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Abstract — This paper is about the implementation of
grasping skills in a humanoid robot. Following a
developmental approach the robot is initially equiped with
little perceptual and motor competencies whose rolés to
bootstrap learning through the exploration of the aternal
environment. This crude form of sensorimotor coordnation
consists of a set of control systems and exploragibehaviors as
well as simple visual routines. The developmentalgth leads
the robot from the exploration of the physics and gometry of
its body to the probing of the external environment The robot
experience builds and modifies continuously its imrnal
representations of the environment, being this itbody or the
objects it encounters. We discuss the implication®f our
approach to the study of cognition and our effort © build a
cognitive artificial system.

Index Terms — Humanoid robotics, development, cdgm
systems.

I. INTRODUCTION

There is a growing scientific and practical inteteghe
study of cognitive systems being these biological
analyze them) or in trying to replicate their caftis
(engineering them). Unfortunately though, thereds even
an accepted definition of what a cognitive systeniying
at the two ends of the spectrum we find cognitiv[&jnon
one side and enactive systems [2, 3] on the other.rAop
to the first, cognition is a computational processied out

worth noting that representation here is taken snnibost
neutral and common-sense meaning.

To see how extreme it could be, consider for example,
the visual system of primates. This is efficient ordyleng
as the animal moves the eyes to place the high-résolut
fovea at interesting places in the environment. Aitben
regulated by a sophisticated control system allowly on
specific stimuli to be selected among the wealth afsile
choices. Through action, the system’s embodimentthed
environment codetermine the resulting representations.

Motivated by these considerations we propose a
developmental approach to the implementation ohitivg
abilities in a humanoid robot. We identified the imom
embodiment as possessing a head, arm, and hand. glithou
limited, this robot can perform goal-directed actioon
objects, like reaching and grasping, it can visusdlgin the
environment, and actively explore it by taking fefid
actions.

A grossly simplified though plausible developmental
process can be described in three distinct phases -dthey

(tthot necessarily need to be completely separated.fifdie

stage is devoted to learning the internal models ef th
robot's body (known also as théody-map which
eventually provides basic motor and perceptual sskike
gaze control, eye-head coordination and reachiage® on
these abilities the interaction with the external ldiois
investigated in the second phase where the robotwdisso

on a symbolic representation of the world. Symbols, gperties of objects and ways to handle them (Iagrtn
represent the world and can be shared across d'ﬁerefhtteract). The robot actively explores the environtnby

entities: they are a complete characterizatiorhefworld in
which the entity is located, and as such are indeperafe

taking actions (e.g. reaching) which allows startihg t
acquisition of information about the physical coheseand

the entity itself and its past experience. In enactivgne functioning of the environment and, at the sdime,

approaches instead, cognition is the result of ttexastion

discovering new, more efficient, ways of interactigfar

and co-development of the agents body and theyample different grasp types). Finally the third etas
environment in which the agent lives. Although theapoyt learning to understand and interpret dynaneicahts

definitive answer is still to be found, physical reatians of

artificial systems can prove to be a valid test-bed foLitions with

different theories and models.

possibly including other agents: the robot has associested
the resulting perceptual consequences.
Interpretation of other people’s actions is achieved b

In the debate we see our approach as more sympatheﬁlﬁ,erting this association.
toward the enactive systems end. Two aspects seem thus |5 the past we have addressed aspects related to the
crucial: i) embodiment and i) development. The tWOnirg phase [4, 5]. This paper is focused only onfitlsé two

requirements are obviously intertwined, as the intemac
between the agent and the environment is possilijelyn

means of a body. As a consequence, representatiohg of t

phases.

