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Abstract 

This paper addresses the problem of planning the movement of highly redundant 

humanoid robots based on non-linear attractor dynamics, where the attractor 

landscape is obtained by combining multiple force fields in different reference 

systems. The computational process of relaxation in the attractor landscape is 

similar to coordinating the movements of a puppet by means of attached strings, 

the strings in our case being the virtual force fields generated by the 

intended/attended goal and the other task dependent combinations of constraints 

involved in the execution of the task. Hence the name PMP (Passive Motion 

Paradigm) was given to the computational model. The method does not require 

explicit kinematic inversion and the computational mechanism does not crash near 

kinematic singularities or when the robot is asked to achieve a final pose that is 

outside its intrinsic workspace: what happens, in this case, is the gentle 

degradation of performance that characterizes humans in the same situations. 

Further, the measure of inconsistency in the relaxation in such cases can be 

directly used to trigger higher level reasoning in terms of breaking the goal into a 

sequence of subgoals directed towards searching and perhaps using tools to 

realize the otherwise unrealizable goal. The basic PMP model has been further 

expanded in the present paper by means of 1) a non-linear dynamical timing 

mechanism that provides terminal attractor properties to the relaxation process 

and 2) branching units that allow to „compose‟ complex PMP-networks to 

coordinate multiple kinematic chains in a complex structure, including 

manipulated tools. A preliminary evaluation of the approach has been carried out 

with the 53 degrees of freedom humanoid robot iCub, with particular reference to 

trajectory formation and bimanual/ whole upper body coordination under the 

presence of different structural and task specific constraints. 

Keywords: Humanoid robots, iCub, Passive Motion Paradigm, Bimanual 

coordination, Terminal attractors  
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1. Introduction 

Humanoid robots have a large number of “extra” joints, organized in a humanlike 

fashion according to several kinematic chains, possibly augmented by the 

dynamics of manipulated tools. Consider, for example, Cog (Brooks 1997) with 

22 DOFs (Degrees of Freedom), DB (Atkeson et al 2000) with 30 DoFs, Asimo 

(Hirose and Ogawa 2007) with 34 DoFs, H7 (Nishiwaki  et al 2007) with 35 

DoFs, iCub (Metta et al 2008) with 53 DoFs, to name just a few. When a finger 

touches a target, the elbow might be up or down and the trunk may be bent 

forward, backward or sideways. Thus an infinite number of solutions are available 

to the motor planner/controller. This redundancy is advantageous because it 

enables a robot to avoid obstacles, joint limits, limb interference and attain more 

desirable postures, for example when it is not sufficient to simply tap a target 

because a precise force vector must be applied to the touched object. From a 

control and learning point of view, however, redundancy also makes it quite 

complicated to find good movement plans that do not crash when it turns out that 

the designated target is unreachable or barely reachable. 

How do humans decide what to do with their extra joints, and how should 

humanoid robots control all their joints in order to generate coordinated 

movement patterns? Moreover, is the selection/coordination of redundant DoFs 

independent of the spatio-temporal organization of the reaching movements? 

Early studies of human arm trajectory formation (Morasso 1981, Abend et al 

1982) showed invariant spatio-temporal features, such as a symmetric bell-shaped 

speed profile, which can be explained in terms of minimization of some measure 

of smoothness, such as jerk (Flash and Hogan 1985) or torque-change (Uno et al 

1989). Later studies suggested that physical or computational force fields can 

provide constraints for the coordination of multiple joints or motor learning 

(Mussa Ivaldi et al 1988, Bizzi et al 1991, Shadmehr and Mussa-Ivaldi 1994). 

Most approaches to motion planning in robotics were derived from the early study 

of Whitney (1969) named RMRC (Resolved Motion Rate Control), which is 

based on the real-time inversion of the Jacobian matrix of the kinematic 

transformation, i.e. the function that links the variation of the joint angle vector 

dq  to the pose dx  of the end-effector. Clearly, for redundant kinematic chains 

RMRC must be modified by using some kind of pseudo-inversion, as the Moore-
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Penrose inverse that provides a minimum norm solution for dq  or other more 

general pseudo-inversion methods (Liegeosis 1977) that associate an arbitrary 

cost function to the inversion calculation. In particular, the damped least squares 

method (DLS, also called the Levenberg-Marquardt method) avoids many of the 

pseudo-inverse method's problems with singularities (Nakamura and Hanafusa 

1986, Wampler 1986, Buss and Kim Jin-Lu 1984) but still requires the real-time 

computation of the matrix inverse. Another method (Extended Jacobian Method: 

Baillieul 1985, Šoch and Lórencz 2005) extends the usual Jacobian matrix with 

additional rows that take into account virtual movements in the null space of the 

kinematic transformation: the extended Jacobian matrix is square and can be 

inverted in the usual way. Matrix inversion is avoided by the so called Jacobian 

transpose method (Balestrino et al 1984, Wolovich and Elliot 1984), which is 

based on the fact that virtual movements of the end-effector, driven by the 

transpose Jacobian, tend to reduce the distance of the end-effector from the target 

in all circumstances. In any case, the classical approaches to robot 

planning/control work well only inside the workspace and far away from 

kinematic singularities. 

  The Passive Motion Paradigm (or PMP: Mussa Ivaldi et al, 1988) is a 

computational model that addresses the problem of coordinating redundant 

degrees of freedom by means of a dynamical system approach, similar to the 

Vector Integration to To Endpoint (VITE model: Bullock and Grossberg 1988). In 

both cases there is a “difference vector” associated with an attractor dynamics that 

has a point attractor in the designated target goal. The difference is that the VITE 

model focuses on the neural signals commanding a pair of agonist-antagonist 

muscles, whereas the PMP model focuses, at the same time, on the trajectories in 

the extrinsic and intrinsic spaces. The PMP model exploits the bidirectional 

mapping between the intrinsic (joints) and extrinsic (end-effector) spaces that 

characterizes any kinematic chain: the operator that maps incremental motion in 

the intrinsic space into the corresponding motion in the extrinsic space (i.e. the 

Jacobian matrix of the kinematic transformation) and the transpose jacobian that 

maps efforts in the opposite direction (force at the end-effector into joint torques). 

