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Abstract

In this paper we propose a computational model that describes how observed behaviour can in�uence an

observer's own behaviour, including the acquisition of new task descriptions. The sources of in�uence on our

model's behaviour are: beliefs about the world's possible states and actions causing transitions between them;

baseline preferences for certain actions; a variable tendency to infer and share goals in observed behaviour; and

a variable tendency to act e�ciently to reach rewarding states. Acting on these premises, our model is able to

replicate key empirical studies of social learning in children and chimpanzees. We demonstrate how a simple

arti�cial system can account for a variety of biological social transfer phenomena, such as goal-inference and

over-imitation, by taking into account action constraints and incomplete knowledge about the world dynamics.
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1 INTRODUCTION

The behaviour of other individuals is a crucial source of information for social animals and particularly for young

children. On a physical level, there are two sources of information available when observing an individual act

� the motor patterns the individual performs, and the outcome of the actions. Another information source

is the intention behind the behaviour, which may be inferred from the actor's choices among possible actions.

Knowledge of how the world works and expectations about others' normal behaviour are usually necessary for

extracting useful information from such observations. Di�erent social learning processes exploit these di�erent

information sources to di�erent degrees (Call & Carpenter, 2002).

Two broad categories of social learning, focusing on di�erent kinds of information, are emulation and imitation

(Call & Carpenter, 2002; Whiten et al., 2004). In emulation, the observer learns about results and changes that

can be accomplished in the environment, and sets about to replicate such states and changes, not necessarily

paying heed to the speci�c observed motor patterns. In imitation, the observer copies the speci�c motor patterns

and consequent results that are jointly inferred to have been part of the behaviour intention. Because imitation,
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unlike mimicry, is de�ned as goal-directed, not every part of an action sequence is necessarily copied � for example,

one would not generally copy a cough when repeating a spoken sentence.

Young children and apes are able to both imitate and emulate, but utilise the di�erent strategies to di�erent

extents (Whiten et al., 2004; Want & Harris, 2002; Tennie et al., 2006). Tasks where more than one action can

achieve the same e�ect can be used to con�rm that subjects do imitate speci�c motor patterns. For example,

chimpanzees and two-year-old children copy a demonstrator's choice of a push or twist action to remove a bolt

to open a box (Whiten et al., 1996). Children can be selective about which actions should be imitated (Gergely

et al., 2002; Williamson & Markman, 2006), but in general they are rather prone to imitate even parts of action

sequences that are not obviously necessary to achieve the goal � a phenomenon known as over-imitation (Horner

& Whiten, 2005). Over-imitation can be diminished by reducing social cues (McGuigan et al., 2007; Brugger et

al., 2007) or by increasing the urgency of task completion (Lyons et al., 2005), and it has been argued that it may

occur for a variety of social reasons (Nielsen, 2006), or because the observers encode the demonstrator's actions

as causally meaningful (Lyons et al., 2005).

Other species, such as dogs, have also been shown to switch strategies after having observed a demonstration

(Range et al., 2007). The aforementioned studies have identi�ed distinct behavioural patterns of social learning,

but little is known about the conditions that prompt these behaviours, the underlying neural mechanisms that

explain them or even how the switching between them is controlled.1

The goal of this study is to provide a simple computational model that may allow biologists and psychologists

to plan new experiments leading to a deeper understanding of these mechanisms. To this purpose, we provide a

computational framework for the di�erent behaviour models suggested in the literature that accounts for salient

aspects of social in�uence, replicating key empirical results. We argue that the ability of our model to replicate

di�erent classes of behaviour by making simple trade-o�s between the di�erent �sources of information� available

to the learning agent provides a signi�cant contribution toward a parsimonious interpretation for these classes of

behaviours. We also discuss several predictions from our model that may suggest interesting new experimental

paradigms.

We note that there are other mechanisms of social learning, such as stimulus enhancement, that are cognitively

simpler and therefore of less interest to cognitive psychology, but that can also confer evolutionary advantages

(Noble & Franks, 2002). Melo et al. (2007) model some of these simpler social learning mechanisms using a

somewhat similar formalism.

2 MODEL

We begin by giving a summarised description of our model of an individual (human or otherwise) observing and

performing behaviour (see Fig. 1). We provide only a sketch of the algorithm and refer to Appendix A for further

technical details.

1For a study of the brain regions involved in action understanding in typical and atypical situations, we refer to the work of Brass
et al. (2007).
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Figure 1: �Strategy weighting triangle�, representing the combination of several simpler behaviours: Non-social
behaviour, emulation and imitation. The line separates behaviour that appears to be socially in�uenced from
behaviour that does not, but does not necessarily correspond to the agent's reasoning.

The demonstrator and observer generally act within the same world (for exceptions see below), which can be in

a number of possible states, but only in one state at any one time. Transitions between states are caused by actions

that the demonstrator takes during demonstration and the observer takes after exposure to the demonstration.

These possible states and transitions are predetermined and constant during the demonstrator's or observer's

actions. The observer has knowledge of all the possible states and transitions of the world it acts in. Incomplete

world knowledge is simulated by certain possible real world states or transitions being absent from the world

model that the observer acts in (see below).