II. EXPERIMENTALSETUP

environment depend on the particular embodiment, and

more importantly, on the past experience of theesgstt is

The experimental setup consists of the robotic platform
shown on Fig 1. It is an upper torso humanoid robot

" Funding for the research described in this paper theen provided by the EU projects ADAPT (IST-371&8y

ROBOTCUB (FP6-004370).



composed of a 5 degree of freedom (DOF) head, 6 DOproximal phalanges are linked to the first motor, levlihe
arm and a 6 DOF hand. The head has 5 DOF, two @hwh second and third phalanges are actuated by the second
control the neck pan and tilt, whereas the otharetlactuate motor. The mechanical coupling between the joirdgs i
two cameras to pan independently and to tilt omraroon  realized by means of springs to allow a certain amod@nt
axis. The arm is a Unimate PUMA 260, an industrialadaptation of the grasp type to the object shape.
manipulator with 6 degrees of freedom; it is modnigth From the point of view of the sensors, the head is
the shoulder horizontal (typically vertical) to setmimic  equipped with two cameras and two microphones faravis
the human kinematics. The hand consists of 5 fingecd1 eaand auditory feedback. Tactile feedback is providgdl7
finger has three phalanges, the thumb has an adalitionforce sensing resistors mounted on the hand, 5 of vrieh
degree of freedom which allows it to perform a rotat placed on the palm and the remaining 12 evenlyibligtd
toward the palm. Overall the hand has 16 joints cllett  on the thumb, index, middle and ring fingers. A JBR&e

by only six motors. Two motors are connected to thieex  sensor provides torque and force feedback at the.wrist
fingers: they are linked to the first (proximal) aselcond Further proprioceptive information is provided te tftobot
phalanges. The distal (small) phalange is mechanicallpy optic and magnetic encoders mounted on all j@htbe
coupled to the preceding one so that the two begdther head, arm and hand.

(see Fig 1). Two motors control the motion of middlag

and little finger. As in the case of the index fingthe
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Fig 1: a) the experimental setup, the Babybot.:ldstails of the hand. b) and c): elastic complkart)-f): mechanical coupling between phalanges.

scenes into representations of (often partly occluded)
lll. VISION objects for recognition and action. Indeed, pemeivmust
]eventually interact with objects in the world and math
disembodied abstract locations.

The literature on visual attention in artificial \dsi is
locations. Human beings and many animals do not haveVaSt and sever_al models have_ been proposed [7, 81;0ﬁo_s
uniform resolution view of the visual world but rathanly them are derived from Treisman's Feature Integratio

Theory (FIT) [9]. The FIT model employs a set of ievel

a series of snapshots acquired throug_h a_small h'gr?éature maps which are combined together by a spatial
resolution sensor (e.g. our fovea). This leads to twq

questions: i) how to move the eyes efficiently to intaot attention window operating in a master saliency map.

locations in the visual scene, and ii) how to decidtvwis Thg visual attention madel we propose starts from
. approximately the same type of considerations but the
important and, as a consequence, where to look next.

- . - : . . uses a concept of salience basegaio-objectsdefined as
There is accumulating biological evidence that ditben : : . ]
is directed to an obiect or a aroup of obiects { the blobs of uniform color in the image. The robot byirsg on
i ) group JECts, objects can then figure out how to combine theseopro
attention system processes properties of objects rrdthe o . . )
. . . objects into coherent wholes, i.e. full-fledged ebjeOnce
regions of space. In fact, it has been shown that sadect s . .
. . n object is grasped, in fact, the robot can moveratade it
attention frequently operates on an object-base

. . . . - gnd build a statistical model of the color blobs ahelir
representational medium in which the boundaries o . ; . o .
spatial relationship. This internal representation can

segmented objects, and not just their spatial position . . )
determine what is selected and how attention is geplo subsequently be used to instantiate the top-down coemo

(see [6] for a review). In other words, the visual gyste of the attention system.
seems optimized for segmenting complex three-dimeakion Throughout the paper we employed log-polar images as

defined for example in [10], which mimic the distrtton of

One of the first steps of any visual system is that o
locating suitable interest points in the scene (“salie
regions” or events) and eventually direct gaze tovithese



cones, i.e. the photoreceptors of the retina imblie
diurnal vision. Cones have a higher density in thetreg  So-som™ [(
region called thefovea while they are sparser in the
; - )
periphery. We never used standard rectangular images. o )
As a first step, the input image is smoothed in tinye, bwhere< > indicates the average of the image values over a