The “difference vector” of the VITE model becomes, in the PMP model, a virtual 

“force field” applied to the end-effector: this field is mapped into the 

corresponding field in the joint space that determines an elementary motion in 
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agreement with the mechanical “admittance” of the kinematic chain and then, 

through the forward kinematic operator, a motion of the end-effector in the 

extrinsic space until the target is reached. This is why the name “Passive Motion” 

paradigm was used to identify the non-linear dynamic computational mechanism. 

In fact, it is analogous to the mechanism of coordinating the motion of a wooden 

marionette by means of attached strings: the motion of the joints is the “passive” 

consequence of the forces applied to the end effectors. In other words, “passivity” 

must not be intended in technical sense but as a computational metaphor. The 

model does not require any cost function to be specified explicitly in order to 

solve the indeterminacy related to the excess DoFs but it allows to integrate in a 

task-dependent way, at run-time, internal and external constraints (in the intrinsic 

and extrinsic spaces, respectively) that automatically solve the coordination 

problem of the excess DoFs. The computational units of a PMP network operate 

in different spaces (end-effector space, joint/actuator space, tool space) and 

locally compute their own reaction to the “source” of planned motion based on 

their local virtual impedance/admittance. No matrix inversion is necessary and the 

computational mechanism does not crash near kinematic singularities or when the 

robot is asked to achieve a final pose that is outside its intrinsic workspace: what 

happens, in this case, is the gentle degradation of performance that characterizes 

humans in similar situations. Moreover, the remaining error at equilibrium is a 

valuable information for triggering a higher level of reasoning, such as searching 

for an alternative plan or making/using an environmental object as a tool. 

   In this paper, we propose the following two extensions to the basic model  

necessary for applying it to the complex structure of a humanoid robot: 

 Terminal attractor dynamics, by means of a non-linear, dynamic timing 

mechanism, for allowing the synchronization of kinematic patterns in the 

extrinsic and intrinsic spaces, bimanual coordination; 

 Branching nodes, for structuring PMP-networks in agreement with the 

body model and the kinematic constraints of a specific task. 

The proposed computational model has been evaluated using the 53 degrees of 

freedom humanoid robot iCub, with particular reference to trajectory formation 

and bimanual/ whole upper body coordination under the presence of different 

structural and task specific constraints. The model presented in this paper is an 

evolution of the primitive PMP based computational models like M-Nets and P-
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Nets (Pagliano et al 1991), mainly restructured and extended to coordinate 

complex motion patterns in humanoid robots. The control of the timing of the 

relaxation process using terminal attractor dynamics endows the generated 

trajectories with human-like smoothness and is crucial for complex motion 

patterns such as bimanual coordination, interference avoidance and precise control 

of the reaching time. The same relaxation process can dynamically coordinate the 

movements of a single kinematic chain (e.g. upper or lower “limbs”), network of 

body parts (e.g. left arm – waist – right arm) or networks of external objects 

kinematically coupled to the body network (e.g. right arm-tool-left arm, as in 

driving a car or transporting objects using two arms). In this paper, we 

demonstrate how such custom PMP-networks can be assembled at run-time in a 

flexible, task-oriented manner. 

   In comparison with a recent paper by Hersch and Billard (2008) that builds upon 

the VITE model, the proposed model is equally well a “multi-referential 

dynamical systems” for implementing reaching movements in complex, humanoid 

robots but does not require any explicit inversion and/or optimisation procedure. 

Another approach to motion planning, based on non-linear dynamics, has been 

proposed by Ijspeert et al (2002) in order to form control policies for discrete 

movements, such as reaching. The basic idea is to learn attractor landscapes in 

phase space for canonical dynamical systems with well defined point attractor 

properties. The approach is very effective for movement imitation, because it 

approximates the attractor landscape by means of a piecewise-linear regression 

technique. Also in the PMP model there is a well defined attractor landscape 

which is derived from the composition of different virtual force fields that have a 

clear meaning and thus allow the seamless integration of planning with reasoning 

(Mohan and Morasso 2007). Moreover, the same computational process can be 

used to perform “mental simulations of an action” in order to detect crucial events 

that may allow the system to re-plan an action or sequence of actions 

autonomously, before executing it. A mental simulation need not be a perfect 

replica of a real movement, but must only be a “sufficiently good” approximation, 

the approximation level being dictated by the requirements of the task. 

     From the point of view of neural control of movement, a PMP-network should 

be considered as a “body schema” or an “internal model” that interfaces higher 

cognitive levels (reasoning and planning) with lower control levels, related to 
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actuators and body dynamics. It is not a controller in the strict sense and thus it is 

not concerned with dynamics and actuators. In the demonstration with the iCub 

robot, whose DoFs are separately controlled by means of standard PIDs loops, the 

output of a PMP-network provides the reference trajectory for each controller. 

We also emphasize that PMP-networks assume that a reasoning mechanism, 

driven by vision and/or memory, has identified a small set of “keypoints” to reach 

or track. Consider for example a task in which a bottle must be reached and lifted 

with coordinated movements of both arms in different conditions: a) with mirror-

like motions of the two arms; b) with different motions of the two arms if the 

bottle is displace sideways; c) with a combination of lifting and rotating; etc. In 

order to solve the task two complementary problems must be solved: 1) 

appropriate joint rotation patterns must be generated that capture the overall 

structure of the action; 2) contact forces must be constrained in order to avoid 

slipping or other contact-related events. The PMP-network is concerned with the 

former problem, i.e. to put the bimanual patterns in the right ball-park, 

irrespective of the superficial properties of the bottle and the fingers. The latter 

problem, on the contrary, is strongly concerned with the superficial properties and 

can be designed as a set of reactive modules (reflexes) that modulate the stiffness 

features of the end-effectors and/or exploit the affordances provided by the 

roughness/compliance of the object‟s surface. 

