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Abstract— For a complex autonomous robotic system such as
a humanoid robot, motor-babbling-based sensorimotor learning
is considered an effective method to develop an internal model
of the self-body and the environment autonomously. However,
learning process requires much time for exploration and com-
putation. In this paper, we propose a method of sensorimotor
learning which explores the learning domain actively. Our
approach discovers that the embodied learning system can
design its own learning process actively, which is different
from the conventional passive data-access machine learning.
The proposed model is characterized by a function we call
the “ confidence”, and is a measure of the reliability of state
control. The confidence for the state can be a good measure
to bias the exploration strategy of data sampling, and to
direct its attention to areas of learning interest. We consider
the confidence function to be a first step toward an active
behavior design for autonomous environment adaptation. The
approach was experimentally validated in typical sensorimotor
coordination such as arm reaching and object fixation, using
the humanoid robot James and the iCub simulator.

I. INTRODUCTION

Learning in robotics is one practical solution allowing an
autonomous robot to perceive its body and the environment.
As discussed in the context of the frame problem [1], the
robot’s body and the environment are generally too complex
to be modeled. Even if the kinematics and the dynamics
of the body are known, a real sensory input to the body
often differs from one derived from a theoretical model,
because sensor input is always influenced by interaction with
the environment. For instance, when we grasp an object,
the physical parameters of our arm, such as its mass and
momentum, differs from the nominal state depending on
the grasped object. Another example is that the sense of
touch and force depend on the material of the object and
a state of the fingers. Moreover, it is difficult to evaluate
all potential variations in advance, since real data can vary
quite a lot and the behavior of the external environment is
not necessarily controlled by the robot. On the other hand,
learning approaches provide a data-driven solution: the robot
explores the environment and extracts knowledge to build an
internal model of the body and the environment.
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Learning-based motor control systems are well studied
in the literature [2][3][4][5][6][7]. Haruno et al. proposed
a modular control approach [3], which couples a forward
model (state predictor) and an inverse model (controller).
The forward model predicts the next state from the current
state and a motor command (an efference copy), while
the inverse model generates a motor command from the
current state and the predicted state. Even if a proper motor
command is unknown, the feedback error learning procedure
(FEL) provides a suitable approximation [4]. The prediction
error contributes to gate learning of the forward and inverse
models, and to weight output of the inverse models for the
final motor command. Motor prediction, based on a copy of
the motor command, compensates for delays and noise in
the sensorimotor system. Moreover, motor prediction allows
differentiating self-generated movements from externally im-
posed forces/disturbances [5][6].

Learning-based perception is applicable not only for motor
control but also to model the environment using multi-
ple sensorial modalities, such as vision, audition, touch,
force/torque, and acceleration sensing. In our earlier ap-
proach, we developed a learning system aimed at predicting
future sensor data based on current sensor data and motor
commands [8]. In the study we explored the possibilities for
the robot to detect changes in its body or the environment
in an autonomous manner: no other information, such as
a kinematic model, was given to the system. Following
this concept, we investigated a function called confidence,
focused on sensory prediction learning [9]. The function of
confidence is to quantify inequalities between the predicted
state and the real state of the body and the environment.

One of the significant problems in learning is that learning
domain is too large to be completely covered, as mentioned at
the beginning with the frame problem. An efficient learning
strategy is necessary to enhance learning speed while keeping
its quality high. A random exploration strategy, such as
a conventional motor babbling, is often considered to be
the most robust approach for unknown learning domain.
Because the random exploration theoretically covers the
whole learning domain uniformly. If the learning system has
a specific learning domain of interest, however, the random
exploration is not a direct way to get learning samples of the
domain, and it leads to cost more sampling time. A marked
problem in sensorimotor learning here is that the learning
system does not know a correct motor output to reach the
domain of interest in the beginning of learning.

We propose an improvement of the exploration strategy:
active motor babbling based on confidence for the state. That
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is, the learning evaluation on motor control affects the explo-
ration strategy for learning of motor control. If the evaluation
of the motor control is low, the random exploration strategy
functions in high possibility. If the evaluation is high, the
directed exploration strategy does in high possibility. This
approach is an extension of [9] to deal with both the problems
of state prediction and state control.