taking the average between the current frame am@utput  certain area (indicated as subscripts). The totadrsesi is

of the color quantization (see later in text) on fitevious  simply estimated as the linear combination of the tvans
frame (see Fig 2). Then the red, green, blue chanoiel gpoye:

each image are separated, and the yellow channel is —

calculated as the average of the red and greenTdrese S= a$°P‘d°W”+’8 Sotom Ul )

four channels are combined to generate three coldk¥here Sepdown aNd Sioromup are defined in text. The total
opponent channels, similar to those of the retin@hEsf  salience map S is eventually normalized in the r&ges,
these channels, typically indicated as (R+G-, G+RY®B, as a consequence the salience of each blob in thgeima
has center-surround receptive field (RF) with spdgtral relative to the most salient one.

opponent color responses. That is, for example, anpmat i

in the center of a particular RF increases the respohthe
channel R+G- while a green one in the surrounding
decreases its response. The spatial response profile of the
RF is expressed by a Difference-of-Gaussians (DoG). A RF
centered on each pixel of the input image is coneileso

the output of the RF filtering is obtained with angolution

with DoG kernel, generating an output image of shene

size of the input. The DoG filters are not balanced a
similarly to what happens in the human retina the
unbalanced ratio implicitly code achromatic infotioa.

Edges are then extracted on the three channels
separately by employing a generalization of the Stiber
due to [11]. The resulting edge maps are combineetheg
to generate a single map. A watershed transformi§liPen
applied on the edge map to isolate blobs and torgane
proto-objects As a result the image is segmented in blobs
with either uniform color or uniform gradient ofloo.

At this point each blob is tagged with the mean ccofo
the pixels within its internal area (this leads to doco
guantized image). The result is blurred with a Gaussian
filter and stored: it will be averaged with the héame to
obtain a temporal filtering and reduce the effdataise.

As discussed above, it is known that a feature or
stimulus is salient if it differs from its immediate
surrounding area. Theottom-up saliencés calculated as
the Euclidean distance in the color opponent spateden
each blob and its surroundings. Moreover, the sizéhef t

spot or focus of attention is not fixed but rathekéid to the hi he f f ion f being kxid
size of the blobs. In the same way the definition of! IS Prevents the focus of attention from being e

immediate surrounding aress relative to the size of the Immediately to a location that was previously attehde

focus of attention. In other words, we compute theesak Such an inhibition of return (IOR) has been also

of each blob in relation to a neighborhood regidrose size demonstrated in_human psycho_physics._
is proportional to that of the blob itself. In our Our system implements a simple object-based IOR. The

implementation we use a rectangular region 2.5 tithes robot maintains a list of the last five positions visjtedded
size of the bounding box of the blob. Blobs tﬁat e in a body centered coordinate system. When the robot
small or too big are discarded from the saliency adatjon redirects gaze it keeps memory of the blobs it hasedisi

and ignored and they will not be considered as pc«ssibl'ﬂhibition gc_curﬁ olr_1ly. if the bIobhpreE(_ents the sarﬂerplof
candidates to be part of objects (proto-objects). that stored in the list; in case the object movegsocalor

The top-down influenceon attention is calculated in changes the location becomes available again fatidixa

relation to the visual search task. When the robot has

acquired a model of the object and begins seardbinig, it IV. LEARNING ABOUT THE SELF

uses the knowledge of the object's appearance to héas tin general the set of the internal models that reptethe

saliency map. In practice, the top-down saliency nsp body is called dody-schemar body-map: it involves, for

computed as the distance between the average dodaich  example, the relative position of the limbs, thegheiof the

blob and that of the target: body segments and their size. The existence of a body-
schema in the brain has gained some support thanke to th

w6)-(ro)] o (0 A 0 5 +{( my-( Y|
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Salience Map

Fig 2: The visual attention system, block schema.

Local inhibition is transiently activated in the satie map.



work of Graziano [13, 14] and Rizzolatti [15] whouihd
neurons in the primate motor cortices coding thetiposof
the hand in the visual field irrespective of the tieta
position of the head and hand.