   The rest of the paper is organized as follows: in section 2.1 we present the basic 

PMP model. Sections 2.2 and 2.3 describe extensions of the basic PMP network to 

deal with internal and external constraints imposed on the humanoid robot during 

the execution of a reaching action. Control over timing of the PMP relaxation 

using terminal attractor dynamics is described in section 2.4. Combining different 

PMP relaxations applied to different parts of a complex body (simplest case being 

of a bimanual coordination task) through formulation of branching nodes is 

presented in section 2.5. Implementation and evaluation of the computational 

model on the iCub humanoid platform with focus on bimanual and upper body 

coordination is described in section 3.1. In section 3.2, using an example of a 

bimanual transportation task, we describe how the PMP net can further be 

extended to include dynamics of external objects coupled to the body. We 

conclude with a discussion on the salient features of the computational model and 

and a brief outline for future work. 
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2. The computational model 

2.1 General Formulation 

Let x  be the vector that identifies the pose of the end-effector of a robot in the 

extrinsic workspace and q  the vector that identifies the configuration of the 

robot in the intrinsic joint space: )(qfx   is the kinematic transformation that 

can be expressed, for each time instant, as follows: qqJx   )(  where )(qJ  is the 

Jacobian matrix of the transformation. The motor planner, which expresses in 

computational terms the PMP (Mussa Ivaldi et al 1998), is defined by the 

following steps that are also represented graphically by the PMP network of figure 

1. 

1) Activate a target-dependent, virtual force field in the extrinsic space: 

)( xxKF Text 
 (1) 

where Tx  is the target and extK  the virtual stiffness in the extrinsic space. The 

intensity of this force decreases monotonically as the end-effector approaches the 

target. The force field described by equation 1 can be isotropic or anisotropic 

according to the fact that the eigenvalues of matrix extK  are equal or unequal. The 

flowlines in the former case are straight lines and are curved in the latter case. 

More complex curved trajectories can be obtained by adding a rotational 

component to the convergent force field given by equation 1.  

2) Map this field into an equivalent virtual torque field in the intrinsic space 

according to the principle of virtual works: 

FJT T  (2) 

Also the intensity of this torque vector decreases as the end-effector incrementally 

approaches the target. 

3) Relax the arm configuration in the applied field: 

TAq  int


 (3) 
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where intA  is the virtual admittance matrix in the intrinsic space: the modulation 

of this matrix affects the relative contributions of the different joints to the overall 

reaching movement. 

4) Map the arm movement into the extrinsic workspace: 

qJx  
 (4) 

5) Integrate over time until equilibrium: 


t

ot

dqJtx )(

 

(5) 

Integrating equation 4 over time we obtain a trajectory in the extrinsic space, 

whose final position corresponds to an equilibrium configuration xT . By 

definition, the  trajectory of the end-effector is the unique flowline in the force 

field passing through x(t0) and converging to xT . The computational scheme 

described by equations 1-5 is analogous to the mechanism of coordinating the 

motion of a wooden marionette by means of attached strings. By simply moving 

the tip of its hands or legs towards the designated goal using the attached strings, 

once the tip reaches the intended position, the joint angles automatically reach the 

intended values. At each time step, the goal induced force field incrementally 

pulls the end effector towards the target. The computed disturbance forces are 

incrementally mapped into equivalent torques (this projection is implemented by 

the transpose jacobian). The virtual torques now cause an incremental change in 

joint configuration q  in agreement with the admittance matrix intA  (that defines 

the relative contributions of different DoFs to the overall reaching movement). 

The incremental change in joint space is mapped to the extrinsic space (using the 

jacobian matrix) causing a small displacement of the end effector towards the 

intended target. This process cyclically progresses till the time the algorithm 

converges to an equilibrium state, which is reached asymptotically in the 

following conditions: 

(a) When the end-effector reaches the target, thus reducing to 0 the force field 

in the extrinsic space (eq. 1); 
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(b) When the force field in the intrinsic space becomes zero (eq. 2), although 

the force field in the extrinsic space is not null and this can happen in the 

neighbourhood of kinematic singularities. 

Case (a) is the condition of success termination. But also in case (b), in which the 

target cannot be reached for example because it is outside the workspace, the final 

configuration has a functional meaning for the motion planner because it encodes 

geometric information valuable for re-planning (figure 1, target B).  

Thus, the basic PMP is a robust non-linear dynamic approach to the solution of 

the inverse kinematic problem that does not require any explicit inversion or 

optimization task. Redundancy is dealt with by the admittance matrix of the 

kinematic chain. For example, “freezing” or “unfreezing” a joint can be 

implemented in a simple way by manipulating the relevant elements of the matrix: 

moreover, this modulation can be carried out efficiently in real-time, in a task-

dependent way. 

The basic PMP model also includes two additional elements (figure 1): 1) a force 

field in the intrinsic space for implementing internal constraints, 2) a force field in 

the extrinsic space for implementing external constraints. 

As regards the Jacobian and transpose Jacobian matrices, if an analytic expression 

is not available or is difficult to obtain, it is possible to use a neural network 

representation that is easy to obtain by means of a self-teaching procedure and is 

computationally efficient for real-time usage (Mohan and Morasso 2007). 

Figure 1 near here 

 

2.2 Internal constraints – joint limit avoidance 

Typical internal constraints are related to joint limit avoidance, i.e. keeping each 

DoF inside a given range of motion:  niqqq iii ,1,maxmin  . Such constraints 

can be implemented by means of a repulsive force field that pushes away the joint 

angle from limit angles. A suitable profile is an inverted sigmoid (figure 2): 
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where qi is the normalized joint rotation angle for the i
th

 joint and  is a scale 

factor of the intrinsic torque field in relation with the extrinsic force field. 

These equations are meant to operate in real-time, generating a torque field that is 

superimposed on the field mapped from the extrinsic space. In this way, the 

kinematic redundancy determined by excess DoFs is automatically compensated 

for by selecting, among the infinite kinematic configurations compatible with the 

target, the configuration that is farthest from the joint limits. 

Other robot-dependent constraints can be envisaged, in order to exploit 

redundancy of the kinematic chain, and can be integrated in the same 

computational architecture. 

Figure 2 near here 

 

2.3 External constraints – torque limit avoidance 

External constraints are usually task-dependent. A typical constraint is an 

obstacle, which can be implemented as a repulsive force field in the extrinsic 

space, to be added to the attractive force field to the target. 

