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Abstract— In this contribution we present a generic
mechanism to transform an oscillator into an adaptive
frequency oscillator, which can then dynamically adapt its
parameters to learn the frequency of any periodic driving
signal. Adaptation is done in a dynamic way: it is part
of the dynamical system and not an offline process. This
mechanism goes beyond entrainment since it works for
any initial frequencies and the learned frequency stays
encoded in the system even if the driving signal disappears.
Interestingly, this mechanism can easily be applied to
a large class of oscillators from harmonic oscillators to
relaxation types and strange attractors. Several practical
applications of this mechanism are then presented, ranging
from adaptive control of compliant robots to frequency
analysis of signals and construction of limit cycles of
arbitrary shape.

I. I NTRODUCTION

Nonlinear oscillators are very important modeling
tools in biological and physical sciences, and these
models have received particular attention in many
engineering fields over the last few decades. The models
are interesting because of their capability to synchronize
with other oscillators or with external driving signals.
However, these synchronization capabilities are limited,
and it is not always an easy task to correctly choose
the model parameters to ensure proper synchronization
with the external driving signals. Indeed, an oscillator
has a finite entrainment region which depends on
many parameters, such as the coupling strength and
the frequency difference between the oscillator and the
driving signal.

Recent work, however, has shown that it is possible to
modify nonlinear oscillators so that they can overcome

the limitations above, by adding dynamics to the param-
eters of an individual oscillator, allowing it tolearn the
frequency of an input signal. These attempts are often
limited to simple classes of oscillators, equivalent to
phase oscillators [?], [?] or to simple classes of driving
signal (pulses) [?].

Recently we designed a learning mechanism for os-
cillators, which adapts the oscillator frequency to the
frequency of any periodic input signal [?], [?]. The
parameter with the strongest influence on the frequency
of the oscillator is turned into a new state variable
for the system. Interestingly, this mechanism appears
to be generic enough to be applied to many different
types of oscillators, from phase oscillators to relaxation
types, and to strange attractors. The frequency adaptation
process goes beyond mere entrainment, because, even if
the input signal disappears, the learned frequency stays
encoded in the oscillator. Moreover, it is independent of
the initial conditions, thus working beyond entrainment
basins (i.e. it has an infinite basin of attraction). We
call this adaptation mechanismdynamic Hebbian learn-
ing because it shares similarities with correlation-based
learning observed in neural networks [?].

In this contribution, we present our generic adaptation
mechanism. Then we demonstrate several applications,
ranging from adaptive control of legged robots with
passive dynamics [?], [?], where the adaptive oscillators
find the resonant frequency of the robot, to frequency
analysis with systems of coupled adaptive oscillators [?],
and finally to construction of limit cycles with arbitrary
shape [?].



II. A DAPTIVE FREQUENCY OSCILLATORS

A. A generic rule for frequency adaptation

We consider general equations for an oscillator per-
turbed by a periodic driving signal

ẋ = fx(x, y, ω) + KF (t)

ẏ = fy(x, y, ω)

wherefx and fy are functions of the state variables
that produce a structurally stable limit cycle, and of
a parameterω that has a monotonic relation with the
frequency of the oscillator when unperturbed,K = 0
(we do not require this relation to be linear).F (t) is
a time periodic perturbation andK > 0 the coupling
strength.

In order to enable the oscillator to learn the frequency
of F (t), we transform theω parameter into a new
state variable, with its own dynamics. The generic rule
that allows us to transform the basic oscillator into an
adaptive frequency oscillator is as follows

ω̇ = ±KF (t)
y

√

x2 + y2

where the sign depends on the direction of rotation of
the limit cycle in the(x, y) plane.

B. Properties of the adaptation mechanism

We proved in [?] that the adaptation mechanism causes
an oscillator’s frequency to converge to the frequency of
any periodic input signal, for phase and Hopf oscillators.
In the case where there are several frequencies in the
spectrum ofF (t), the oscillator converges to one input
frequency component, depending on the initial frequency
of the oscillator.

Further, the higher the coupling strengthK, the faster
convergence occurs. It can be shown that for suitable
coupling strength, the convergence is exponential (of
ordere−t) [?]. Examples of frequency adaptation for the
Hopf oscillator, with several different inputs, are shown
in Figure 1. The corresponding equations for the adaptive
Hopf oscillator are

ẋ = (µ − x2
− y2)x − ωy + KF (t)

ẏ = (µ − x2
− y2)y + ωx

ω̇ = −KF (t)
y

√

x2 + y2

We can note from Figure 1(d) that the adaptation
mechanism works for time-varying signals (i.e. with
time-varying frequencies). The tracking ability is lim-
ited, however, by the exponential convergence rate of

