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 Abstract – This paper is about the implementation of 
grasping skills in a humanoid robot. Following a 
developmental approach the robot is initially equipped with 
little perceptual and motor competencies whose role is to 
bootstrap learning through the exploration of the external 
environment. This crude form of sensorimotor coordination 
consists of a set of control systems and explorative behaviors as 
well as simple visual routines. The developmental path leads 
the robot from the exploration of the physics and geometry of 
its body to the probing of the external environment. The robot 
experience builds and modifies continuously its internal 
representations of the environment, being this its body or the 
objects it encounters. We discuss the implications of our 
approach to the study of cognition and our effort to build a 
cognitive artificial system. 
 
 Index Terms – Humanoid robotics, development, cognitive 
systems. 
 

I.  INTRODUCTION 

 There is a growing scientific and practical interest to the 
study of cognitive systems being these biological (to 
analyze them) or in trying to replicate their capabilities 
(engineering them). Unfortunately though, there is not even 
an accepted definition of what a cognitive system is. Lying 
at the two ends of the spectrum we find cognitivism [1] on 
one side and enactive systems [2, 3] on the other. According 
to the first, cognition is a computational process carried out 
on a symbolic representation of the world. Symbols 
represent the world and can be shared across different 
entities: they are a complete characterization of the world in 
which the entity is located, and as such are independent of 
the entity itself and its past experience. In enactive 
approaches instead, cognition is the result of the interaction 
and co-development of the agent’s body and the 
environment in which the agent lives. Although the 
definitive answer is still to be found, physical realizations of 
artificial systems can prove to be a valid test-bed for 
different theories and models. 

In the debate we see our approach as more sympathetic 
toward the enactive systems end. Two aspects seem thus 
crucial: i) embodiment and ii) development. The two 
requirements are obviously intertwined, as the interaction 
between the agent and the environment is possible only by 
means of a body. As a consequence, representations of the 
environment depend on the particular embodiment and, 
more importantly, on the past experience of the system. It is 

worth noting that representation here is taken in its most 
neutral and common-sense meaning. 

To see how extreme it could be, consider for example, 
the visual system of primates. This is efficient only as long 
as the animal moves the eyes to place the high-resolution 
fovea at interesting places in the environment. Attention 
regulated by a sophisticated control system allows only 
specific stimuli to be selected among the wealth of possible 
choices. Through action, the system’s embodiment and the 
environment codetermine the resulting representations. 

Motivated by these considerations we propose a 
developmental approach to the implementation of cognitive 
abilities in a humanoid robot. We identified the minimum 
embodiment as possessing a head, arm, and hand. Although 
limited, this robot can perform goal-directed actions on 
objects, like reaching and grasping, it can visually scan the 
environment, and actively explore it by taking forceful 
actions. 

A grossly simplified though plausible developmental 
process can be described in three distinct phases – they do 
not necessarily need to be completely separated. The first 
stage is devoted to learning the internal models of the 
robot’s body (known also as the body-map) which 
eventually provides basic motor and perceptual skills like 
gaze control, eye-head coordination and reaching. Based on 
these abilities the interaction with the external world is 
investigated in the second phase where the robot discovers 
properties of objects and ways to handle them (learning to 
interact). The robot actively explores the environment by 
taking actions (e.g. reaching) which allows starting the 
acquisition of information about the physical coherence and 
the functioning of the environment and, at the same time, 
discovering new, more efficient, ways of interaction (for 
example different grasp types). Finally the third stage is 
about learning to understand and interpret dynamical events 
possibly including other agents: the robot has associated its 
actions with the resulting perceptual consequences. 
Interpretation of other people’s actions is achieved by 
inverting this association. 

In the past we have addressed aspects related to the 
third phase [4, 5]. This paper is focused only on the first two 
phases. 
 