Another important related problem that can be addressed in a similar way is 

avoiding the torque limits that characterize the actuators: an optimal arm 

configuration, from the point of view of the actuators, corresponds to a required 

torque output for each actuator that is as far as possible from the torque limit. This 

involves a kind of search in the null space of the kinematic transformation 

because, for a given force vector delivered at the end-effector, the actuator torques 

depend on the arm configuration via the transpose Jacobian. The solution is given 

by operating the PMP model, after x  has converged to Tx , with the target force 

TF  applied as an additional input in the extrinsic space. A saturation block, 

inserted after the mapping from the extrinsic to the intrinsic space (figure. 3), 

allows the virtual motion in the null space to settle in a configuration that satisfies 

the torque limits. 

Figure 3 near here 

 

2.4 Control over timing: Terminal attractor dynamics  

The basic PMP model is an asympotically stable dynamical system with a point 

attractor that brings the end-effector to the target if the target is indeed reachable. 

However, asymptotic stability implies that the equilibrium configuration is 
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reached after an infinite time and does not provide any mechanism to control the 

speed of approach to equilibrium. 

A way to explicitly control time, is to insert in the non-linear dynamics of the 

PMP model a suitable time-varying gain )(t that grows monotonically as x  

approaches the equilibrium state and diverges to an infinite value in that state. The 

technique was originally proposed by Zak (1988) for speeding up the access to 

content addressable memories and then was applied to a number of problems in 

neural networks. Our purpose, however, is not merely to speed up the operation 

time of the planner but to allow a control of the reaching time as well, in order to 

approximate the bell-shaped human speed profile in reaching and allow 

synchronization e.g. in bimanual coordination or in other complex tasks. In 

particular, we propose to extend the basic PMP model (figure 4) by inserting the 

time-varying gain (t), as a further development of what was proposed by Tsuji et 

al (1995) and Morasso et al (1997). The time-varying gain is defined as follows: 

     












345
/10/15/6)(

)1(
)(






tttt

t


 

(7) 

where )(t is a time-base generator (TBG): a scalar function that smoothly 

evolves from 0 to 1 with a prescribed duration   and a symmetric bell-shaped 

speed profile. A simple choice for the TBG is the minimum jerk polynomial 

function of equation 7, but other types of TBGs are also applicable without any 

loss of generality. In summary, this extension of the basic PMP model in order to 

allow terminal attractor dynamics simply requires that equation 4 is substituted by 

the following one: 

qJtx   )(
 (4a) 

In the appendix we demonstrate that in this way the target is reached after a time 

equal to  and with an approximately bell-shaped speed profile. The example of 

figure 4 shows that this simple, non-linear mechanism generates complex 

coordinated patterns of the different joints without any further explicit 

computation. 

Figure 4 near here 
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2.5 Branching nodes, for structuring PMP-networks 

In order to apply the PMP model for planning and coordinating the motion of 

complex humanoid robots, we need to structure and branch the basic PMP-

network. This can be achieved by combining a number of PMP networks (one for 

each limb of the body scheme and/or grasped “tool”) by means of two additional 

nodes, with respect to the scheme of figure 1:  

- a sum node, 

- an assignment node. 

The “sum node” allows the force fields applied to the end-effectors of two or 

more body segments (e.g. the two arms) to be combined in order to propagate the 

virtual forces to a common body segment (e.g. the trunk). Therefore, the motion 

of this body segment, far away from the end-effectors, is recruited by the global 

force fields and modulated by the local admittance matrix. This motion is then 

reflected back to the impinging segments, by means of an assignment node, thus 

distributing the movements throughout the overall kinematic structure (figure 5). 

It should be noted that the network can automatically adapt to task features, such 

as the fact that the targets are beyond arm‟s reach. In that case, indeed, we expect 

an increasing recruitment of the trunk as soon as the arms approach the joint 

limits. On the contrary, manipulation of targets well inside the workspaces of the 

arms is likely to induce a very limited involvement of the trunk. 

Figure 5 also shows that a single TBG-network can synchronize the action of the 

reaching movements of the different body segments (left arm-trunk-right arm 

chain), without any additional coordination process. In this way, for example, the 

two hands will be able to reach the same target at the same time, whichever the 

initial distance, just setting 
21 TT xx  . 

Figure 5 near here 
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3. PMP-networks for the iCub robotic platform 

The iCub is a small humanoid robot of the dimensions of a three and half year old 

child (figure 6) and designed by the RobotCub consortium, a joint collaborative 

effort of 11 research groups in Europe
1
 with an advisory board from Japan

2
 and 

the USA
3
. The 105 cm tall baby humanoid body is characterized by 53 degrees of 

freedom: 7 DoF for each arm, 9 for each hand, 6 for the head, 3 for the trunk and 

spine and 6 for each leg. The current design uses 23 brushless motors in the arms, 

legs, and the waist joints. The remaining 30 DoFs are controlled by smaller DC 

motors. The iCub body is also endowed with a range of sensors for measuring 

forces, torques, joint angles, inertial sensors, tactile sensors, 3 axis gyroscopes, 

cameras and microphones for visual and auditory information acquisition. Most of 

the joints are tendon-driven; some are direct-drive, according to the placement of 

the actuators which is constrained by the shape of the body. 

Figure 6 near here 

Apart from the interface API that speaks directly to the hardware, the middleware 

of iCub software architecture is based on YARP (Metta et al 2006), an open-

source framework that supports distributed computation with a specific impetus 

given to robot control and efficiency. The main goal of YARP is to minimize the 

effort devoted to infrastructure-level software development by facilitating 

modularity, support for simultaneous inter-process communication, image 

processing, as well as a C++ class hierarchy to ease code reuse across different 

hardware platforms and hence maximize research-level development and 

collaboration. With special focus being given on manipulation and interaction of 

                                                

1 LIRA-Lab, University of Genoa, Italy; ARTS Lab, Scuola Superiore S. Anna, Pisa,  Ital; AI Lab, 

University of Zurich, Switzerland; Dept. of Psychology University of Uppsala, Sweden; Dept. of 

Biomedical Science, Univ. Ferrara, Italy; Dept. of Computer Science, Univ. of Hertfordshire, UK 

Computer Vision and Robotics Lab, IST University of Sheffield, UK; Autonomous Systems Lab, 

Ecole Polytechnique Federal de Lausanne, Switzerland; Telerobot Srl, Genoa Italy; Italian Institute 

of Technology, Genoa, Italy. 