Fig. 1. (a) Typical convergence of an adaptive frequency Hopf
oscillator driven by a harmonic signal ((F (t) = sin(2πt)). The
frequencies converge towards the frequency of the input (indicated in
dashed line). After convergence the frequency oscillates with a small
amplitude around the frequency of the input. In all figures, we plot
in the main graph the time evolution of the difference betweenω
and the input frequency, normalized by the input frequency. The top
right panel shows the driving signals (note the different scales). (b)
Square pulseF (t) = rect(ωF t), (c) Sawtooth,F (t) = st(ωF t), (d)
Chirp F (t) = cos(ωct), whereωc = ωF (1 + 1

2
( t

1000
)2). (Note that

the graph of the input signal is illustrative only since changes in fre-
quency takes much longer than illustrated). (e) Signal with two non-
commensurate frequenciesF (t) = 1

2

h

cos(ωF t) + cos(
√

2

2
ωF t)

i

,
i.e. a representative example how the system can evolve to different
frequency components of the driving signal depending on the initial
condition ωd(0) = ω(0) − ωF . (f) F (t) is the non-periodic output
of the R̈ossler system. The R̈ossler signal has a1/f broad-band
spectrum, yet it has a clear maximum in the frequency spectrum.
In order to assess the convergence we useωF = 2πfmax, where
fmax is found numerically by FFT. The oscillator converges to this
frequency.

the adaptation mechanism. Further examples of such
tracking and limitations can be found in [?], [?] for pools
of oscillators.

Our extensive numerical simulations also show that
this adaptation mechanism works for many different
types of non-harmonic oscillators. Some examples,
shown in Figure 2, are an adaptive Rayleigh oscillator,
an adaptive Fitzhugh-Nagumo oscillator and a Rössler
system in chaotic mode. For the first two cases there
is no linear relation betweenω and the frequency of
oscillations, but the adaptive mechanism is able to find
a suitable value forω such that the frequency of the
oscillator is the same as the frequency of the input signal.
For the R̈ossler system, the frequency of the system is
not well defined since the system is not periodic, but we
can define a pseudo-frequency and the system can then
adapt it to the frequency of a periodic input.
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(a) Adaptive Rayleigh oscillator

0 175 350

180

200

220

Time

ω

0 2.5 5

−10

0

10

X

−5

0

5

F

345 347.5 350

−10

0

10

X

Time

−5

0

5

F
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(b) Adaptive Fitzhugh-Nagumo oscillator
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ẋ = −ωy − z + KF
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(c) Adaptive R̈ossler system

Fig. 2. For each oscillator,ω corresponds to the adaptive parameter. Each figure is composed of 3plots. The right plot shows the evolution
of ω. The left plots are the time evolution of the oscillators (thex variable) and of the input signal F (dashed line), before (upper plot) and
after (lower plot) adaptation.
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Fig. 3. Structure of the pool of adaptive frequency oscillators that
is able to reproduce a given teaching signalT (t). The mean field
produced by the oscillators is fed back negatively to the oscillators.

III. A PPLICATIONS

We now present several applications for the adaptation
mechanism, ranging from robot control to frequency
analysis and automatic construction of limit cycles of
arbitrary shape.

A. Robot with passive dynamics

The adaptation mechanism can be used to find the
resonant frequencies of legged robots with passive ele-
ments (i.e. springs) [?], [?], [?], [?]. A controller based
on adaptive frequency oscillators is able to tune itself
to the resonant frequency of the robot, via a simple
feedback loop using sensors on-board (e.g. position or
inertial sensors). Locomotion can therefore be made very
efficient by exploiting the intrinsic dynamics of the robot.
Another advantage is that one does not need to tune the
controller for a specific robot; the controller can also
track any changes in resonant frequency automatically,
if, for example, the frequency changes due to a variation

in mass or spring stiffness, or because of a gait transition
(e.g. the resonant frequency is different if the robot is
standing on two feet or four feet).

B. Frequency analysis

Another application is the use of a pool of adaptive
frequency Hopf oscillators to perform frequency analysis
on an input signal [?]. The oscillators are coupled via
a negative mean field with the input teaching signal,
as is shown in Figure 3. The oscillators converge to
the frequencies present in the spectrum of the teaching
signal and due to the negative feedback, each time
an oscillator finds a correct frequency, this one loses
its amplitude. Thus, the other oscillators onlyfeel the
remaining frequencies to learn.

The pool of oscillators is able to approximate the
frequency spectrum of any input signal. This works for
signals with discrete spectra, and also for those with
continuous and time-varying spectra. The spectrum is
approximated by the distribution of the frequencies of
the oscillators, and so the resolution of the approximation
can be made arbitrary good by increasing the number of
oscillators in the pool.