II.   EXPERIMENTAL SETUP 

The experimental setup consists of the robotic platform 
shown on Fig 1. It is an upper torso humanoid robot 



composed of a 5 degree of freedom (DOF) head, 6 DOF 
arm and a 6 DOF hand. The head has 5 DOF, two of which 
control the neck pan and tilt, whereas the other three actuate 
two cameras to pan independently and to tilt on a common 
axis. The arm is a Unimate PUMA 260, an industrial 
manipulator with 6 degrees of freedom; it is mounted with 
the shoulder horizontal (typically vertical) to better mimic 
the human kinematics. The hand consists of 5 fingers; each 
finger has three phalanges, the thumb has an additional 
degree of freedom which allows it to perform a rotation 
toward the palm. Overall the hand has 16 joints controlled 
by only six motors. Two motors are connected to the index 
fingers: they are linked to the first (proximal) and second 
phalanges. The distal (small) phalange is mechanically 
coupled to the preceding one so that the two bend together 
(see Fig 1). Two motors control the motion of middle, ring 
and little finger. As in the case of the index finger, the 

proximal phalanges are linked to the first motor, while the 
second and third phalanges are actuated by the second 
motor. The mechanical coupling between the joints is 
realized by means of springs to allow a certain amount of 
adaptation of the grasp type to the object shape. 

From the point of view of the sensors, the head is 
equipped with two cameras and two microphones for visual 
and auditory feedback. Tactile feedback is provided by 17 
force sensing resistors mounted on the hand, 5 of which are 
placed on the palm and the remaining 12 evenly distributed 
on the thumb, index, middle and ring fingers. A JR3 force 
sensor provides torque and force feedback at the wrist. 
Further proprioceptive information is provided to the robot 
by optic and magnetic encoders mounted on all joints of the 
head, arm and hand. 
 
 

 

 
Fig 1: a) the experimental setup, the Babybot. Left: details of the hand. b) and c): elastic compliance. d)-f): mechanical coupling between phalanges. 

 
 
 

III.   VISION 

One of the first steps of any visual system is that of 
locating suitable interest points in the scene (“salient 
regions” or events) and eventually direct gaze toward these 
locations. Human beings and many animals do not have a 
uniform resolution view of the visual world but rather only 
a series of snapshots acquired through a small high-
resolution sensor (e.g. our fovea). This leads to two 
questions: i) how to move the eyes efficiently to important 
locations in the visual scene, and ii) how to decide what is 
important and, as a consequence, where to look next. 

There is accumulating biological evidence that attention 
is directed to an object or a group of objects, and that the 
attention system processes properties of objects, rather than 
regions of space. In fact, it has been shown that selective 
attention frequently operates on an object-based 
representational medium in which the boundaries of 
segmented objects, and not just their spatial position, 
determine what is selected and how attention is deployed 
(see [6] for a review). In other words, the visual system 
seems optimized for segmenting complex three-dimensional 

scenes into representations of (often partly occluded) 
objects for recognition and action. Indeed, perceivers must 
eventually interact with objects in the world and not with 
disembodied abstract locations. 

The literature on visual attention in artificial vision is 
vast and several models have been proposed [7, 8]; most of 
them are derived from Treisman’s Feature Integration 
Theory (FIT) [9]. The FIT model employs a set of low-level 
feature maps which are combined together by a spatial 
attention window operating in a master saliency map. 

The visual attention model we propose starts from 
approximately the same type of considerations but then it 
uses a concept of salience based on proto-objects defined as 
blobs of uniform color in the image. The robot by acting on 
objects can then figure out how to combine these proto-
objects into coherent wholes, i.e. full-fledged object. Once 
an object is grasped, in fact, the robot can move and rotate it 
and build a statistical model of the color blobs and their 
spatial relationship. This internal representation can 
subsequently be used to instantiate the top-down component 
of the attention system. 

Throughout the paper we employed log-polar images as 
defined for example in [10], which mimic the distribution of 



cones, i.e. the photoreceptors of the retina involved in 
diurnal vision. Cones have a higher density in the central 
region called the fovea, while they are sparser in the 
periphery. We never used standard rectangular images. 

