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Abstract—In this paper we describe the actuation and control
of a humanoid robot neck. Particular attention will be posed on
the description of the neck actuation structure, whose design has
a noticeable human similarity. Specifically, the final mechanical
design was inspired by the human skeleton, with the neck bone
movements constrained and actuated by the surrounding muscles.
In our robotic platform, the neck bone was realized with a
steel spring surrounded by steel tendons in place of muscles.
The specific and innovative mechanical design have imposed the
design of a non-standard actuation structure which, in turn, have
lead to an innovative control scheme. The main focus of the paper
will be on describing different control schemes and discussing
their performances in details.

I. INTRODUCTION

Humans exhibit a wide and complex repertoire of move-
ments far beyond the motor capabilities of modern robots.
Clearly, the realization of an artificial system capable of more
realistic movements passes trough a series of technological
improvements, especially if we are interested in replicating
both kinematic and dynamical aspects. Recently, there has
been a growing interest in developing robots whose geometric
and actuation structures resemble those of a human beings.
Probably, the most extreme steps in this direction are rep-
resented by Cronos [1], the robot recently developed by O.
Holland et al., and Kotaro [2], developed at Tokyo university.
Along the same line, Albers et al. [3] have focused their
attention on an innovative robotic neck, named Vertebral Neck,
highly inspired by the human neck structure.

Noticeably, the control of these innovative architectures is
a complex task, especially if compared with classical designs
[4], [5] which have been usually based on rotational joints
in serial configuration. Remarkably, the control complexity
clearly increases with the architecture complexity and sug-
gests new interesting control problems. Within this context
Terzopoulos and Lee [6] have proposed an interesting solution
to control an extremely detailed and precise biomechanical
model of the human head-neck system. Though limited to a
simulation environment, their work is to our knowledge one
of the few considering the problem of controlling an highly
realistic (muscle-actuated) model of the neck.

Realizing such complex architecture on a real humanoid
robot is clearly an ambitious goal. Nevertheless, we believe in

the importance of developing and implementing innovative and
human-like actuation schemes within the field of humanoid
robotics. Therefore, in this paper we aim at exploring the
potentialities of a specific actuation structure: a spine joint
actuated by the surrounding muscles. The proposed mechan-
ical structure is not only simulated but also realized and
controlled on a real humanoid robot neck. Clearly, the final
solution makes major simplifications to reduce the whole
system complexity but the mechanical structure preserves
some interesting features which will be discussed in details.

The paper is organized as follows. In sections II and III
we give a description of the hardware platform, focusing in
particular on the neck structure. In section IV we explain in
details the different control schemes we have tested. Finally,
in section V we introduce future works concerning the devel-
opment of a non-model-based controller for the neck and in
section VI we present our conclusions.

II. HUMANOID PLATFORM

The robotic platform on which the discussed controller has
been implemented is the humanoid robot James [7]. James is
a 22-DOF torso with moving eyes and neck, an arm and a
highly anthropomorphic hand (see Figure 1). In the following
subsections we briefly cover the robot design, its actuation,
and sensorization. More details about the neck structure are
given in section IIL.

A. Robot design

The robot structure is similar to that of humans, both in
size (approximatively that of a ten-year-old boy), number of
DOFs and range of movements; the total weight (about 8 kg:
2 kg the head, 4 kg the torso and 2 kg the arm and the hand
together) has been kept low by the use of light material such
as aluminum and ergal.

The head is equipped with two eyes, which can pan and tilt
independently (4 DOFs), and is mounted on the 3-DOFs neck,
which allows the movement of the head as needed in the 3D
rotational space.

The arm has 7 DOFs: three of them are located in the
shoulder, one in the elbow and three in the wrist. The hand



Fig. 1.

The humanoid robot James.

has five fingers, with overall 17 joints coupled among them
and actuated by just 8 motors.

B. Actuation system

The 22 DOFs are actuated by a total of 23 motors, whose

torque is transmitted to the joints by plastic toothed belts
and stainless-steel tendons, provided with springs at critical
locations.
This solution is appealing for at least two reasons. First,
it allows the housing of the motors far from the joints,
thus distributing the weights in accordance with the designer
wish. Second, the intrinsic elasticity of belts, tendons and
springs gives a noteworthy compliance to the whole structure
allowing the robot to move safely in a dynamic and unknown
environment.

