruding from the neck and wrists). But participants still adapted to
the dynamics of this robot which highlights the importance of considering interaction kinesics in
HRI design in general, not only in research attempting to exactly copy human-like appearance
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and behaviour.10 A systematic study of the impact of robot appearance on participants’ behaviour
in human–humanoid drumming experiments is an interesting area of research but goes beyond
the scope of the current article.

There are several noteworthy limitations of this work including methodological as well as
technological limitations. Ideally, in order to generalise the results towards a wider user group
the study could be repeated with participants of different age ranges, personality traits, cultural
background, gender, etc. Such studies would help to explain group differences (e.g. concerning
why the subjective evaluation of the participants in our study differed). Different subjective rating
scales could be used. Qualitative analysis of the human–robot behavioural data (e.g. by using
conversation analysis)11 could flesh out further details of the interaction. The timing algorithms
used in Experiment II could be refined in future work alongside a systematic variation of different
types of robot gestures in order to find out which of these gestures have the most impact on the
interaction. It may also be interesting to replicate the experiment with a different robot that had a
broader spectrum of possible drumming behaviours, as this may not only enrich the interaction but
also provide additional data for the performance evaluation. Last but not the least, an electronic
drum could be used in order to ease the detection of the beats.

5. Future work

The HRI experiments presented in this article were based on a drumming scenario and we found
that this is a very suitable task for the study of HRI and adaptive behaviour. However, our long-
term research aims to go beyond a simple drumming synchronisation task and to develop richer
social interaction between the robot and the human partner, which would not simply focus on
synchronisation to produce the same tempo, but could provide a successful (in terms of the task)
as well as enjoyable social experience to people, while allowing us to gain insight into the role of
non-verbal interaction kinesics in sustaining and regulating HRI.

Based on these results, future work will investigate further issues related to interaction kinesics
in general, and recipient design in particular. As mentioned above, several factors regarding
robot non-verbal gestures as well as computational models underlying the robot’s turn-taking
behaviour seem to influence the objective performance and subjective evaluation of the interaction
experience. Future work needs to investigate these further, including other factors such as the con-
sideration of individual participants’preferences, personality profiles, as well as long-term effects.

In light of our promising results from using gestures, we foresee a system wherein KASPAR’s
behaviour may be motivated and rewarded by the human partner, through the partner’s gestures
and other expressive actions, and respond to these by playing novel acoustic rhythms and using its
own repertoire of expressions and gestures to provide feedback to the human interaction partner,
and, importantly, to become a ‘partner’ in the interaction that is not only responding but also taking
the initiative proactively. If our results can be extrapolated, then such a system will be capable of
motivating and sustaining interaction.

One interesting direction for future work concerns eye gaze, which plays an important role in
regulating human–human interaction and communication (e.g. Kendon 1967; Farroni, Johnson,
and Csibra 2004), and possibly also HRI kinesics (Mutlu, Shiwa, Kanda, Ishiguro, and Hagita
2009). While the study of gaze cues goes beyond the scope of the article, in our future work we
aim to study the role of eye gaze (mutual gaze, eye gaze direction, etc.) in HRI games.

Research on interaction kinesics, as exemplified in this work, can potentially contribute to a
wide range of application areas of social robots, in particular those that require long-term and
repeated interaction (e.g. robots as assistive companions in the home, or robots as therapeutic
or educational playmates for children). In such situations, the social acceptance of the robot,
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including the users’ enjoyment of the interaction as well as the performance of the system in
collaborative tasks, is crucial to the success of a particular application.
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Notes

1. In this article, we use the terms ‘interactant’ and ‘interaction partner’ (or ‘partner’ in short) synonymously. Thus,
the term ‘partner’ does not imply a long-term relationship or affective bonding between human and robot.

2. KASPAR stands for kinesics and synchronisation in personal assistant robotics. The robot has been developed by
our research group.

3. Note: KASPAR has previously been used successfully in studies involving children (Robins et al. 2008), includ-
ing children with special needs (e.g. Robins, Dautenhahn, and Dickerson 2009) as well as adults (Kose-Bagci,
Dautenhahn, Syrdal, and Nehaniv 2007; Kose-Bagci, Dautenhahn, and Nehaniv 2008). The work presented in this
article is focussed on adult participants.