In biological systems the internal representationhef t
body is shaped during development and maintained fite
physical modification occurring in life. In artifed systems

(where the body does not normally change with time).

adaptation can avoid the tedious operation of manual
tuning the system’s internal models and their paramsete
The latter might be required to compensate chanyekei
visual appearance of the body or drift in the senseig. (
motor encoders).

We propose here an approach similar to Fitzpatrick an

Arsenio [16] and Metta and Fitzpatrick [17]. Repeéatself-
generated actions are initiated by the robot duting
learning phase. In particular we controlled the tolm
execute a periodic movement of the wrist. The rawylti
motion of the hand was detected by computing thegéma
difference between the current frame and an adaptiodel
of the background. The period of motion of eaclepix the

resulting motion image was then computed with a zero-

crossing algorithm; similar information was extractedthe
proprioceptive feedback of each motor encoder. Assalt

the hand of the robot was segmented by selecting, @mo

the pixels that moved periodically,
matched that of the joints. Conversely non-periodavimg
pixels or pixels moving with different periods were

motor command can be obtained by a transformatichef
eye-head motor/positional variables. We called this
approach motor-motor coordination because the
coordinated action is obtained by mapping motoraldes
into motor variables:

qarm = f(qhead) (3)
whereq,_, andg,are head and arm posture respectively

(joint space). What is interesting in this approashnot
equation (3)per se which, after all, implements the inverse
kinematics of the arm, but the mechanisms we use to lea
it. In fact this mapping can be easily learnt if tbot can
look at its hand, which is not incidentally the bypguct of
knowing the position of the hand in the image.

The robot explored the workspace by moving the arm
randomly, while at the same time, it tracked the dhan
whenever the head fixated the hand a new pair @aa-h
posture was acquired and used as a training sample to th
neural network that approximatésé equation (3). When a
sufficient number of samples were acquired (and the
network trained), the robot started using the mapping
reach for visually identified objects.

Once the robot has computed the final arm postuse it
still required to plan the actual movement. This wared

yvith a simple linear interpolation between the catrand
those whose periodinal arm configuration. The trajectory was dividedsteps

which were effected by the low-level controller; tois
purpose we employed a low-stiffness PD controllethwit

identified as being originated by other sources an@'@Vily compensation. The gravity load term for efmiht
discarded. Fig 3 shows an example of the detection antfaS @!so learntonline as described in [20].

segmentation of the robot’s hand.

original image at the beginning of the procedure,result of the detection,
the result of a further low-pass filtering, and fimal segmentation.

This information about the hand is employed to lear
the position of the hand in the visual field givee turrent

arm and head posture and, simultaneously, the shape ag.,

orientation of the hand (in this case represented by
ellipse). Learning is carried out by using a neuetivork
specifically designed for online learning [18]. Ewgaity
these models could predict the position of the rgbioand
in the image given a future position of the head amal.
Although of some utility, the real goal of segmegtin
the hand is for guiding reaching. The solution weppse is
based on the use of a direct mapping between thbeaa
motor plant and the arm motor plant [19]. In otkards,
reaching for an object starts by looking at it. Untles

n

V. BUILDING OBJECTMODELS

Either by reaching and randomly grasping or becafise o
a cooperating human the robot eventually will grasp
object. Both solutions are valid bootstrapping bebravfor
the acquisition of an internal model of the obj&ghen the
robot holds the object it can explore it by movingda
rotating it. In short, the idea is to represent objeas
collections of blobs as generated by the visual attenti
system and their relative position (neighboring refe).
The model is created statistically by looking at Hzme
object several times from different points of view.eTh
system estimates the probability for each blob to leton
the object by counting the number of times each blob
appears during this exploration phase.
We used the probabilistic framework proposed by
iele and Crowley [21]. It consists of estimating the

%robability of the objectO given a certain local

measurementl. This probabilityP(O|M) can be calculated
using Bayes’ formula:

P(O| M):—P(MFJ(O'\;)P(O)