2 MIT Computer Science and Artificial Intelligence Laboratories, Cambridge Mass. USA; 

University of Minnesota School of Kinesiology, USA. 

3 Communications Research Lab, Japan; Dept. of Mechano-Informatics, Intelligent Informatics 

Group, University of Tokyo, Japan; ATR Computational Neuroscience Lab, Kyoto, Japan. 
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the robot with the real world, the iCub is characterized by highly sophisticated 

hands, flexible oculomotor system and sizable bimanual workspace. 

In this study, the computational model was used to coordinate all degrees of 

freedom involved in the left arm-torso-right arm chain of the baby humanoid (i.e. 

7+3+7 DoFs in total). Specifically, for each arm we deal with the following joints: 

shoulder pitch (front-back movement when the arm is aligned with gravity), 

shoulder roll (adduction/abduction movement of the arm), shoulder yaw (yaw 

movement when the arm principal axis is aligned with gravity), elbow 

flexion/extension, wrist prono/supination (rotation along arm principal axis), wrist 

pitch, wrist yaw. While theoretically six DoFs would already allow reaching any 

point in the workspace with every attainable orientation, in practice, the seventh 

DoF is necessary to satisfy additional constraints, such as reaching targets in the 

workspace while avoiding interference with vision. This additional flexibility is 

very much desired if we have to deal with grasping and the interaction with 

objects in front of the robot while maintaining sight of the action. It is also worth 

mentioning that the full range of motion for the shoulder can only be obtained by 

a double joint mechanism similar to the human clavicle and collar bones. The 

torso is characterized by three DoFs: torso yaw (with respect to gravity), torso roll 

(lateral movement) and torso pitch (front back movement). For additional details 

we refer the interested reader to the RobotCub database 

(http://www.robotcub.org) as regards the technical description of the body 

geometry, kinematics, electronics, software architecture and CAD diagrams. 

In addition to the YARP middleware, the iCub platform also has a 

kinematic/dynamic simulator (Tikhanoff et al 2008). The two software 

environments are compatible, in the sense that higher-level computational 

mechanisms, like PMP-networks, can be debugged first by means of the simulator 

and then applied to the real robot without any change. The simulation phase is 

also important for verifying if the planned kinematic patterns are compatible with 

the requirements of the actuators in terms of speed, acceleration, etc. In the 

following section we show some examples of real and simulated experiments. 

 

3.1 Bimanual coordination 

In the paradigm of bimanual coordination, as already noted in the previous 

section, the basic PMP model must be extended with two additional nodes: a sum 
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node and an assignment node. In complex kinematic structures, characterized by 

several serial and parallel connections, the sum and assignment nodes can be used 

to add or assign displacements and forces to different connecting elements of the 

kinematic chain (in this case the left arm-torso-right arm network). The sum and 

assignment nodes in general are dual in nature: if an assignment node appears in 

the kinematic transformation between extrinsic and intrinsic motor spaces, then a 

sum node appears in the force transformation between the same motor spaces. 

This is a consequence of conservation of energy that is structurally invariant 

across the different work units. Figure 5 shows the resulting computational 

scheme, where trunkA  is the virtual admittance matrix of the trunk. We may 

consider the scheme of figure 5 as a composite PMP network, dynamically 

created for this specific task, reconfiguring the basic PMP networks of the two 

arms (that were grounded at the shoulder). During the relaxation process, the 

transpose Jacobian incrementally transform the force fields generated by the goal 

in each chain into ten virtual torques (7 each for the respective arms and 3 for the 

waist). The virtual torques incrementally computed for the waist as a result of the 

force fields experienced by the two arms are summed at the sum node and 

transformed into three incremental joint rotations at the waist through the 

admittance matrix ( trunkA ). The assignment node propagates the resultant 

incremental displacement computed at the waist back to the computational chain 

of the two arms. At the same time the incremental displacements at the joints of 

the each arm is also computed by using the seven virtual joint torques and joint 

admittance matrices (Aj). The Jacobian matrices now compute the incremental 

update in the configuration of the body as a result of the incremental 

displacements at different joints. Hence, in one cycle through the computational 

chain, the whole upper body has incrementally reconfigured to a new pose 

towards reaching the respective goals of the two end-effectors. Part of the solution 

is contributed by the waist, part of it contributed by the degrees of freedom of the 

two arms, based on their relative admittances. This cycle of propagation of 

disturbances through the computational chain continues until the whole upper 

body attains equilibrium (i.e. there are no disturbance forces circulating in the 

network). This is the final solution of the complete PMP relaxation process. 

Figure 7 (panels a-b) shows an example of iCub bimanually reaching a far away 

target (blue box) using all DoF involved in the „left arm-trunk-right arm‟ chain. 
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Figure 7 near here 

By modulating trunkA  we can control the contribution of the trunk DoFs to the 

overall relaxation of the body in reaction to the two force fields applied to either 

end-effectors (without affecting the trajectory of the end-effector). If the trunk is 

very stiff, only the DoFs of the arms contribute to the final solution reached by the 

system: this is equivalent to “grounding” both shoulders. As seen in panel B (and 

E-F) the DoFs of the waist are naturally recruited to provide the necessary 

extension in reach as soon as the arms approach the joint limits. Panel C shows 

another example of reaching a green cylinder with both arms. For reaching objects 

placed relatively close to the body, the overall movement is generally distributed 

among the degrees of freedom of the two arms, the trunk motion being quite 

minimal. In panels D-F we consider an asymmetric bimanual coordination task. 

Panel D shows the initial condition with the goal being issued to reach the large 

cylinder (placed asymmetrically with respect to the robot‟s body) using both 

arms; Panel E-F show the solution obtained by the PMP relaxation applied to the 

upper body in order to achieve the goal. We can observe the contribution of all 

three DoFs of the torso (coupled with appropriate adjustments in the right arm 

chain) in order to enable the left arm to cover the additional distance necessary to 

reach the target (along with the right arm). The timing of the relaxation is 

controlled using the time base generator. Panels G-I show an example of a 

stacking task using only the left arm-torso chain. In all experiments, scene 

analysis and salient point extraction is performed by a visual module; this 

information is reconstructed in Euclidian space by a 3D reconstruction system 

(Mohan et al 2007) and fed as inputs/goals to the PMP networks. 