Our model was kept as simple as possible while being capable of reproducing key biological results. It takes into

account the agent's baseline preferences for di�erent actions and the information available from the demonstration.

Speci�cally, it considers the end-e�ect of the demonstrated actions as well as the possible intentions of the

demonstrator (inferred from the demonstrated actions). The model also takes into account the learning agent's

knowledge (even if imperfect or incomplete) about world dynamics and possible state transitions. We do not

consider explicitly the way this knowledge can be acquired, but rather assume that knowledge about the world,

be it incomplete or imprecise, is acquired prior to or as a consequence of observing the demonstration.
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Each of the aforementioned sources of information (baseline preferences, end-e�ect, and inferred intention) is

processed by the observer in a speci�c �module�. For any given world state, each module computes a preference

score for each possible course of action. The list of preference scores is called a utility function and generally

denoted using the symbol Q. For example, the end-e�ect replicating module would rank actions in the following

descending order of preference: an action leading directly to the �nal e�ect; an action that can lead indirectly to

the �nal e�ect; an action that makes the �nal e�ect unreachable. The modules process information as follows:

• The module addressing the baseline preferences of the agent evaluates actions in terms of energy consump-

tion, which it prefers to minimise. So, for example, this module always prefers to perform �no action�

than any other action. The utility function QB associated with this module therefore ranks possible action

sequences according to their overall energy consumption.

• The end-e�ect replicating module computes a utility function QE that evaluates the actions in terms of their

probability of reproducing the observed result/e�ect. In our simulations, this e�ect is always taken as the

�nal state observed in the demonstration, and this module will select the sequence of actions minimizing the

number of steps until this �nal state is reached. In particular, it need not select the same actions observed

in the demonstration.

• Finally, for the intention replicating module, the utility function QI is more complex to compute, since it

involves inferring the demonstrator's intended goal. We therefore describe this module in more detail. It

infers the intention behind the demonstration using a teleological argument, by assuming the demonstrator

is goal-oriented and is thus trying to ful�l some particular goal. The demonstrator's goal is assumed to be

one or more desired states and/or transitions between them. Notice that this is a rather broad de�nition

of goal, that may also encompass actions (i.e., state transitions) for their own sake, independently of the

states they reach. This broad de�nition of goal allows the possibility that our model imitates actions without

understanding the deeper purpose behind them, in cases in which it infers only actions themselves to be the

intended part of the demonstration.

The module operates by �enumerating� all the possible goals in the current system, calculating for each one

the relative probability that it would give rise to the demonstrated behaviour, and choosing the one that

maximises this probability. The module's calculated utility function therefore ranks the actions with respect

to the most likely goal, given the demonstration.

To illustrate the interaction between the di�erent elements in our learning model, consider the simple example

depicted in Fig. 2. In this example, the system consists of only two states, X and Y , the transition between

which is triggered by any of the actions of the agent. Supposing that the demonstration consists of action A, let

us analyse the output of each of the modules in our model in both scenarios in Fig. 2.

The module addressing the baseline preferences would simply output a ranking of the two actions. For example,

if the baseline preference stated that the agent preferred action B to action A, then we could have QB(·, A) = 0

and QB(·, B) = 1.
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Figure 2: Simple example scenario in which the world can be in one of two states, X and Y , and the agent can
trigger the transition between these by choosing either of the available actions.

The end-e�ect replication module, in this case, merely states that the agent should reach the �nal state (Y ).

If both actions are equally successful in achieving that, then this means that QE(·, A) = QE(·, B) = 1. In this

case, the e�ect-replication module does not bias the action choice toward any of the two possible actions. It is

interesting to note that the same would not hold if, for example, action A only succeeds in achieving the transition

with 0.9 probability. In this case, the end-e�ect replication module would output QE(·, A) = 0.9 and QE(·, B) = 1.

Finally, the intention replication module would, in this case, output QI(·, A) = 1 and QI(·, B) = 0, translating

the fact that the agent �nds the goal �reach state Y using action A� to be more likely than merely �reach state

Y �, because action B could have been used, but was not.

Note that intentions as inferred by this module may best correspond to either motor intentions or prior

intentions (Carpenter et al., 2002; Searle, 1983) or a combination of the two, depending on the speci�c case.

When only an action is inferred to be the intention, it corresponds best to the concept of motor intention, but

when reaching a particular state is inferred to be part of the intention, then it can be seen as modelling a prior

intention. This aspect of model interpretation is complicated by the fact that prior intentions exist on di�erent

levels, for example, the prior intention behind the motor intention to push a switch may be simply to move the

switch from one position to another, or it may also be to turn on a light. We take this into account when discussing

our results.

We refer to Appendix A and to the supplementary material for further details on how each module computes

the corresponding utility function.

The three sets of behaviour preferences (i.e., the three utility functions) are combined to yield a �nal utility

function, Qout, de�ned as

Qout = λBQB + λEQE + λIQI ,

where λB , λE and λI are three positive weights verifying λB + λE + λI = 1. The behaviour the agent actually

performs is simply the preferred behaviour as de�ned by the utility function Qout.