Ouap :argNrTO]a>{ P(O M) P ~O M)}

(4)

where:P(O) s thea priori probability of the objedD, P(M)

assumption, the fixation point can be seen as the “endhe a priori probability of the local measuremeht, and

effector” of the eye-head system. The position of élies
with respect to the head, determines uniquely theiposf
the fixation point in space relative to the shoulddre arm

P(M|O) is the probability of the local measurem&hivhen
the objectO is being fixated. In the following experiments
we carried out only a single detection experimeamtqbject;



there are consequently only two classes, one repregentifrig 4 shows the result of the visual search task fgivan

the object and another representing the backgroB(@)
and P(~O) are simply set t®.5 since this choice does not
affect the maximization of equation 4.

Since a single blob is not discriminative enough, we

considered the probabilities of observing pair of blake.
the local measuré/ is the event of observing both the
central and a surrounding blob:

P(M|0)=P(B|B and( B adjacenB)) ()
where B; is thei-th blob surrounding the central bldg.
which belongs to the obje€. We exploit the fact the robot
is fixating the object and assurBg to be constant across
fixations. In practice this corresponds to estimatihg t
probability that all blob$8; adjacent td. (which we take as
a reference) belong to the object. This procedutieouigh
requiring the “active participation” of the robath{ough
gazing) is less computationally expensive comparedheo t
estimation of the probability for all possible pairstdbbs
of the fixated object. Estimation of the full joint
probabilities would require a larger training setrthlae one
we used in our experiments. The probabilifM|~O) are
estimated during the exploration phase considerihghal
blobs not adjacent to the central blob. The

object (a toy airplane) and of the segmentation gutare
(panel C).

VI. DISCUSSIONAND CONCLUSION

To recapitulate, we have shown how two phases of
autonomous development could be crafted into a hoidan
robotic system. It is important to note that the comation
of the various components was designed in by the
experimenter and not acquired by the robot. Stidlheof the
components showed some component of learning. Fig 5
shows this exemplar behavior through a sequence of
pictures taken from the robot’s point of view.

The action starts when an object is placed in theti®bo
hand and the robot detects pressure in the palm (pidfu
This elicits a clutching action of the fingers; thentia
follows a preprogrammed trajectory, the fingers bend
around the object toward the palm. If the objectofs
appropriate size, the intrinsic elasticity of the dhan
facilitates the action and the grasping of the objatte
robot moves the arm to bring the object close tactieeras
and begin the object exploration. The object is gdam

locaffour different positions (as for instance in picturean2l 3).

measurements are treated as independent, becauseftirey rDuring the exploration phase the robot tracks the

to different blobs, so the total probabilRfM,,...,M,|O) can
be factored into the product of the probabilifg#1|O). An

object is detected if the probabiliB(O|M,,...,M,) is greater
than a fixed threshold.

Figure 4: Visual search. The robot has acquireddahof a toy airplane
during the exploration phase (not reported); thisrimation primes the
attention system which assigns a high saliencii¢dtue blob at the center
of the airplane. A saccade is performed, the oligefiveated. (a) and (b)
show the visual scene before and after the sac(ddand (e) show the
result of the attention system at the same insthtiine. The result of the

segmentation after the saccade is in (c).

When an object is detected after visual search,
possible figure-ground segmentation is attempted, ubieg
information gathered during the exploration phasachE
blob is segmented from the background if it is adjade
the central blob and if its probability to belongthbe object
is greater tha®.5. This probability is calculated using the
estimated probability above with the following
approximation:

P(BOO| B and( B adiacenB))= { B B ar(dp adiacef))
(6)

hand/object; when the object is stationary and foratis
achieved, a few frames are acquired and the mod#ieof
object is constructed. At the end of the exploratibe
object is released (picture 4).