 

3.2 Extending PMP networks to include the dynamics of tools 

Figure 8 shows an example of a combined task that steps through two different 

phases: (1) bimanual reaching of an object, (2) transporting the object held 

between the two arms to a new target destination. In spite of the fact that humans 

(almost unconsciously) execute such tasks with noticeable ease, it is worth 

observing the fact that in this example it is not even straightforward to specify the 

goal of the task (in computational sense) if we want an artificial agent to do the 

same. For example, the goal may be verbally described in one way as: „both arms 

must move in a coordinated way in order to allow the object coupled in between 
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them to reach its target location in space‟. The computational complexity in action 

generation for this bimanual transportation task stems from the fact that once an 

object is grasped successfully using the two arms, the task of transporting it poses 

stringent constraints both on the movement trajectory of the two arms as well as 

the timing of the motion of both arms. The basic requirement is that both arms 

must move to the target in such a way that they are always in contact with the 

object and any unpredictable effect on the object must be compensated by suitable 

reconfiguration of the body. The planner is further supposed to break down a plan 

into phases and modify accordingly the PMP network that will carry out each 

phase independently, selecting the appropriate network parameters. The PMP 

network that plans the first phase is depicted in figure 5, with the two targets 

being two appropriate points on the object surface. As shown in figure 8a, the 

network for the lift phase is extended to include the manipulated object. 

Instead of actively controlling the body that in turn controls the external 

object and carries it to the goal (which may be extremely complicated to achieve 

in computational terms considering the number of constraints that must be 

explicitly accommodated into the controller to achieve this successfully), the 

computational model shown in figure 8a moves exactly in the reverse direction: 

i.e. the goal pulls the external object that in turn pulls the body (end-effectors) 

which in turn pulls the intrinsic elements in the body (joints, muscles). Hence the 

general principle in composing a PMP based forward/inverse model pairs is to 

always move from the most distal space to the most proximal space (from the goal 

to the external object, and then to the body).  

Figure 8 here 

In this way, the external object in a sense is always kinematically and 

dynamically coupled with the body. The computational model by itself makes no 

difference between the representational schema of the motor spaces of the body 

and the external object. The tool space is represented exactly in the same way as 

the body, by means of a generalized force and position node, linked vertically by a 

virtual admittance matrix AE (characterizing the incremental transformation from 

force information to position information in the tool space), and horizontally by 

the device Jacobian matrix JD that form the interface between the body and the 

tool device (and based on the geometry of the task). During the transportation 

phase, the cube is pulled towards the goal target by one virtual force field; this 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19 

pull in turn disturbs the end-effectors (both hands) that passively comply to the 

externally imposed motion; this disturbance then circulates to the proximal space 

through the Jacobian matrices to derive an incremental change in the joint angles. 

If the motor commands derived by this process of virtual relaxation are fed to the 

robot, the robot will reproduce the same motion. The external object can be a 

simple cylinder, as in figure 8b, or a more complicated tool with several new 

controllable degrees of freedom: for example, two arms linked in parallel to a 

steering wheel while driving a car. In this case, what changes in the computational 

model is just the device Jacobian JE that forms the interface between the body and 

the external object. In the case of the steering wheel task, JE maps the 

transformation between the rotation of the steering wheel and the corresponding 

differential displacement seen at the end-effectors (hands). Everything else in the 

computational chain remains exactly the same and behaves accordingly (a mono 

dimensional steering wheel pattern is mapped to a 6 dimensional end-effector 

pattern which is mapped to a seven dimensional joint rotation pattern and 

backwards). Note also that the same time base generator coordinates the joints and 

the end-effectors position smoothly. 

 

4. Discussion 

In this paper, we presented a simple, distributed computational framework for 

representing and solving a range of difficult coordination problems arising in 

redundant humanoid platforms, by using a multi-referential, non-linear dynamical 

approach that exploits the physics of passive virtual motion and the concept of 

terminal attractor. The virtual force fields representing targets and constraints in 

different spaces are combined at run-time to yield a net force field that relaxes the 

internal model to an equilibrium configuration: this solution is the best trade-off 

among the multiple set of constraints and is computed implicitly by the dynamics 

of the computational model. 

The simplest form of combination of the different force fields is linear 

superposition. However this is not mandatory. The computational scheme is 

compatible with methods of shaping the attractor landscapes in terms of basis 

functions. Future generations of PMP-networks will incorporate mechanisms of 

this kind. Some of the basis functions can effectively take into account the 
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dynamics of the robot assuming a proper computed torque controller is applicable, 

thus effectively opening up the possibility of exploiting the robot‟s dynamics. 

The internal model – the force field – stores a whole family of geometrically 

possible solutions, from which one is implicitly selected based on the nature of the 

task being executed and attractor dynamics of the system. Further, the proposed 

architecture is also endowed with nice computational properties like robustness, 

run-time optimization, fast task adaptation, interference avoidance and local to 

global computation that make it both biologically plausible and extremely useful 

in the control of complex robotic bodies. 

Robustness 

The robustness of the computational machinery stems from several reasons: 

a) No model inversion is needed as the system always operates by means of 

incremental, well-posed, direct computations. 

b) The dynamical system automatically stays away from singular configurations. 

c) Even if the target is outside the reachable workspace, the robot nevertheless 

tries to approach the target as much as possible by fully extending the arm to 

a position that is at a minimum distance from the target. Hence, what we see 

in such cases is a gentle degradation of performance that characterizes 

humans in the same situations. Although there is no exact solution to the 

problem, the network “does its best”. 

Flexibility 

Flexibility of the computational machinery is made possible by the following 

properties:  

a) There is no specific, pre-defined cost function/optimization constraint 

(minimum torque, minimum jerk, signal dependent noise etc.); hence there is 

a scope for operating on-line, facilitating run-time co-evolution of plans and 

the corresponding control processes needed to achieve them. 

b) Multiple constraints can be concurrently imposed in a task-dependent fashion 

by simply switching on/off different task relevant force field generators. 

c) The same flexibility is also available in the recruitment of different degrees of 

freedom afforded by a complex body in the performance of a specific task. 
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d) Custom PMP-networks containing many kinematic chains and possibly 

linked with external objects can be composed in a systematic manner, 

according to the task at hand. 