Figure 1 provides a pictorial description of the proposed model. Each vertex of the �strategy weighting triangle�

corresponds to the behaviour computed by one of the modules described above. The value of the three parameters

λB , λE and λI can be chosen in order to di�erently weight the contribution of the corresponding behaviours' to

the �nal one. The three extreme behaviours are:

• Following baseline preferences, thus ignoring the demonstration (non-social behaviour);
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• Emulation, where the agent replicates the end-e�ect of the observed actions; and

• Imitation, where the agent replicates the inferred goal/intention of the demonstrator.

The inference algorithm used in the intention replication module samples the space of possible goals in the

world system, computing their likelihoods given the observed demonstration. However, in many situations there

may be several di�erent goals that are equally likely to produce the observed demonstration. In such cases,

goals with tied probability are ranked randomly, which, when combined with the utility functions from the other

modules (that have no random component), leads to stochasticity in the �nal performed behaviour, as will be

apparent in the next section. To compensate for this stochasticity we perform 1, 000 simulation runs for each

condition and for each modelled experiment.

Finally, we note that di�erent choices of parameters will lead to di�erent combinations of the resulting be-

havioural preferences computed by each of the three modules and, thus, to di�erent �nal behaviours. We do

not propose a method for choosing these weights, but observe that, in general, their choice for each particular

individual will depend on its social, environmental and internal context.

3 SIMULATIONS

In this section we model three well-known social learning experimental paradigms to assess how well our model

can replicate the corresponding results. We also perform a simulation that does not correspond to any existing

experimental paradigm.

3.1 Imitation of the inferred intentions of observed behaviour

We begin by demonstrating that our model can replicate the tendency of primates to interpret and reproduce

observed actions in a teleological manner � that is, in terms of the inferred goals of the action (Csibra & Gergely,

2007). For example, Bekkering et al. (2000) allowed 3- to 6-year-old children to observe a demonstrator reaching

across her body to touch a dot painted on a table to one side of her, using the hand on her other side. Children

tended to copy the dot touching action, but not the use of the contra-lateral hand. However, when the same

action was performed without a dot, the children's tendency was to imitate the use of the contra-lateral hand. In

the �rst case, the children interpreted dot touching as the intention, and therefore chose their own easier way to

touch the dot. In the second case, as there was no clear target of the action, the action itself is interpreted as the

intention and is therefore imitated more faithfully.

Carpenter et al. (2005) designed an experiment with the same logic but adapted for infants. A demonstrator

moved a toy mouse across a table from one point to another, using either a �simple� action or a �stylised� action

(i.e. placing the mouse at a particular location by hopping or sliding). In one condition, the �nal point of the

move was inside a little house, and in the other condition, no house was present. Similar to the older children in

the study of Bekkering et al. (2000), and presumably for similar reasons, the 14- and 18-month-old tested in this
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experiment showed a much greater tendency to replicate the speci�c mouse moving action observed when there

was no house to move the mouse into. We present our simulation in terms of the Carpenter et al.'s (2005) study,

but the results are generalisable.

Figure 3 represents the world dynamics for this problem. We assume the mouse to be in an initial, resting

state, from which it can transition into the �moved� state using either a stylised or a simple action. In the house

condition there is also an �in house� state that can be reached from the �moved� state. For the no-house condition

there is no �in house� state, only the �initial� and �moved� states. In each simulation, the observer is exposed

(a) Condition with the toy house.

(b) Condition without the toy house.

Initial
position

Mouse
moved

(midway)

Mouse in
house

Initial
position

Mouse
moved

Stylised
place

Stylised
place

Simple
place

Simple
place

Stylised
place

Simple
place

Figure 3: World model for the �rst set of simulations: (a) Condition with the toy house and (b) condition without
the toy house. Circles represent world states and arrows represent the transition between them. The arrows are
labelled according to the action inducing the transition. We omitted the �No action� possibility from the diagram,
as it does not induce any state transition.

to one demonstration (of the stylised action) and then is allowed to act. The observer has a baseline preference

(derived from energetic considerations) for using a �simple� over a �stylised� place. It can also choose to do nothing
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(�No action�) and has a baseline preference for the latter option over the former two. In the house situation the

end-e�ect module uses the simple action to reach the �nal state, but, for the non-house situation, the end-e�ect

module is irrelevant.
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Figure 4: Percentage of simulation runs in which the modelled agent replicates the demonstrated stylised action as
λI (the weight of the intention replicating module) is increased, in the house and no-house conditions. Whenever
the stylised action was not replicated, the simple action was performed. The weight of the baseline preference
module, λB , is kept constant with a value of 0.2. Recalling that λI+λB+λE = 1, λE (the weight of the end-e�ect
replicating module) decreases to 0 as λI increases to 0.8.