As a first step, the input image is smoothed in time, by 
taking the average between the current frame and the output 
of the color quantization (see later in text) on the previous 
frame (see Fig 2). Then the red, green, blue channels of 
each image are separated, and the yellow channel is 
calculated as the average of the red and green one. These 
four channels are combined to generate three color 
opponent channels, similar to those of the retina. Each of 
these channels, typically indicated as (R+G-, G+R-, B+Y-), 
has center-surround receptive field (RF) with spectrally 
opponent color responses. That is, for example, a red input 
in the center of a particular RF increases the response of the 
channel R+G- while a green one in the surrounding 
decreases its response. The spatial response profile of the 
RF is expressed by a Difference-of-Gaussians (DoG). A RF 
centered on each pixel of the input image is considered, so 
the output of the RF filtering is obtained with a convolution 
with DoG kernel, generating an output image of the same 
size of the input. The DoG filters are not balanced and 
similarly to what happens in the human retina the 
unbalanced ratio implicitly code achromatic information. 

Edges are then extracted on the three channels 
separately by employing a generalization of the Sobel filter 
due to [11]. The resulting edge maps are combined together 
to generate a single map. A watershed transform [12] is then 
applied on the edge map to isolate blobs and to generate 
proto-objects. As a result the image is segmented in blobs 
with either uniform color or uniform gradient of color. 

At this point each blob is tagged with the mean color of 
the pixels within its internal area (this leads to a color-
quantized image). The result is blurred with a Gaussian 
filter and stored: it will be averaged with the next frame to 
obtain a temporal filtering and reduce the effect of noise. 

As discussed above, it is known that a feature or 
stimulus is salient if it differs from its immediate 
surrounding area. The bottom-up salience is calculated as 
the Euclidean distance in the color opponent space between 
each blob and its surroundings. Moreover, the size of the 
spot or focus of attention is not fixed but rather linked to the 
size of the blobs. In the same way the definition of 
immediate surrounding area is relative to the size of the 
focus of attention. In other words, we compute the salience 
of each blob in relation to a neighborhood region whose size 
is proportional to that of the blob itself. In our 
implementation we use a rectangular region 2.5 times the 
size of the bounding box of the blob. Blobs that are too 
small or too big are discarded from the saliency computation 
and ignored and they will not be considered as possible 
candidates to be part of objects (proto-objects). 

The top-down influence on attention is calculated in 
relation to the visual search task. When the robot has 
acquired a model of the object and begins searching for it, it 
uses the knowledge of the object’s appearance to bias the 
saliency map. In practice, the top-down saliency map is 
computed as the distance between the average color of each 
blob and that of the target: 
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where  indicates the average of the image values over a 

certain area (indicated as subscripts). The total salience is 
simply estimated as the linear combination of the two terms 
above: 

 top down bottom upS S Sα β− −= +  (2) 

where Stop-down and Sbottom-up are defined in text. The total 
salience map S is eventually normalized in the range 0-255, 
as a consequence the salience of each blob in the image is 
relative to the most salient one. 
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Fig 2: The visual attention system, block schema. 

 
Local inhibition is transiently activated in the salience map. 
This prevents the focus of attention from being redirected 
immediately to a location that was previously attended. 
Such an inhibition of return (IOR) has been also 
demonstrated in human psychophysics. 

Our system implements a simple object-based IOR. The 
robot maintains a list of the last five positions visited, coded 
in a body centered coordinate system. When the robot 
redirects gaze it keeps memory of the blobs it has visited. 
Inhibition occurs only if the blob presents the same color of 
that stored in the list; in case the object moves or its color 
changes the location becomes available again for fixation. 
 

IV.   LEARNING ABOUT THE SELF 

In general the set of the internal models that represent the 
body is called a body-schema or body-map: it involves, for 
example, the relative position of the limbs, the weight of the 
body segments and their size. The existence of a body-
schema in the brain has gained some support thanks to the 



work of Graziano [13, 14] and Rizzolatti [15] who found 
neurons in the primate motor cortices coding the position of 
the hand in the visual field irrespective of the relative 
position of the head and hand. 

In biological systems the internal representation of the 
body is shaped during development and maintained fit to the 
physical modification occurring in life. In artificial systems 
(where the body does not normally change with time) 
adaptation can avoid the tedious operation of manually 
tuning the system’s internal models and their parameters. 
The latter might be required to compensate changes in the 
visual appearance of the body or drift in the sensors (e.g. 
motor encoders). 