There are some interesting previous studies related to our
basic idea [10][11][12][13][14][15][16][17][18]. Robbel et
al. [10] introduced an active learning approach in motor
control, which is based on the LWR and LWPR model
[11][12][13] and memory-based resettable motor configura-
tion [14]. These approaches are similar to our approaches.
One of our originalities and differences from these ap-
proaches is that we do not exactly assume the state recovery
(resettability) with a given model such as PID controller.
Another difference is that the sensorimotor coordination
in our case is visul motor coordination, which is not so
trivial like motor-encoder coordination. The body image
acquisition [17] aims at a similar goal of us dealing with
visual information. The predictability [18] is also related
to the confidence we are proposing, considering arm and
object dynamics; however, active learning of a complex
sensorimotor coordination is not yet studied well.

This paper is organized as follows: Section II describes the
proposed framework of sensorimotor learning including an
introduction of the confidence function. Section III describes
the experimental results obtained using the humanoid robotic
platform James [19] and the iCub robot simulator. Finally,
Section IV gives the conclusion and outlines some future
tasks.

II. METHOD

A. Sensorimotor learning

Fig. 1 illustrates the internal state space of a sensorimotor
system. Variable notation used in this figure is defined in
Table I. Let s[t] ∈ RNs denote the sensory input vector from
the Ns sensors, and u[t] ∈ RNm be the motor command
vector for the Nm motors at time t. Here, we assume the
sensory input vector as the state vector, and discuss the state
space formed by the set of all state vectors. The state is
changed by the motor command actuation. Let us assume
that the dynamics of s[t] can be defined as:

s[t + δt] = s[t] + δs[t], (1)

δs[t] = Φi(s[t], u[t]), (2)

u[t] = Ψi(s[t], δs[t]). (3)

Here, for simplicity, we assume that δt is sufficiently small,
and a motor command to change the state from s[t] to s[t+
δt] is unique. The goal of learning is to approximate Φ i(·)
and Ψi(·) using data samples acquired through exploration.
Let δŝ[t] and û[t] denote estimated vectors of the sensory
input change δs[t] and that of the actuated motor command
u[t], respectively. Φ(·) and Ψ(·) denote the approximations

notation variable
s measured sensory input
δs measured sensory input change
ŝ estimated sensory input
δŝ estimated sensory input change
s∗ desired sensory input
δs∗ desired sensory input change
u actuated motor command
û estimated motor command
u∗ desired motor command

Φi(·) ideal state prediction function
Ψi(·) ideal state control function
Φ(·) approximated state prediction function
Ψ(·) approximated state control function

TABLE I

VARIABLE AND FUNCTION NOTATION.

^

Fig. 1. State transition diagram of the proposed sensorimotor system.
Variable notation is defined in TABLE I,

of Φi(·) and Ψi(·), defined as:

ŝ[t + δt] = s[t] + δŝ[t], (4)

δŝ[t] = Φ(s[t], u[t]), (5)

û[t] = Ψ(s[t], δs∗[t]), (6)

u[t] = {u∗[t], û[t]}, (7)

where the desired state change δs∗[t] is used as an input for
the estimation of state control. u[t] is selected from a pair
of u∗[t] and û[t]. The selection rule is defined later. The
diagram of internal state transition is shown in Fig.1.

In order to collect learning data for these function approx-
imations, the robot must move its body. At the beginning of
the learning process, however, the robot does not know how
to control its joint movement. Motor babbling gives us a sim-
ple solution to this problem: the learning system randomly
generates a desired motor command u∗[t]. The robot then
actuates this motor command as u[t] = u∗[t], leading to a
random joint movement. During motor babbling, the learning
system stores measured data {s[t], u[t], δs[t]}t=t1,···,tK at
each time step t. Let us refer to the above process as the
U-space motor command generation (Fig.2). In learning of
the functions Φ(·) and Ψ(·), s[t], u[t], and δs[t] are used
as input vectors of these functions, while δs[t] and u[t] are
used as target vectors of δŝ[t] and u∗[t], respectively.

If the learning process is complete, the robot will be able to
generate a motor command to reach a desired next state s ∗[t]
by Eqn.6, where the estimated motor command û[t] is used
for actuation of the robot joints as u[t] = û[t] represented in
Fig. 2. By using the approximated functions in exploration,
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Fig. 2. The proposed learning system to predict and control the state at the
next time step. Sources of motor commands are given both in the domain
of u (U-Space) or s (S-Space), and one of them are stochastically selected
depending on the confidence for the state control.

the robot is able to collect learning samples of interest in
state space. Let us refer to the above process as the S-space
motor command generation.

Consequently, the robot can refer two manners of motor
command generation, such as U-Space and S-Space motor
generation. The former is useful in the beginning of learning,
and the latter is effective to direct the data sampling in the
middle phase of learning. We can assume several ways to
select or synthesize these two manners. Here, we introduce
a simple stochastic synthesizing approach using confidence,
the temporal evaluation for the state control.