The results can be found in Figure 4. In all results shown in this work we perform a variation of the parameters

and evaluate the resulting behaviour. In this case we see what happens when increasing the tendency to follow

the inferred intention of the demonstration (λI) while reducing the tendency to replicate the end-e�ect (λE). In

the �with house� condition the probability of choosing the demonstrated action increases with λI . In the �no

house� condition the resulting behaviour is usually to faithfully imitate the demonstration. The only parameter

values at which the empirical results are not replicated are when λE is close to zero � in other words when the

agent gives no weight to the �nal observed e�ect. This results reproduces the �ndings of Carpenter et al. (2005)

and therefore con�rms the logic of the standard interpretation of this experiment � the results can be explained

by the assumption that the infant infers what the demonstrator's intention was, adopts the same intention, and

imitates only as much as is necessary to achieve it.
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3.2 Sensitivity to action constraints in goal-directed imitation

In an experiment originally designed to test infants' memories of novel actions, Meltzo� (1988) exposed 14-month-

olds to a demonstrator who performed unusual actions on objects, and found that the infants reproduced the

actions when presented with the objects a week later. One of the objects was a box with a panel that lit up when

the demonstrator touched it with his forehead, and most infants copied the use of the forehead rather than using

their hand. Gergely et al. (2002) extended this experiment by including a condition in which the demonstrator

was restricted and could not use her hands because she was holding a blanket wrapped around herself. In this

case, only 21% of the infants copied the use of the forehead, whereas in a control condition replicating the study of

Meltzo� (1988) without a held blanket, 69% of the infants copied the use of the forehead. Possibly, in this latter

case, infants detect no constraints upon the demonstrator's action and therefore encode the use of the forehead

as a speci�c part of the intention, whereas in the restricted case, they detect the constraint as a non-task related

reason for the use of the forehead and as such do not encode the speci�c action as part of the intention.

We simulate this experiment, using world models that re�ect the di�erent possible transitions in the constrained

and unconstrained conditions (Fig. 5). There is a baseline preference for using the hand over using the head to

contact the panel. Again, the observer can also choose to do nothing (�No action�) and has a baseline preference

for the latter option over the former two. In this experiment, the �nal e�ect module does not distinguish between

the two possible ways of activating the switch, while the imitation module prefers the head in the unrestricted

condition and is indi�erent between the two in the restricted condition. This is due to the fact that the constraints

of the demonstrator were taken into account when inferring the intention.

Again, the simulation results of Figure 6 closely replicate those from the empirical study. Unless λI (the

tendency to replicate the inferred intention) is zero, the use of the head is more likely to be copied in the hands-

free condition. The reason is that, in the hands-free condition, head use tends to be classed as part of the intention

because it was chosen over a possible alternative, whereas in the restricted condition there was no alternative.

Our simulation therefore con�rms the logic of part of Gergely et al.'s (2002) analysis of their empirical results,

both in terms of imitation of the inferred intention and of sensitivity to the constraints on the demonstrator.

Note, however, that Gergely et al. (2002) also go a step further in their interpretation � they suggest that in the

unrestricted condition the infants �may have inferred that the head action must o�er some advantage in turning

on the light�. There are two ways in which this goes beyond the simplest logic necessary to explain the results,

as demonstrated by our model. Firstly, it is not necessary to assume that the infants believed that the method

used o�ered an advantage. Our model replicates the results by inferring the intention to act in a certain way,

but it does not infer anything about the underlying motive for the demonstrator's choice of intended action. It

is therefore possible that in cases such as this, infants may imitate intended actions without necessarily making

any inferences about why those actions may or may not be e�ective. Note however that in cases where causality

is more transparent, infants may make such inferences (Brugger et al., 2007).

Secondly, it is not even necessary to assume that the inferred and adopted intention was to turn on the light.

The inferred intention may have been the prior intention of turning on the lights, but a simpler and su�cient
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(a) Unrestricted condition.

(b) Restricted condition.

Panel
untouched/
Light off

Panel
touched/
Light on

Head

Hand

Panel
untouched/
Light off

Panel
touched/
Light on

Head

Figure 5: The world model representing the experiment of Gergely et al. (2002). In the restricted condition, the
action �Use hand� is not available, representing the fact that the agent is assumed to appreciate that hand use
is not possible in this situation. The observer does not operate under constraint even after having observed the
constrained condition. As before, we omitted the �No action� possibility from the diagram, as it does not induce
any state transition.

interpretation of both our model and the empirical result is that the intention was simply the motor intention of

contacting the panel (for recent demonstrations of how infants have di�culty motivating behaviour by knowledge

of such arbitrary contingencies, see Klossek et al., 2008; Kenward et al., 2009).

3.3 Sensitivity to imperfect knowledge

The simulations in Subsections 3.1 and 3.2 replicated experiments in which, in the right conditions, children copy

faithfully a demonstrated action, even if it is not necessary to achieve the desired end state. These results were

replicated most accurately at intermediate values of λI (the tendency to replicate the inferred intentions) � when

this parameter is close to 1, the observed action sequence was almost always copied faithfully even when it is

plausible that speci�c action choices were not an integral part of the intention.

To investigate what happens when the learner does not have complete knowledge of the world dynamics, we

now model a type of experiment that has been designed to further investigate the imitation/emulation balance in

di�erent circumstances and ages, and also comparatively with chimpanzees.
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Figure 6: Percentage of runs in which the modelled agent replicates the demonstrated use of head as λI (the
weight of the intention replicating module) is increased. Whenever the action was not performed with the head,
it was performed with the hand. The weight of the baseline preference module, λB , is kept constant with a value
of 0.2 (so λE , the weight of the end-e�ect replicating module, decreases to 0).