Local to global computing 

From the perspective of local to global computing, we can observe that, at each 

instance of time, every element in the computational chain of a PMP network 

makes a local decision regarding its contribution to the overall externally induced 

pull, based on its own virtual compliance. All such local decisions contribute 

towards driving the system to a configuration that minimizes its global potential 

energy. Similar to many connectionist models in the field of artificial neural 

networks, the mechanism to regularize and exploit redundancy by means of 

attaining configurations that minimize global potential energy essentially uses 

only local asynchronous interactions. Analogous to content addressable or auto-

associative memories, which reconstruct a stored memory pattern from a partial 

fragment by filling up all the missing information during the progression to attain 

an equilibrium state, a plan in the proposed computational model does not need to 

specify the behavior of all joints and muscles but only requires to specify the 

desired behaviour of a small number of end-effectors or external tools, because 

the detailed missing information is automatically filled in by the global attractor 

dynamics. 

Forward/Inverse internal models 

An interesting area of research directly related to the model proposed in this paper 

is the use of forward/inverse internal models, now wide-spread in the field of 

cognitive science. The existence of neural mechanisms that mimic input/output 

characteristics and the inverse models of the motor apparatus are supported by 

several behavioral, neuropsychological and imaging data (Miall and Wolpert 

1996, Wolpert and Kawato 1998, Rizzzolatti et al., 1997). A forward model or an 

emulator is a computational mechanism that captures the forward or causal 

relationship between the inputs and outputs of a system. If we consider the arm as 

the target system, the forward model predicts the next state (position and 

velocity), given an initial state and motor command. The inverse model does the 

opposite: it takes a goal-state as input and produces a sequence of motor 

commands necessary to achieve it. It is quite easy to observe that a PMP network, 

in all the different versions considered in this paper, is an integrated 
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forward/inverse model composed of: (1) a forward motor controller that maps 

tentative trajectories in the intrinsic (joint) space into the corresponding 

trajectories of the end-effector in the extrinsic workspace and (2) an inverse motor 

controller that maps desired trajectories of the end-effector into feasible 

trajectories in the joint space, concurrently taking into account the motion of the 

end-effector predicted by the forward model. We also note that unlike forward/ 

inverse models using supervised neural networks (e.g. Jordan networks: (Jordan 

1986)), the proposed model using the notion of passive motion paradigm operates 

by seeking stationary configurations of a non linear dynamical system and is 

somatotopic in nature. 

Mental simulation 

The advantages of having forward/inverse models are numerous, ranging from 

overcoming transductive and transport delays, canceling sensory re-afference, 

aiding distal supervised learning, and mental simulation of actions, among others 

(Wolpert et al 1998). A key element of the proposed architecture is that the same 

computational model can be used to support mental simulations possibly 

employed by higher level cognitive layers. The actual delivery of motor 

commands during movement execution, after consistency of the motor plan has 

been evaluated by the higher level reasoning process (for example, i) the goal is 

reachable directly by the end effector taking into account all the task specific 

constraints, ii) the goal is reachable using an available tool, or iii) the goal is 

unreachable in which case there is no physical execution of any action at all). In 

other words, one can reason about reaching without actually reaching and yet use 

the same neural/computational substrate to do so. This point of view is in 

agreement with the CODAM concept (Corollary Discharge of Attention 

Movement, (Taylor 2003)). The relaxation of the coupled forward/inverse model 

pair provides a general solution for mentally simulating an action of reaching a 

target position taking into consideration a range of geometric constraints (range of 

motion in the joint space, internal and external constraints in the workspace) as 

well as effort-related constraints (range of torque of the actuators, etc.). If the 

forward simulation is successful, the movement is executed; otherwise the 

residual "error" or measure of inconsistency can be used to trigger a higher level 

of reasoning regarding possible availability of a tool that could be used to get 

closer to the goal. 
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Sub-symbolic reasoning: from animals to humanoid robots 

In a previous work  (Mohan and Morasso 2007), we presented preliminary results 

of the possible use of the proposed computational architecture coupled with a 

recurrent neural network to solve the two-sticks problem, a well-known 

benchmark for animal reasoning, using a simple 5 DoFs arm and 2 cameras. 

Experimental studies on animal behaviour generally focus on problems that are of 

great interest to the cognitive robotics community, mainly attention, 

categorization, memory, spatial cognition, tool use, problem solving, reasoning, 

language and social cognition. In addition to revealing the subtle intricacies of the 

cognitive processes operating inside the animal brain (and mind), these 

experiments form interesting scenarios for developing-validating computational 

architectures of cognitive control in robotics. For example, Limongelli et al. 

(1995) studied the reasoning powers of chimpanzees to determine if they could 

extract general rules in order to obtain a reward by suitable tool use in a scenario 

consisting of a clear tube, open at both ends, with a food reward inside it that 

could be pushed out of either end by means of using a stick, which was available 

to the chimpanzee. The chimps successfully managed to extract the food from the 

tube by „reaching and pushing‟ it with a tool of suitable length. If presented with 

tools of different lengths during a trial, chimps often chose the most appropriate 

tool directly and did not employ any trial and error based policy of testing with all 

the available tools. Tool selectivity is critical for animals because selecting an 

improper tool incurs costs in terms of time and often results in the potential loss of 

the food to another predator. As reported by Chappell and Kacelnik (2002) and 

subsequently confirmed by several others, crows are also very selective in 

choosing the most appropriate tool suitable for a particular task. In a similar 

„pulling the reward out of a tube‟ task, crows often chose tools that precisely 

matched the geometry of the tube in which the food was trapped. Several such 

studies from animal reasoning suggest that a large range of animal species appear 

to be involved in some form of prospection and reasoning that involves using 

tools to achieve otherwise unrealizable goals (Boysen and Himes 1999, Emery 

and Clayton 2004, ). A computational architecture driving behaviour of cognitive 

robots must support such virtual executions of goal directed movements (using 

forward/inverse models) in order to find a feasible course of action, at the same 

time taking into account a range of bodily, environmental and task specific 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

24 

constraints that are locally present. In case the forward simulation is successful, 

the movement is executed; otherwise a measure of inconsistency (the geometric 

information encoded in the virtual simulation of action) can be used to trigger  

higher level reasoning in order to look for an appropriate tool that suits the task 

specifications. 