B. Confidence for a state control

Learning results can be evaluated in terms of the confi-
dence for a state. The confidence is based on the state control
error eu defined as

eu[t] = |Ψ(s[t], δs[t]) − u[t]|. (8)

Performance of the motor command generation in S-space
defined as

ep[t] = |s∗[t − δt] − s[t]|, (9)

= |δs∗[t − δt] − δs[t − δt]|. (10)

In the following discussion, however, we adopted eu[t].
Let us introduce a modification using the Gaussian func-

tion to map eu ∈ (0, +∞) or ep ∈ (0, +∞) onto a finite
scalar variable c[t] ∈ [0, 1] such as

c[t] = exp
(
−e[t]2

2σ2

)
, (11)

where the constant σ2 determines filtering sensitivity. Ac-
cumulation of c[t] provides robust memory of confidence on
state control. Let C[t] ∈ [0, 1] denote the confidence, working
as a temporal moving average of normalized learning error
c[t]. The update rule of the confidence at time t is defined
as:

C[t] := (1 − α)C[t − δt] + αc[t], (12)

where the constant parameter: α ∈ [0, 1] denotes an update
weight. C[0] is initialized as zero at the beginning of the
learning process. A high value of C indicates that the state
control is reliable. This confidence value is defined at each
discretized state of state space, or otherwise simply defined
as a representative value of whole state space. In the former

Exploration

(On Line)

Learning

(Off Line)

Fig. 3. The proposed learning strategy. A robot explores the environment
to collect learning data, and evaluates sensorimotor functions on-line. After
exploration, the robot optimizes sensorimotor functions with the collected
learning samples off-line. These two processes are repeated alternatingly
until the desired performance is reached.

state-dependent case, the confidence value of a state is
independently updated only when the system receives its
state.

C. Learning strategy

The sensorimotor learning procedure is divided into two
stages: exploration and learning, as illustrated in Fig.3. In
the exploration stage, the robot generates joints movements
(motor babbling) in order to collect learning samples, and
evaluates mapping functions optimized in previous learning
stages. In the learning stage, the robot optimizes the mapping
functions off-line with the collected learning samples in the
previous exploration stages. Motor behavior of the robot
in the exploration stage is generated both in U-space and
S-space. We used this confidence value as an probability
to choose a motor command of u from a pair of u∗and
û (Eqn.7). Therefore, if the confidence for the state control
is high, the S-Space motor generation is selected in high
probability.

The principal idea of this framework is to exploit confi-
dence derived from past learning experience, and then focus
subsequent exploration to collect new learning data of inter-
est. Here, we are focusing on increasing learning efficiency
to acquire specific motor effects such as hand movements in
the view. However, we can exploit the advantages of active
exploration and learning more dynamically. For instance, we
can direct the robot action and learning giving a desired state
which attracts its attention depending on the motor skills of
the robot.

D. Implementation by neural networks

The proposed learning system does not limit the type
of function approximators for Φ(·) and Ψ(·). In our im-
plementation, we use Multi Layer Perceptron (MLP) [20],
which is known as an universal approximator. The MLP has
three layers and is optimized by a simple gradient descent
method [20]. The treatments of the MLP in this context
is described in the reference [9]. Here, we present a few
mathematical formulations and a network structure.

yk(x) =
nh∑
j=1

wo
jk · f(

ni∑
i=1

wh
ijxj + wh

0j) + wo
0k, (13)

where yk(·) represents the k-th component of the function
y(·), and x denotes a combined vector of inputs.

f(v) = tanh(
v

τ
), (14)
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TABLE II

SENSORY STATE AND MOTOR COMMAND FOR JAMES.

sensory state motor command
s[t] = (s1[t], s2[t]) u[t] = (u1[t], u2[t])

s1: horizontal position u1: upper-arm roll
s2: vertical position u2: shoulder pitch

where τ is a constant value that adjusts nonlinearity and v
is the weighted sum of the inputs into the elements.

III. EXPERIMENT

A. Experimental setting

We performed experiments on sensorimotor learning using
the humanoid robot James [19]. James is a fixed upper-
body robotic platform dedicated to vision-based manipula-
tion studies. It is composed of a 7DOF arm with a dexterous
9DOF hand and a 7DOF head as shown in Fig.4. It is
equipped with binocular vision, force/torque sensors, tac-
tile sensors, inertial sensors and motor encoders. Low-level
sensorimotor information is processed in local control cards
inside the body, and high-level sensorimotor information is
handled in local networks [21].