The archetypical such experiment includes the demonstration of a sequence of actions, not all of which are

actually necessary to achieve the outcome. Horner and Whiten (2005) presented preschoolers and chimpanzees

with two identical boxes, one opaque and one transparent. The demonstration consisted of inserting a stick into

a hole on the top of a box and then into a hole on the front of the box, with the latter step causing the retrieval

of a reward. The insertion of the stick into the top hole was unnecessary in order to obtain the reward, but the

causal physical relations were only visible with the transparent box. The results showed that 3 and 4-year-old

children tended to imitate both actions no matter whether they had observed and were tested on the transparent

or opaque box. On the contrary, chimpanzees were able to switch between emulation and imitation if causal

information was available; after having observed demonstrations with a transparent box, the chimpanzees had a

greatly reduced tendency to insert the stick into the upper ine�ective hole.

We simulated this experiment, using the model depicted in Figure 7. In the experiment in Subsection 3.2 the

learning agent considered that only the demonstrator had a restriction, i.e., it could not use the hand, but that

the learning agent could use the hand. In this case the learner does not know the real dynamics of the world and
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Insert in
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Insert in
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Insert in
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inserted in

Initial
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Insert in
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Insert in
front hole

Insert in
front hole

Upper hole
inserted in

Initial
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Item
obtained

(a) Transparent box.

(b) Opaque box.

Figure 7: The world model for each of the two conditions in Horner and Whiten (2005). Notice that the di�erence
in the world models represents the di�erent knowledge of the learner about the world in the two conditions, rather
than di�erences in the causal system. We again omitted the �No action� possibility from the diagram.

so has to rely on the demonstration to infer them. In the �transparent� condition the learner knows that it is

possible to directly open the front lock and get the reward. In the opaque condition the learner does not know

that this is possible.

In each simulation (in both conditions), the observer is exposed to one demonstration of the action �Insert

in upper hole� followed by the action �Insert in front hole�, and is then allowed to act. The baseline preference

module makes no distinction between the two actions, i.e., both actions are equally preferable. The observer can

also choose to do nothing and has a baseline preference for the latter option over the former two.

The simulation results greatly depend upon the particular condition considered (see Fig. 8). In the opaque

condition the learner is faced with a lack of world knowledge and so, both the intention and end-e�ect replicating
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Figure 8: Percentage of runs in which the modelled agent replicates the demonstrated insertion into the upper
hole, as λI (the weight of the intention replicating module) is increased. Whenever the upper hole was not inserted
into, the front hole only is inserted into. The weight of the baseline preference module, λB , is kept constant with
a value of 0.2 (so λE , the weight of the end-e�ect replicating module, decreases to 0).

modules can only choose to open both locks to obtain the item. In the transparent condition the end-e�ect

replicating module chooses the most e�cient method, while the intention replicating module infers that the more

complex alternative was intended, because it was chosen over a simpler alternative, and so copies both actions.

With the transparent box, the tendency to insert the stick in the upper hole, which has no visible e�ect, increases

with λI . This shows that, as expected, unless emphasis is placed upon the imitation of inferred intentions rather

than the tendency to simply obtain the reward, the model tends to emulate with the transparent box. With the

opaque box, it is not clear what the e�ect of inserting in the upper hole is, and it is therefore not possible to

know that the reward may be obtained without �rst inserting in the upper hole as is demonstrated. The agent

therefore always inserts in both holes, independently of the value of λI .

Our simulation results suitably replicate the results from both children and chimpanzees, with a higher value of

λI for children. Horner and Whiten (2005) suggest that the di�erence occurs because chimpanzees are primarily

motivated to select the most e�cient method they know to achieve the end e�ect, whereas children are more

motivated to copy the inferred intentions of the demonstration (see also Tomasello et al. (2005)). Imitation in
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cases such as the transparent box has been termed over-imitation because actions are imitated despite the fact

that they serve no visible purpose (Lyons et al., 2005; Horner & Whiten, 2005).

Our model con�rms the logic of the interpretation of the phenomenon of over-imitation in terms of the inferring

and sharing of intended goals, without necessarily understanding the higher level prior intention. Note, however,

that our model does not include an explanation for why children should be motivated to imitate the actions that

do not appear to have an e�ect � the λI parameter is simply set high to enable this motivation.

The model does demonstrate that a complex motivation is not necessary to explain the results of the experiment

modelled here � even a simple automatic tendency to imitate (Dijksterhuis & Bargh, 2001) would su�ce. However,

it is also possible, for example, that children make inferences about the opaque causal structure of actions with no

visible consequence � in other words, that individuals imitate actions because they have encoded them as causing

useful outcomes, even though they don't know how (see Section 4 and Lyons et al., 2005).

3.4 Intermediate behaviors

We now present again the simulation of Subsection 3.2 but now we evaluate the outcome of increasing λI (the

tendency to replicate the inferred intention) while λE is set to 0. This corresponds to completely ignoring the

behaviour coming from the end-e�ect replicating module and slowly �shifting� the interest of the agent from its

baseline preferences toward the replication/imitation of the observed demonstration. In this new situation it is

important to recall that we always allow the agent the possibility of performing no action. In terms of baseline

preferences, we consider that the agent prefers to do nothing over using the hand and prefers to use the hand over

using the head.