A humanoid platform like the iCub, affords the possibility to attempt more 

complex and challenging scenarios requiring intelligent spatio-temporal 

coordination of its highly redundant body (sometimes along with „useful‟ objects 

in the environment) in order to realize high level user goals. In particular, we are 

currently developing a general three-layers computational architecture for robotic 

reasoning: (1) one layer hosts the extended PMP model for integrating multiple 

constraints and carry out mental simulations of action sequences or preparing the 

actual execution; (2) a more abstract computational layer initiates planning at the 

level of goals, rewards, object actions, situation plan, thus operating in a multi-

referential environment (sensorimotor space, action space, work space); (3) a third 

layer involves active intervention of the robot in the environment in order to 

enrich its knowledge by active exploration and learning. 
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Appendix. Terminal attractor dynamics of PMP-networks 

Summarizing, a PMP-network is described by the following set of non-linear 

dynamics equations: 
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In order to demonstrate that in this way the target is reached after a time equal to  

(the duration of the TBG) and with an approximately bell-shaped speed profile, 

we can substitute the vector equation 4a with an equivalent scalar equation in the 

variable z defined as the running distance from the target along the trajectory 

generated by the PMP network ( 0z  for Txx  ): )()( zftz  , where )(zf  

is, by construction, a monotonically increasing function of z which passes through 

the origin because Txx   is the point attractor of the dynamical PMP model. 

Therefore, for )(zf  we can formulate the following linear bound: 

zzfz maxmin )(    (A2) 

 where maxmin ,   are two positive constants. By denoting with   any value inside 

the maxmin   interval, we can write the following equation: 

z
dtd

dt

dz









1

/

 

(A3) 

from which we can eliminate time 
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(A4) 

The solution of this equation is then given by: 

  1)( 0ztz
 

(A5) 

where 0z is the initial distance from the target along the trajectory. This means 

that, as the TBG variable )(t approaches 1, the distance of the end-effector from 

the target goes down to 0, i.e. the end-effector reaches the target exactly at time 
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t  after movement initiation. Since this applies to both limits of the bound we 

can write the following bound: 

maxmin ))(1()())(1( 00
  tztztz 

 
(A6) 

In any case the terminal attractor z = 0 is reached at t . The speed profile may 

be somehow distorted in relation with a symmetric bell shape (figure A1) but the 

terminal attractor property of the model is maintained for a wide range of values 

of  . 
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Figure captions. 

 

Figure 1. Top Panel: Basic computational scheme of the PMP network for a 

simple kinematic chain. Kext is a virtual stiffness that determines the shape of the 

attractive force field to the target; “external constraints” are expressed as force 

fields in the extrinsic space; “internal constraints” are expressed as force fields in 

the intrinsic space; Aint is a virtual admittance that distributes the motion to the 

different joints. Bottom panel: Application of the PMP to a redundant planar 

robot, starting from a given initial configuration. Target A is inside the workspace 

and can be reached in infinite possible ways: the actual chosen configuration 

depends on the “internal constraints” and the admittance matrix. Target B is 

outside the workspace and the unique equilibrium configuration computed by the 

network is the one closest to the target. 

 

Figure 2. Top panel: normalized profile of the torque for smoothly enforcing joint 

limit avoidance (
x

x
y




1
ln ). Middle panel: PMP network for implementing 

joint limit avoidance with a suitable intrinsic torque field. Bottom panel: two 

reaching movements to the same target, with the same initial configuration but 

different joint limits of the wrist. 

 

Figure 3. Top panel: PMP network for selecting the best final configuration in 

relation with a target force vector FT and the range of torque values for each 

motor; “sat” is a saturation block that keeps each torque value inside to allowed 

range. In the bottom panel “A” is the final configuration identified by the regular 

PMP model. “B” is the configuration obtained by allowing the network to settle in 

the null space of the kinematic transformation (for Txx  ) by “saturating” the 

different actuators to the rated torques. In the example, the wrist motor is much 

weaker than the elbow and shoulder motors. 

 

Figure 4. Top panel: PMP network modified with the inclusion of the TBG (Time 

Base Generator). Middle panel: motion patterns generated by the PMP model of a 

planar 3 DoF manipolandum in the intrinsic space (q) and distal space (x,y). 

 

Figure 5. Composite PMP network with two attractive force fields applied to the 

right and left arms of a humanoid robot. The “sum node” allows the two force 

fields to be combined in determining the motion of the trunk. The “assignment 

node” propagates to the two arms the motion of the trunk. In this way the motion 

of each arm is influenced by both force fields. 

 

Figure 6. The 53 DoFs iCub robot. 

 

Figure 7. Upper body coordination in iCub using PMP. Panels A-B show iCub 

bimanually reaching a far away target (blue box) using all DoF involved in the 

„left arm-trunk-right arm‟ chain. The solution is generated using the 

computational model of figure 5. As seen in panel B (and E-F) the DoF of the 
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waist are naturally recruited to provide the necessary extension in reach as soon as 

the arms approach the joint limits. Panel C shows another example of reaching a 

green cylinder with both arms. Panels D-F show an example of an asymmetric 

bimanual coordination task. Panels G-I show an example of a stacking task using 

only the left arm-torso chain. 

 

Figure 8. 8a shows the composite PMP network that coordinates the lifting phase, 

with a force field applied to the external object (Cylinder) and propagated to the 

PMP sub-networks that correspond to the right arm, left arm, and trunk. 8b shows 

a series of snapshots of iCub performing a transportation task. 8c shows the 

trajectory of the lift phase in the extrinsic space. The TBG function gamma that 

coordinates the timing of the relaxation is also plotted. 

 

Figure A1. Time-base generator (TBG) for terminal attractor dynamics - )(t  - 

obtained from a minimum jerk time function - )(t  - with assigned duration  . 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8a. 

 

Figure 8b. 
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Figure 8c. 
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Figure A1. 

 