The sensory state vector and the motor command vector
used in the experiment are presented in Table.II. In this
experiment we used the position of the hand of the robot in
the image, a two dimensional quantity, as the sensory state
vector as shown in Fig. 4. As the motor command vector, we
used the position-displacement command of the upper-arm
and shoulder joint. Joint actuation affects the visual position
of the hand. During exploration, the motor command was
sent to each joint at an constant temporal interval of δt.
The values of u∗ were given randomly, while the values of
s∗ were set as a maximum confident state in the discretized
neighbor states of the current state. This implanted motor
desire forces the robot to explore the less confident state
more positively and skip the states enough learned.

We used a small green marker mounted on the James
left arm to recognize the hand. The marker was detected
based on its distinctive color with spot noise filtering. The
color format of the obtained image was transformed from the
RGB format to the YUV format to extract the hue robustly.
The mass centers of the extracted green regions were used
as the position of interest. Even though color parameters
were determined experimentally. The position detection was
enough robust against external visual noise such as lighting
changes and passing people in the visual field. Through the
whole experiment, the position of James’ head and the eye
camera were fixed for simplicity.

Experimental parameters are presented in Table III, where
E [epoch] denotes the epoch number of the exploration and
learning cycle. K and L [ts] (time steps) denote the number
of data sampling events and learning events in each epoch,
respectively. The trajectories of the arm were generated
randomly in each epoch. The initial weight coefficients were
randomly selected from the finite domain Dw. The number
of hidden elements of the MLP nh was selected carefully to

Joint Movements Object detection

u1
u2

s1

s2

Fig. 4. The humanoid robot James was used for experimental validation of
the proposed active sensorimotor learning. Arm position is sensed visually
using a green marker mounted on the hand.

TABLE III

EXPERIMENTAL PARAMETERS.

Parameter Value Definition
E 20 [epoch]∗ exploration-learnig cycle
K 30 [ts]∗∗ exploration iteration
L 10,000 learning iteration
δt 1.0 [s] time step interval
ni 4 MLP units (1st layer)
nh 100 MLP units (2nd layer)
no 2 MLP units (3rd layer)
η 0.05 MLP learning rate
τ 1.0 MLP parameter

Dw [−1.0, +1.0] MLP initial weight domain
Du [−0.5, +0.5] motor command domain
G 10.0 motor input gain
α 0.1 confidence gain

∗epoch: iterated number of the exploration and learning cycle.
∗∗ts: descrete time steps.

adjust the function approximating performance of the MLP,
to avoid under-fitting or over-fitting problem. Values of the
desired motor commands were randomly selected in domain
Du, proportionally amplified by the gain G, and sent to the
motors.

B. Results with James

We performed both active and passive sensorimotor learn-
ing for comparison. Active learning refers to the active motor
babbling in S-Space and U-Space with confidence-based
stochastic switching. Passive learning refers to the passive
motor babbling only in U-Space. Fig.5(left) shows the tem-
poral evolution of state space confidence. In each confidence
map, the state space is quantized as 8x8 pixel regions. Light
intensity in each region indicates the local confidence value.
The figure shows that the high-confidence domain in active
learning spreads faster than in the case of passive learning,
since the exploration by active learning focuses on less well
learned states by referring to the confidence value. The active
learning strategy avoids learning duplication in the states
where learning is complete. Fig.5(right) shows the number
of times that the S-Space was used for motor command
generation. For the first several epochs, the U-Space was
mainly selected. However, after the 10th epoch, the S-Space
was mainly selected, since the confidence value reached a
sufficient threshold at many state regions.

Fig.6 and Fig.7 show the experimental performance of
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Fig. 5. Analysis of the results. Left: Temporal evolution of state space
confidence. Light intensity indicates the local confidence value. From left
to right, the columns correspond to the confidence maps of state prediction in
active learning, state control in active learning, state prediction in passive
learning, and state control in passive learning, respectively. From top to
bottom, the row shows the confidence maps obtained at the end of the 0th,
5th, 10th, 15th, and 20th epoch, respectively. Right: The number of times
that S-Space motor command generation was used in each epoch.

Fig. 6. Three different trials of state prediction. The blue cross indicates
the predicted next state.

state prediction and state control in the physical space. The
results suggest the state prediction and state control worked
successfully.