We propose here an approach similar to Fitzpatrick and 
Arsenio [16] and Metta and Fitzpatrick [17]. Repeated, self-
generated actions are initiated by the robot during the 
learning phase. In particular we controlled the robot to 
execute a periodic movement of the wrist. The resulting 
motion of the hand was detected by computing the image 
difference between the current frame and an adaptive model 
of the background. The period of motion of each pixel in the 
resulting motion image was then computed with a zero-
crossing algorithm; similar information was extracted on the 
proprioceptive feedback of each motor encoder. As a result 
the hand of the robot was segmented by selecting, among 
the pixels that moved periodically, those whose period 
matched that of the joints. Conversely non-periodic moving 
pixels or pixels moving with different periods were 
identified as being originated by other sources and 
discarded. Fig 3 shows an example of the detection and 
segmentation of the robot’s hand. 
 

 
Fig 3: An example of the detection procedure. From left to right: the 

original image at the beginning of the procedure, the result of the detection, 
the result of a further low-pass filtering, and the final segmentation. 

 
This information about the hand is employed to learn 

the position of the hand in the visual field given the current 
arm and head posture and, simultaneously, the shape and 
orientation of the hand (in this case represented by an 
ellipse). Learning is carried out by using a neural network 
specifically designed for online learning [18]. Eventually 
these models could predict the position of the robot’s hand 
in the image given a future position of the head and arm. 

Although of some utility, the real goal of segmenting 
the hand is for guiding reaching. The solution we propose is 
based on the use of a direct mapping between the eye-head 
motor plant and the arm motor plant [19]. In other words, 
reaching for an object starts by looking at it. Under this 
assumption, the fixation point can be seen as the “end-
effector” of the eye-head system. The position of the eyes 
with respect to the head, determines uniquely the position of 
the fixation point in space relative to the shoulder. The arm 

motor command can be obtained by a transformation of the 
eye-head motor/positional variables. We called this 
approach motor-motor coordination, because the 
coordinated action is obtained by mapping motor variables 
into motor variables: 
 ( )arm headq f q=  (3) 

where 
headq  and 

armq  are head and arm posture respectively 

(joint space). What is interesting in this approach is not 
equation (3) per se, which, after all, implements the inverse 
kinematics of the arm, but the mechanisms we use to learn 
it. In fact this mapping can be easily learnt if the robot can 
look at its hand, which is not incidentally the by product of 
knowing the position of the hand in the image. 

The robot explored the workspace by moving the arm 
randomly, while at the same time, it tracked the hand; 
whenever the head fixated the hand a new pair arm-head 
posture was acquired and used as a training sample to the 
neural network that approximates f in equation (3). When a 
sufficient number of samples were acquired (and the 
network trained), the robot started using the mapping to 
reach for visually identified objects. 

Once the robot has computed the final arm posture it is 
still required to plan the actual movement. This was done 
with a simple linear interpolation between the current and 
final arm configuration. The trajectory was divided in steps 
which were effected by the low-level controller; to this 
purpose we employed a low-stiffness PD controller with 
gravity compensation. The gravity load term for each joint 
was also learnt online as described in [20]. 
 

V.  BUILDING  OBJECT MODELS 

Either by reaching and randomly grasping or because of 
a cooperating human the robot eventually will grasp an 
object. Both solutions are valid bootstrapping behaviors for 
the acquisition of an internal model of the object. When the 
robot holds the object it can explore it by moving and 
rotating it. In short, the idea is to represent objects as 
collections of blobs as generated by the visual attention 
system and their relative position (neighboring relations). 
The model is created statistically by looking at the same 
object several times from different points of view. The 
system estimates the probability for each blob to belong to 
the object by counting the number of times each blob 
appears during this exploration phase. 