At this point the robot has acquired the visual madel
the object and starts searching for it in the visuahesc&o
do this, it selects the blob whose features better nthtse
of the object’s main blob and perform a saccade.rAfie
saccade the model of the object is matched againtiabe
that is being fixated and its surrounding. If the rhais
negative the search continues with another blob,netee
grasping starts (pictures 7-8-9). At the end of tlek the
robot uses simple haptic information to detect i§ iholding
the object or rather the action failed. In this qass the
weight of the object and its consistency is checked
(proprioception from the fingers holding the ob)edt the
action is successful the robot waits for a new objestda
again, otherwise it performs another reaching-grasipialy

It is fair to mention that part of the controllerr fthis
experiment was preprogrammed. For example, the Wwasd
controlled with stereotyped motor commands. Three
primitives were used: one to close the hand afterrine
amount of pressure was detected on the palm, and two
during grasping to pre-shape the fingers and agtsaliize
the object. The robot relied on the elasticity ¢ thand to
dchieve the correct grasping. To facilitate graspithg
trajectory of the arm was also programmed beforehand;
waypoints relative to the final position of the amere
included in joint space to approach the object fedmave.

In spite of these limitations, we have presented t&sul
on two important phases of the acquisition of sensodmot
coordination in a relatively sophisticated humanatiat.
We have shown the implementation of a visual attantio
system employing top-down and bottom-up information.
More importantly, we demonstrated how the robot can
actively explore the visual appearance of the object



happens to grasp. This information is also fed to theiseful to detect when the acquisition of the model lba
attention system as a bottom-up primer to controktte@ch initiated since the object motion is under direchtcol by
of the object. Thus the robot experience allows lngica the robot. Finally the fact that the object is betradd by the
representation of the objects it interacts with whilethe hand guarantees the link between different sensory
same time, modulating the attention system. The rebot'modalities (for example the sight of the object ahd
ability to act is used together with the body intémmadel  kinesthetic information from the hand). The objectdsl
to drive the exploration of the environment. Thisilftates  makes use of visual information; in [20] we show iagte
learning in different ways. At first, it helps the systto  how it is possible to build a model of the object basad
focus attention in both space and time. During thehaptic information only. In the future we would dikto
acquisition of the object visual model, in fact, thbot can investigate possible ways to integrate the two apjemc
track the object because it knows the position ofttaed

from its proprioceptive feedback. Proprioception Isoa

Fig 5: A sequence of the robot grasping an objeue. action starts when an object is placed on & p1). The robot grasps the object and movesgyies

to fixate the hand (2). The exploration starts3hwhen the robot brings the object close to threera. The object is moved in four different posiavhile

maintaining fixation; at the same time the objeotel is trained (3). The robot drops the object stadts searching for it (4-6). The object is idfeed and a
saccade performed (7-8). The robot eventually grétsg toy (9).

This work supports the view afognition emerging  start linking action with its consequences to forndpréon
from the embodied interaction between the systemthed about the behavior of the body and the environment.
environment. Cognition requires a body and the tgbit Very often prospective control is required to plan
autonomously build the representation of the extenmald ~ successful action. During grasping, for example, threeco
through this interaction. Even a simple set of behavims timing of preshaping and closure of the fingers isuneql;
been sufficient to bootstrap the exploration of thethe lags in the sensory processing (visual and tacyéal
environment and the acquisition of a representatibiit. of artificial and natural systems make feedback coéntro
We have shown how this initial interaction is sufficiem  ineffective. To be able to anticipate the impacttaf hand

with the object is required to control the timingtween



preshaping and actual grasping without relying csuai  [13]
and tactile feedback. Prospective control, howeigmnot
only important for action. It gives the agent thesgibility
to create expectations on which to base the interfwatof  [14]
the world and the actions performed by others. Tdjnou
interaction with the world the agent builds a moafehow [15]
the entities involved behave and what is the regultin
sensorial consequence. This link can be used afterward t
anticipate the consequence of a similar action and,
eventually, compare it with the real feedback. [16]
In the same way, new situations can be interpreted by
matching them against the agent's past experience. Fo
example the event of a ball that falls on the flemd the [17]
resulting visual and auditory sensations) can be agsdcia
to the action of dropping it. Anticipation and pitbn
enhance the agent’s ability to understand and irteviab
the environment and, for this reason, are importapeets [19]
of cognition. The results of this paper are the fiestassary
steps into the effort of developing cognitive akaktiin an [20]
artificial system.
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