C. Results with iCub Simulator

We performed farther experiments with the iCub simulator
(Fig.8), which is an ODE-based robot simulator designed for
the humanoid robot, iCub [21]. The aim of this experiment
is to examine how the proposed learning approach functions
in higher-dimensional state space. We performed simultane-
ous two learning processes of body movements; the object
fixation and the arm reaching. Regarding the object fixation,
the state was set as four-dimensional input composed of the
horizontal and vertical coordinate of its own hand in the left
and right view. The motor action was corresponding to three
cooperated movements of the both eyes; horizontal, vertical
and vergence movements (TABLE IV, top). Regarding the
arm reaching, the state was set as three-dimensional input
composed of the horizontal, vertical and vergence position of
both eyes. The motor action was corresponding to the upper-
arm roll, shoulder pitch and elbow pitch, which enables
three-dimensional hand movements (TABLE IV, bottom).
The motor actions of the object fixation and arm reaching are
independent, however the state of the arm reaching depends
on the motor action of the object fixation.

The learning process of the object fixation was run firstly,

Fig. 7. Two different trials of state control for reaching. The blue cross
indicates the target for the state control.

TABLE IV

SENSORY STATE AND MOTOR COMMAND FOR THE ICUB SIMULATOR.

sensory state(fixation) motor command(fixation)
s[t] = (s1[t], s2[t], s3[t], s4[t]) u[t] = (u1[t], u2[t], u3[t])

s1: horizontal position (L) u1: horizontal eye roll
s2: vertical position (L) u2: vertical eye roll

s3: horizontal position (R) u3: vergence eye roll
s4: vertical position (R)

sensory state(reaching) motor command(reaching)
s[t] = (s1[t], s2[t], s3[t]) u[t] = (u1[t], u2[t], u3[t])
s1: horizontal eye position u1: upper-arm roll
s2: vertical eye position u2: shoulder pitch
s3: vergence eye position u3: elbow pitch

followed by the learning of the arm reaching. The task goal
of the object fixation is to move the both eyes to watch
the hand in the center of the left and right view. The task
goal of the arm reaching is to move its hand to the desired
position in the view. The intervals of the two actions were
set up differently. The interval of the eye movement was set
up five times faster than the interval of the arm movement.
Therefore, the hand was normally caught in the center of
the view by fixation, and then, the robot reaches out the
arm from the center of the view to the desired position. The
dimension of the two learning processes was totally seven for
the state and six for motor action. Therefore, state prediction
and control requires 13-7 dimensional input-output mapping
and 14-6 dimensional input-output mapping, respectively.
For simplicity, the representative state confidence was used in
this learning. In the same manner as the previous experiments
with James, the values of u∗was given randomly in the
both learning of fixation and reaching. For fixation learning,
s∗was set as the center of the view (0,0,0,0). For learning
of reaching, the values of s∗was given randomly to explore
the view field (state space) uniformly, canceling the biased
S-space exploration generated by the nonlinear projection of
the U-space uniform exploration.

Both learning processes were performed successfully in
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Fig. 8. The iCub Simulator (left) and the binocular visual processing
system (right).
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Fig. 9. The temporal evolution of confidence value and the activeness rate
with the iCub Simulator. Fixation in the active mode (top left), fixation in
the random mode (top right), arm reaching in the active mode (bottom left),
arm reaching in the random mode (bottom right)

terms of learning acceleration by the proposed active learn-
ing approaches. After learning, the robot in the simulator
successfully fixated its hand and moved it as desired in
the view field. Here we just present some plots in Fig. 9.
These figures show temporal evolution of the confidence
values and activeness rates regarding the object fixation and
arm reaching. The results suggested that active learning was
helpful to master sensorimotor skills faster than the normal
random (passive) learning in this high-dimensional learning
case.

IV. CONCLUSION

Based on a sensorimotor prediction algorithm previously
implemented [9], we defined a novel function called the
confidence function, which works as a memory of reliability
for state prediction and control. The aim of this function is
to store information about reliability of state control, and
exploit it for subsequent data sampling. If the robot is sure
of its motor behavior, the robot can direct the exploration
in areas of interest. This can be used to compensate for
reinforcement of important motion primitives. The notion
of robotic confidence was developed as a first step towards
automatically understanding of a robot’s self and surrounding
environment constructively. The approach was discussed
theoretically in this paper, and validated in some experiments
with a humanoid robot. Although the experiments examined
the simple cases of sensorimotor coordination, the proposed
framework is not limited to some specific modalities and is

open for any sensorimotor setting.
Our global aim is to implement learning as a natural adap-

tation and self-improvement process for the robot. Accord-
ingly, we must deal with more high-dimensional mechanisms
to show that our algorithm remains accurate when dealing
with complementary sensor data, redundant kinematics, and
dynamics. We are also applying the proposed method to the
general robot coaching, expecting that this direction will lead
us to embody a robot’s interactive education.
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