4. In this article, the terms ‘deterministic’ and ‘probabilistic’ turn-taking refer to the robot’s control algorithm, that is,
whether the robot behaves according to a deterministic or probabilistic algorithm that determines how it responds in
a given moment given its sensory input. This point deserves clarification since any interaction involving humans has
non-deterministic interaction dynamics as far as the overall human–humanoid interaction dynamics is concerned,
since one cannot predict exactly how humans will behave in the interaction.

5. Preliminary results from the first 12 participants were summarised in Kose-Bagci et al. (2007).
6. Preliminary results with only an initial analysis based on 12 of the 24 participants are presented in Kose-Bagci et al.

(2008).
7. KASPAR needed at least 0.3 s between beats to get its joints ready, so that, even if the human played faster,

KASPAR’s imitations still required minimum pauses of at least 0.3 s between the beats.
8. Note: We had also tried to start using beats and stop using time with simulated data, but the current combination

resulted in more drumming time and a higher number of beats for both human and KASPAR, so this combination
was preferred in the current implementation.

9. See footnote to Figure 6 above
10. For example, see android research (MacDorman and Ishiguro 2006) or other studies into the importance of robot

appearance in HRI experiments (e.g. Walters et al. 2008).
11. See Robins, Dickerson, Stribling, and Dautenhahn (2004b) for an example of using conversation analysis in HRI

research.
12. Similar to Kotosaka and Schaal (2000). Synchronised robot drumming by neural oscillator. International Symposium

on Adaptive Motion of Animals and Machines.
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Appendix 1. Audio analysis

The acoustic sound waves recorded by the sound grabber module are converted to digital music samples, which allows
the use of mathematical computations and sample-based techniques. To detect the patterns of a sound wave, a filter-based
method is used, based on the work of Kose and Akin (2001) originally used to detect visual patterns. This method which is
called Audio Analyser was used in the drumming experiments with KASPAR as well as a different humanoid robot (iCub)
in real time. Also, in work not reported in this article, it was integrated to Webots software (Cyberbotics) to be used in a
simulated drummer modelled after the iCub robot. The real power of the method comes from its being computationally
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efficient, simple, fast and real time. The drumming experiments are real time, and to have games which appear ‘natural’
with short durations between turns, we need to identify the bouts of drumming as soon as they are produced. Therefore,
it is not possible to record them first and perform off-line analysis, or use efficient but complex methods in terms of
computational resources and time. Also, although the human participants are expected to use either the end of a pencil or
one hand to hit the toy drum, many different strategies were observed (and people were not discouraged to use them): they
were observed to use the tambourine-style bells around the drum, use both hands or sometimes use a pen or a stick to hit
the drum. Therefore, it is not trivial to train the system with ‘normal’ drumming bouts. Also, the high inner noise of the
humanoid, besides the high noise around the drumming area (due to people present in the room), makes the environment
very challenging and require us to set up high noise filters. The noise filters should be high enough to filter out the inner
and outer noise, but low enough to pick up as many drumming bouts as possible. Since we use participants from both
genders and all age groups, we could observe very frequent or very light bouts of drumming which are even harder to
analyse. In the current implementation, we only use audio feedback to detect the drumming bouts, but in future work, we
plan to use visual feedback also. However, as we mentioned earlier, the participants were allowed to use various different
ways to produce sound during their drumming games; so even the addition of visual feedback would not bring optimal
success in bout detection.

To detect the patterns inside a sound wave, a filter-based method is used.12 In this method, a four-item mask is applied
to every sample in the sound wave, and a filter is constructed. The peaks in this filter show the edges in the sound wave.
A mask of [−1 −1 1 1] is used to detect rising edges, and another mask of [1 1 −1 −1] is used to detect falling edges.
Any part of the sound wave between a rising and a falling edge is a region which represents the beat in the sound wave.
This is because a beat is represented by a set of points and not a single point. Once the regions are detected, a threshold
is applied on the average value of the points in the region, to detect the ‘real beats’ and discard noise. This method is
computationally simple but fast and efficient.