We used the probabilistic framework proposed by 
Schiele and Crowley [21]. It consists of estimating the 
probability of the object O given a certain local 
measurement M. This probability P(O|M) can be calculated 
using Bayes’ formula: 
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where: P(O) is the a priori probability of the object O, P(M) 
the a priori probability of the local measurement M, and 
P(M|O) is the probability of the local measurement M when 
the object O is being fixated. In the following experiments 
we carried out only a single detection experiment per object; 



there are consequently only two classes, one representing 
the object and another representing the background. P(O) 
and P(~O) are simply set to 0.5 since this choice does not 
affect the maximization of equation 4. 

Since a single blob is not discriminative enough, we 
considered the probabilities of observing pair of blobs, i.e. 
the local measure M is the event of observing both the 
central and a surrounding blob: 

 ( ) ( )( )| |  and  adjacent i c i cP M O P B B B B=  (5) 

where Bi is the i-th blob surrounding the central blob Bc 
which belongs to the object O. We exploit the fact the robot 
is fixating the object and assume Bc to be constant across 
fixations. In practice this corresponds to estimating the 
probability that all blobs Bi adjacent to Bc (which we take as 
a reference) belong to the object. This procedure, although 
requiring the “active participation” of the robot (through 
gazing) is less computationally expensive compared to the 
estimation of the probability for all possible pairs of blobs 
of the fixated object. Estimation of the full joint 
probabilities would require a larger training set than the one 
we used in our experiments. The probabilities P(M|~O) are 
estimated during the exploration phase considering all the 
blobs not adjacent to the central blob. The local 
measurements are treated as independent, because they refer 
to different blobs, so the total probability P(M1,…,Mn|O) can 
be factored into the product of the probabilities P(Mi|O). An 
object is detected if the probability P(O|M1,…,Mn) is greater 
than a fixed threshold. 
 

 
Figure 4: Visual search. The robot has acquired a model of a toy airplane 
during the exploration phase (not reported); this information primes the 

attention system which assigns a high saliency to the blue blob at the center 
of the airplane. A saccade is performed, the object is foveated. (a) and (b) 
show the visual scene before and after the saccade. (d) and (e) show the 

result of the attention system at the same instant of time. The result of the 
segmentation after the saccade is in (c). 

 
When an object is detected after visual search, a 

possible figure-ground segmentation is attempted, using the 
information gathered during the exploration phase. Each 
blob is segmented from the background if it is adjacent to 
the central blob and if its probability to belong to the object 
is greater than 0.5. This probability is calculated using the 
estimated probability above with the following 
approximation: 
 

( )( ) ( )( )|  and  adiacent |  and  adiacent i c i c i c i cP B O B B B P B B B B∈ �

 (6) 

Fig 4 shows the result of the visual search task for a given 
object (a toy airplane) and of the segmentation procedure 
(panel C). 
 

VI.   DISCUSSION AND CONCLUSION 

To recapitulate, we have shown how two phases of 
autonomous development could be crafted into a humanoid 
robotic system. It is important to note that the combination 
of the various components was designed in by the 
experimenter and not acquired by the robot. Still each of the 
components showed some component of learning. Fig 5 
shows this exemplar behavior through a sequence of 
pictures taken from the robot’s point of view. 

The action starts when an object is placed in the robot’s 
hand and the robot detects pressure in the palm (picture 1). 
This elicits a clutching action of the fingers; the hand 
follows a preprogrammed trajectory, the fingers bend 
around the object toward the palm. If the object is of 
appropriate size, the intrinsic elasticity of the hand 
facilitates the action and the grasping of the object. The 
robot moves the arm to bring the object close to the cameras 
and begin the object exploration. The object is placed in 
four different positions (as for instance in pictures 2 and 3). 
During the exploration phase the robot tracks the 
hand/object; when the object is stationary and fixation is 
achieved, a few frames are acquired and the model of the 
object is constructed. At the end of the exploration the 
object is released (picture 4). 

At this point the robot has acquired the visual model of 
the object and starts searching for it in the visual scene. To 
do this, it selects the blob whose features better match those 
of the object’s main blob and perform a saccade. After the 
saccade the model of the object is matched against the blob 
that is being fixated and its surrounding. If the match is 
negative the search continues with another blob, otherwise 
grasping starts (pictures 7-8-9). At the end of the task the 
robot uses simple haptic information to detect if it is holding 
the object or rather the action failed. In this process the 
weight of the object and its consistency is checked 
(proprioception from the fingers holding the object). If the 
action is successful the robot waits for a new object to start 
again, otherwise it performs another reaching-grasping trial. 