The obtained results are depicted in Fig. 9. The result shows that the agent starts by performing no action,

then replicates the observed e�ect, choosing the most e�ective action, and only for higher values of λI does the

replication of the observed action appear. In previous simulations, the agent never chose to perform no action,

because λB (the weight of the baseline preference module) was very small. The existence of an �intermediate�

behaviour (more obvious in the restricted condition) in the absence of the end-e�ect replicating module, is a

prediction of the model that could be very interesting to observe in animals.

Our interpretation of this behaviour is the following. For λI = 0 the agent is focused on �energy conserva-

tion�, opting to do nothing. Increasing the interest for replicating the observed demonstration leads the agent to

compromise, replicating only �part� of the demonstration (touching the panel/turning the light on) while main-

taining the energy consumption to a minimum (using the hand). This corresponds to the intermediate emulative

behaviour. By further increasing the importance of replicating the observed demonstration while reducing the

energy concerns, the agent �nally adopts the imitative behaviour, as observed in our results.
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Figure 9: Rates of occurrence of the di�erent actions as λI (the weight of the intention replicating module) is
increased. When none of the two indicated actions is performed, no action is performed. The weight of the
end-e�ect replicating module, λE , is kept constant at 0, hence λB (the weight of the baseline preference module)
starts at 0.8 and decreases to zero. Note that the agent starts by performing no action, then emulates (although
this emulation does not arise from the end-e�ect replicating module) and then �nally imitates.

4 GENERAL DISCUSSION

The motivation for our study stemmed from the fact that, while many experiments have been conducted investi-

gating the conditions under which children and apes use di�erent strategies for incorporating observed behaviour

into their own repertoire, there is still no de�nitive theory about the mechanisms which enable switching between

strategies.

We started from the taxonomy proposed by Call and Carpenter (2002) to build a unifying mathematical

model of types of social in�uence on behaviour, mainly imitation and emulation. Notwithstanding, we believe

that the separation of socially acquired behaviours into di�erent categories might not necessarily correspond to

independently operating cognitive mechanisms, but to di�erent ways of integrating the mechanisms.

It is worth noting that attention plays an important part in determining the goal of an action or understanding
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the relevant part of a demonstration, something that is not explicit in Call and Carpenter's model. Although we did

not explicitly model such a mechanism, we implicitly included attentional information when designing the world

models we used. This e�ect can be seen in the work of McGuigan et al. (2007), in which the experiment described

in Section 3.3 was replicated, additionally including a condition in which the demonstration was presented on a

video screen with only the demonstrator's hands and the apparatus visible. They found that this degradation of

the demonstration's social context caused 3-year-olds to adopt an emulative rather than imitative approach.

Important evidence of how young children represent and imitate others' actions in terms of intended goals

comes from their ability to socially learn complete actions which they have only seen partially demonstrated, due

to mistakes or inability of the demonstrator (Meltzo�, 1995; Johnson et al., 2001). In another study of our model,

we demonstrated that the learning agent is also capable of handling such accidental or incomplete actions, by

correctly interpreting the task even when there are errors in the demonstration. The inference module is robust

to mistakes in the demonstrated action sequence if these are, in a sense, incompatible with the general goal that

can be inferred from the demonstration (Lopes et al., 2007).

The sources of information that shape the behaviour of our model are three-fold: (i) beliefs about the world's

possible states and actions transitioning between them, and baseline preferences among these actions; (ii) a variable

tendency to infer and adopt intentions of observed behaviour; and (iii) a variable tendency to attempt to achieve

observed results. Acting on these premises, our model was able to replicate the results from three archetypical

empirical experiments from important methodological paradigms in infant, preschooler, and chimpanzee social

learning (equivalent situations are presented in the works of McGuigan et al., 2007; Lyons et al., 2005; Brugger

et al., 2007; Schwier et al., 2006). We have thus demonstrated that a rather parsimonious arti�cial system, using

a single computational formalism and only two variable parameters, can account for a variety of phenomena

observed in empirical social learning experiments, such as goal-inference taking into account action constraints

and incomplete knowledge, over-imitation and �exible constraint-sensitive imitation.

On the basis of the obtained results and established facts from social psychology, we now discuss the interpre-

tation of our model together with possible reasons for some of the observed behaviours, and make several testable

predictions.

A switch between imitation and emulation might be triggered by changing the value (to the learner)

of the social interaction or of the e�ect. Our model produces di�erent behaviours with di�erent weights

on the di�erent modules, representing the in�uence of the importance of each element to di�erent experimental

participants in di�erent circumstances, a subject widely studied in behavioural psychology. These mathematical

values correspond to psychological characteristics such as: urgency, motivation and desire. Lyons et al. (2005)

found that increasing the urgency to solve a task reduced the tendency to over-imitate in 3- to 5-year-olds.

The greater utilization of imitation by children might be explained by a stronger focus on others' intentions,

mediated by social cues. Social cues have been observed to be important in promoting imitation. Infants were

observed to imitate intended results, even when the demonstrator makes a mistake and fails to obtain the result
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(Meltzo�, 1995). Brugger et al. (2007) also found that 15-month-olds were not very prone to over-imitate but

that social cues could increase the tendency. The arguments of Tomasello et al. (2005) support our contention

that the di�erences between children and chimps in the experiment simulated in Section 3.3 can be accounted for

by simply varying the parameter controlling weighting between intentions and end e�ects.