Figure 4 shows how the system can approximate the
spectrum of a broad-band chaotic signal from the Rössler
system. As can be seen, the important features of the
spectrum are caught by the system, especially the broad
spectrum and the major frequency peaks.
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Fig. 4. FFT of the R̈ossler signal (black line) in comparison with the
distribution of the frequencies of the oscillators (gray bars normalized
to the number of oscillators,N = 10000). The spectrum of the
signal has been discretized into the same bins as the statistics of the
oscillators in order to allow for comparison with the results from the
full-scale simulation.

C. Construction of limit cycles with arbitrary shape

The previous pool of oscillators can be extended by
adding a weight to each oscillator in the mean field
sum, and a coupling between oscillators, in order to
ensure stability of the output pattern. The result is that
an individual oscillator will be able to fully match the
energy content of a frequency in the spectrum of the
teaching signal. Moreover, the coupling ensures that the
system exhibits a stable limit cycle. Here, amplitudes
and phase differences become system state variables,
in addition to frequencies. The governing differential
equations of the system are then

ẋi = (µ − r2
i )xi − ωiyi + KF (t)

+τ sin(
ωi

ω0

θ0 − θi − φi)

ẏi = (µ − r2
i )yi + ωixi

ω̇i = −KF (t)
yi

ri

α̇i = ηxiF (t)

φ̇i = sin
( ωi

ω0

θ0 − θi − φi

)

with
θi = sgn(xi) cos−1

(

−
yi

ri

)

F (t) = Pteach(t) − Qlearned(t)

Qlearned(t) =
N

∑

i=0

αixi

where τ , K and η are positive constants. The output
of the system,Qlearned, is the weighted sum of the

(a) Evolution of the state variables of the system
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(b) Result of learning

Fig. 5. Construction of a limit cycle by learning an input signal
(Pteach = 0.8 sin(15t) + cos(30t) − 1.4 sin(45t) − 0.5 cos(60t)).
Figure 5(a) shows the evolution of the state variables of the system
during learning. The upper graph is a plot of the error (‖Pteach −
Qlearned‖). The 3 other graphs show the evolution of the frequencies,
ωi, the amplitudes,αi and the phases,φi. We clearly see that the
system can learn the teaching signal perfectly – the frequencies,
amplitudes and phase differences converge to the correct values and
the error becomes zero. Figure 5(b) shows the result of learning
(teaching signal in upper graph, output of the system in lower graph),
we note the perfect reconstruction of the signal.

output of each oscillator.F (t) represents the negative
feedback, which on average is the remainder of the
teaching signalPteach(t) that the network still has to
learn. αi represents the amplitude associated with the
frequency ωi of oscillator i. The evolution equation
maximizes the correlation betweenxi and F (t), which
means thatαi will increase only ifωi has converged to
a frequency component ofF (t) (the correlation will be
positive on average) and will stop increasing when the
frequency componentωi disappears fromF (t) because
of the negative feedback loop.φi is the phase difference
between oscillatori and 0. The value converges to
the phase difference between the instantaneous phase
of oscillator 0, θ0, scaled for frequencyωi, and the
instantaneous phase of oscillatori, θi. Each adaptive



oscillator is coupled with oscillator0, with strength
τ , to maintain the correct phase relationships between
oscillators.

Figure 5 shows an example of the convergence of
a network of oscillators with amplitudes and coupling,
together with the resulting learned signal. We see that
the individual oscillator frequencies first converge to the
frequency components present in the teaching signal.
Individual amplitudes increase when the associated fre-
quency matches one frequency of the input signal. Fi-
nally, the phase differences stabilize and we see that the
error is zero, which means that the system has perfectly
reconstructed the teaching signal. Further, the teaching
signal is now encoded into a structurally stable limit
cycle and it is easy to smoothly modulate its frequency
and amplitude by changing~ω and ~α. These properties
can be very useful, together with sensory feedback, for
robotics control (see for example [?]). This system can be
viewed as a dynamic Fourier series decomposition where
there is no need of explicitly define a time window or
to perform any preprocessing of the input signal.

IV. CONCLUSION

In this contribution we presented a generic mechanism
for building adaptive frequency oscillators from a given,
existing oscillator. We showed that our approach can be
applied to many different types of oscillators, and that
the resulting systems are able to learn the frequencies of
any periodic input signal. Interestingly, there is no need
to preprocess the signal and no external optimization
procedures are required to obtain the correct frequency.
All the learning is embedded in the dynamics of the
adaptive oscillators. Moreover, our results go further than
entrainment, since the learned frequency is maintained
in the system even if the external driving oscillation
disappears and the basin of attraction is infinite (i.e. the
system can start from any initial frequency). Finally, we
discussed some applications of this mechanism, ranging
from adaptive control for compliant robots, to frequency
analysis and construction of limit cycles of arbitrary
shape.
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