It is fair to mention that part of the controller for this 
experiment was preprogrammed. For example, the hand was 
controlled with stereotyped motor commands. Three 
primitives were used: one to close the hand after a certain 
amount of pressure was detected on the palm, and two 
during grasping to pre-shape the fingers and actually seize 
the object. The robot relied on the elasticity of the hand to 
achieve the correct grasping. To facilitate grasping, the 
trajectory of the arm was also programmed beforehand; 
waypoints relative to the final position of the arm were 
included in joint space to approach the object from above. 

In spite of these limitations, we have presented results 
on two important phases of the acquisition of sensorimotor 
coordination in a relatively sophisticated humanoid robot. 
We have shown the implementation of a visual attention 
system employing top-down and bottom-up information. 
More importantly, we demonstrated how the robot can 
actively explore the visual appearance of the objects it 



happens to grasp. This information is also fed to the 
attention system as a bottom-up primer to control the search 
of the object. Thus the robot experience allows building a 
representation of the objects it interacts with while, at the 
same time, modulating the attention system. The robot’s 
ability to act is used together with the body internal model 
to drive the exploration of the environment. This facilitates 
learning in different ways. At first, it helps the system to 
focus attention in both space and time. During the 
acquisition of the object visual model, in fact, the robot can 
track the object because it knows the position of the hand 
from its proprioceptive feedback. Proprioception is also 

useful to detect when the acquisition of the model can be 
initiated since the object motion is under direct control by 
the robot. Finally the fact that the object is being held by the 
hand guarantees the link between different sensory 
modalities (for example the sight of the object and the 
kinesthetic information from the hand). The object model 
makes use of visual information; in [20] we show instead 
how it is possible to build a model of the object based on 
haptic information only. In the future we would like to 
investigate possible ways to integrate the two approaches. 
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Fig 5: A sequence of the robot grasping an object. The action starts when an object is placed on the palm (1). The robot grasps the object and moves the eyes 
to fixate the hand (2). The exploration starts in (3) when the robot brings the object close to the camera. The object is moved in four different positions while 
maintaining fixation; at the same time the object model is trained (3). The robot drops the object and starts searching for it (4-6). The object is identified and a 

saccade performed (7-8). The robot eventually grasps the toy (9). 

 
 

This work supports the view of cognition emerging 
from the embodied interaction between the system and the 
environment. Cognition requires a body and the ability to 
autonomously build the representation of the external world 
through this interaction. Even a simple set of behaviors has 
been sufficient to bootstrap the exploration of the 
environment and the acquisition of a representation of it. 
We have shown how this initial interaction is sufficient to 

start linking action with its consequences to form prediction 
about the behavior of the body and the environment. 

Very often prospective control is required to plan a 
successful action. During grasping, for example, the correct 
timing of preshaping and closure of the fingers is required; 
the lags in the sensory processing (visual and tactile) typical 
of artificial and natural systems make feedback control 
ineffective. To be able to anticipate the impact of the hand 
with the object is required to control the timing between 



preshaping and actual grasping without relying on visual 
and tactile feedback. Prospective control, however, is not 
only important for action. It gives the agent the possibility 
to create expectations on which to base the interpretation of 
the world and the actions performed by others. Through 
interaction with the world the agent builds a model of how 
the entities involved behave and what is the resulting 
sensorial consequence. This link can be used afterward to 
anticipate the consequence of a similar action and, 
eventually, compare it with the real feedback. 

In the same way, new situations can be interpreted by 
matching them against the agent’s past experience. For 
example the event of a ball that falls on the floor (and the 
resulting visual and auditory sensations) can be associated 
to the action of dropping it. Anticipation and prediction 
enhance the agent’s ability to understand and interact with 
the environment and, for this reason, are important aspects 
of cognition. The results of this paper are the first necessary 
steps into the effort of developing cognitive abilities in an 
artificial system. 
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