It is also interesting to note that similarly to the way in which children's motivation to imitate can be

manipulated, chimpanzees may also show di�erent tendencies to imitate, depending on background factors. For

example, Tomasello et al. (1993) argue that enculturated chimpanzees are better imitators than wild chimpanzees.

This may be because exposure to a complex human environment equips them with di�erent motivations (or

abilities to process to di�erent types of information, see in the workd of Lyons et al., 2006). It can also be

speculated that even in humans, di�erent backgrounds in terms of exposure to complex action sequences might

similarly a�ect tendency to imitate, via e�ects on motivation or ability.

The development of this unifying model allows us to reason not only about possible interpretations but also

to predict the behaviour in novel or more complex situations. For instance:

�Pure imitation� vs. �pure emulation� behaviours will become more indistinguishable as the com-

plexity of the task increases. If the mechanism of social learning is, as we suggested, a combination of

several strategies, then the resulting behaviour will be di�erent from that which would be produced by any of

the strategies operating individually. In the experiments considered herein, where the agent has to perform only

one or two actions, this e�ect is not visible. However, we expect this aspect to become visible if there is a longer

sequence of optional actions.

One good example is that proposed byWilliamson and Markman (2006) who present one of the few experiments

with a sequence of actions, where the action pattern observed did indeed correspond to a mixed imitative behaviour

(see also the work of Flynn & Whiten, 2008). In experiments with a robot we also observed such a phenomenon,

where the resulting behaviour was neither pure emulation nor pure imitation (Lopes et al., 2007).

A continuous change in the value of the social interaction (the tendency to imitate) vs. the tendency

to conserve energy may lead to several intermediate behaviours. This phenomenon was observed in

the simulation shown in Section 3.4. It reinforces our previously made arguments that more complex situations,

involving more alternative action possibilities, will result in more complex arrays of behaviour. We predict that

such a phenomenon might be observable experimentally, for example in an imitation game with children in which

the motivation to imitate the goals of the demonstrator is manipulated. A task which is in itself inherently rather

boring might allow e�ective manipulation of motivation to imitate, by varying how engaging the demonstrator is.

Our model predicts that in such a situation, as engagement is increased, �rst behaviours will appear that appear

emulative, and then behaviours will appear which appear more faithfully imitative.

These behaviours which appear emulative may occur (at intermediate levels of motivation to imitate) even

when there is no motivation to emulate (for example if the end-e�ect is inherently unrewarding). This is because,

as observed in our model, a partial imitation may appear emulative although it is not in fact motivated by the
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achievement of and end-e�ect for its own sake.

♦

We argue that all animals that are able to imitate and emulate (such as children and chimpanzees) need

to have, at least, the mechanisms considered in our model. Given that young children and chimpanzees are

both known to be able to imitate and emulate (Whiten et al., 2004; Want & Harris, 2002; Tennie et al., 2006)

depending upon circumstances, we suggest that our computational framework can be used as an adequate model

for both these species, with a generally higher value of λI for children than chimpanzees. This is to say that,

when faced with prioritising either faithful imitation or achieving the results as fast as possible, di�erent species

weight di�erently the di�erent motivations and sources of information.

The components of our model thus seem su�cient to explain much of what is known about tendencies to

imitate or emulate in children and chimpanzees. We are unable to conceive of a simpler model to replicate these

results and as such we believe that our computational model provides a parsimonious explanation for the observed

behaviours. And, although in some situations similar behaviours could be obtained with simpler mechanisms such

as mimicry, stimulus enhancement, response facilitation and contextual facilitation (Melo et al., 2007; Byrne, 2002;

Noble & Franks, 2002), such mechanisms cannot account for all the phenomena reviewed in this work.

A Technical details

Now we proceed with the details about the underlying model2. At each time instant, the learner must choose an

action from its repertoire of action primitives A, depending on the state of the environment. We represent the

state of the environment at time t by Xt and let X be the (�nite) set of possible environment states. This state

evolves according to the transition probabilities

P [Xt+1 = y | Xt = x,At = a] = Pa(x, y), (1)

where At denotes the learner's action primitive at time t. The action-dependent transition matrix P thus describes

the dynamic behaviour of the process {Xt}.

We consider that the demonstration consists of a sequence H of state-action pairs

H = {(x1, a1), (x2, a2), . . . , (xn, an)} .

Each pair (xi, ai) exempli�es to the learner the expected action (ai) in each of the states visited during the

demonstration (xi). From this demonstration, the learning agent is expected to perceive what the demonstrated

task is and, eventually by experimentation, learn how to perform it optimally. A decision-rule determining the

action of the learner in each state is called a policy and is denoted as a map π : X −→ A.
2An extended version can be found at http://users.isr.ist.utl.pt/�macl/myrefs/SL08app.pdf
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In our adopted formalism, a task can be de�ned using a function u : X −→ R describing the �immediate

desirability� of each particular state x ∈ X in terms of the task. Once u is known, the learner should choose its

actions to maximize the functional

J(x, {At}) = E

[ ∞∑
t=1

γtu(Xt) | X0 = x

]
,

where γ is a discount factor between 0 and 1 that assigns greater importance to the immediate future than to the

distant future.3

The relation between the function u describing the task and the optimal behavior rule can be evidenced by

means of the function Vu given by

Vu(x) = max
a∈A

u(x) + γ
∑
y∈X

Pa(x, y)Vu(y)


The value Vu(x) represents the expected (discounted) utility of a path of the process {Xt} starting at state x,

when the optimal behavior rule is followed. Letting

Qu(x, a) = u(x) + γ
∑
y∈X

Pa(x, y)Vu(y), (2)

it holds that

Vu(x) = max
a∈A

Qu(x, a)

and the optimal policy associated with the function u is given by

πu(x) = arg max
a∈A

Qu(x, a).

The computation of πu (or, equivalently, Qu) given P and u is a standard problem and can be solved using any

of several standard methods available in the literature (Bertsekas & Tsitsiklis, 1996).

♦

Within the formalism just described, the fundamental imitation problem lies in the estimation of the function

u from the observed demonstration H. In the continuation, we discuss how this function u is computed by each

of the modules in our model.

A.1 The proposed computational model

Our model takes into account the agent's baseline preferences, the e�ects of the demonstrated actions and the

possible goals of the demonstrator. Each of these sources of information is processed in a speci�c �module�, that

3The discount factor γ can be seen by the agent as a �probability of surviving� in the next time-step.
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generates a representation of the corresponding behaviour. These behaviours are then combined by merging the

corresponding representations using a standard convex combination.

As seen above, the function Qu associated with a particular task can be used to compute the optimal policy

πu for that task. More generally, such a �Q-function� can be used to de�ne a general policy and we will adopt

this approach to represent the behaviours computed in each of the modules in our model.

The agent's baseline preferences: For each scenario, this component of the model simply outputs a previously

de�ned function QB . This function encompasses the baseline preferences of the agent in that, if action a1 is

preferred over action a2 in a particular state of the world x, then

QB(x, a1) > QB(x, a2).

This function can be seen as �part� of the de�nition of the agent: its values are set beforehand, independently of

the demonstration.

Replicating the end-e�ect: Throughout the simulations in the paper, we considered the desired e�ect as

the �nal state observed during the demonstration, hereby denoted as xE . Replicating the e�ect thus consists in

attaining xE . The task of attaining xE can be represented by means of a utility function uE de�ned as

uE(x) =


1 if x = xE ;

0 otherwise.

The function QE obtained from this utility represents a behaviour for reaching xE as quickly as possible and can

be easily computed using standard dynamic programming.

Inferring the goal of the demonstrator: We adopt the method by Melo et al. (2007), which is a basic

variation of the Bayesian inverse reinforcement learning (BIRL) algorithm (Ramachandran & Amir, 2007).

For a given u-function, the likelihood of a pair (x, a) is de�ned as

Lu(x, a) = P [(x, a) | u] =
eηQu(x,a)∑
b∈A e

ηQu(x,b)
.

The parameter η is a user-de�ned con�dence parameter that we describe further ahead. The value Lu(x, a)

translates the �plausibility� of the choice of action a in state x when the underlying task is described by u. Given

a demonstration sequence

H = {(x1, a1), (x2, a2), . . . , (xn, an)} .

the corresponding likelihood is

Lu(H) =
n∏
i=1

Lu(xi, ai).
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The method uses MCMC to estimate the distribution over the space of possible u-functions, given the de-

monstration (Ramachandran & Amir, 2007). It will then choose the maximum a posteriori u-function. Since

we consider a uniform prior for the distribution, the selected utility is the one whose corresponding optimal

policy �best matches� the demonstration. The con�dence parameter η determines the �trustworthiness� of the

method: it is a user-de�ned parameter that indicates how �close� the demonstrated policy is to the optimal policy

(Ramachandran & Amir, 2007). Once the �best� u-function is chosen, standard dynamic programming is used to

compute the corresponding Q-function, QI .

♦

We conclude by discussing how the underlying structure in our formalism translates to biological terms. First

of all, the assumed �world knowledge� consists of the set of possible states of the environment, X , the repertoire of

action primitives, A, and the world dynamics, summarized by the transition probabilities P. Note, in particular,

that the action repertoire A is �xed and known in advance. This means that our overall model addresses learning

at the task level. The modelled agent does not learn new actions, but instead learns how to combine known

actions in new ways. Formally, there is no reason why our model cannot be used at di�erent levels of abstraction,

but the biological correspondence may become less clear.

Secondly, we note that the goal-inference model is probabilistic and relies on a Bayesian formalism that can

be exploited beyond what was described here. Its probabilistic nature implies that the goal-inference module is

somewhat robust to some wrong (�accidental�) actions if these are, in a sense, incompatible with the general goal

that can be inferred from the demonstration. We refer to the work of Lopes et al. (2007) for further discussion

on the robustness of the method to partially incorrect actions. On the other hand, the Bayesian formalism allows

the inclusion of prior information in a straightforward manner. In other words, the Bayesian formalism easily

accommodates prior information on possible utilities which, in our particular setting, would translate into prior

information on the demonstrator's prior intentions.
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