C. Sensory system

The robot is equipped with visual, proprioceptive, kines-
thetic and tactile inputs. Vision is provided by two digital
CCD cameras (PointGrey Dragonfly remote head), located
in the eyeballs. The proprioceptive and kinesthetic senses
are achieved through position sensors (magnetic incremen-
tal encoders connected to all motors); furthermore, a 3-axis
orientation tracker (Intersense iCube2) has been mounted on
top of the head, to emulate the vestibular system. Tactile
information is extracted from several magnetic silicone-made
pressure sensors which have been specifically designed and
developed for James, placed in the fingers.

III. NECK STRUCTURE

The neck bone is constituted by a steel spring, which holds
the head giving it the possibility of bending forward (pitch)
and laterally (roll). The actuation of these two degrees of
freedom is obtained with a peculiar structure, recalling the
design of a tendon-driven parallel manipulator; recent studies
on this kind of actuation systems can be found in [8], [9].
Specifically, the neck is surrounded by three steel tendons,
separated 120 deg apart. The tendons length determines the
position of the spring and therefore, the pitch and roll position

Fig. 2. Top. Human neck muscles we took inspiration from in the system
design, highlighted in blue: Longus Colli in the left image, and Longissimus
Capitis in the right image (images taken from Primal 3D Anatomy software
[11]). Bottom. James neck tendons are arranged like the human muscles
highlighted in the top images.

of the neck. The length of the tendons is adjusted by means
of three motors, positioned at the base of the neck (see Figure
3).

This special geometry allows the neck to show ranges of
motion comparable to the human ones; as claimed by Clarkson
[10], average ranges of motion for pitch and roll rotations
in adults are around 445 deg, while James motion has been
bounded by software in the range of £40 deg (safe limit, lower
than hardware limit).

Furthermore, this peculiar structure, even if far from being
a close reproduction of the human musculoskeletal system,
presents some analogies with the arrangement of some human
neck muscles (see Figure 2). Humans are provided with more
than 20 types of muscles in the neck, with several units for
each type, settled into different layers: their work is both to
control the orientation of the head respect to the neck base and
to give stability to the cervical spine in supporting the weight
of the head [11]. In our system, the spring tone is sufficient to
support the head, and the tendons are employed just to move
the head along its roll and pitch axes.
If we consider the deeper muscular layer around the neck, we
can find a couple of long anterior muscles (Longus Colli, see
top left image in Figure 2) that are responsible for head flexion,
and a couple of long posterior muscles (Longissimus Capitis,
see top right image in Figure 2) that are responsible for head
extension. Both muscles are also involved in the lateral flexion
of the neck, even if this movement is mostly actuated by
other muscles (Scalene Muscles). These muscles completely



Fig. 3. Neck actuation system and sketch of the neck kinematics. Each
motor pulls a tendon which passes trough a hole in the neck base. In this
way the effective tendon length can be reduced to bend the spring in different
directions.

Fig. 4. James head. Different configurations seen from different views. Roll
movements: left picture. Pitch movements: right pictures.

surrounds the cervical spine, having their origins, roughly
speaking, at the level of the scapula, and their insertions at the
level of the atlas; the anterior tendon in our system (bottom
left image in Figure 2) can work as the Longus Colli, while
the two tendons in the back (bottom right image in Figure 2)
can emulate the Longissimus Capitis.

On top of the spring, a fourth independent motor is mounted,
directly actuating a third degree of freedom, the head yaw
(i.e. rotation around an axis parallel to the pan axes of the
two eyes). In the current paper we are mainly interested in
the control of the head pitch and roll by coordinating the
movements of surrounding tendons.

A. Redundancy of the actuation scheme

Generally speaking, it is well known that a tendon-driven
system with open-ended tendons (i.e. they can exert tension
but not compression) requires more tendons than DOFs to
be fully controllable. Therefore, to independently control n
DOFs, n + 1 tendons (and motors pulling the tendons) are
needed [12]. Anyway, the peculiar parallel architecture of our
system, makes it somehow redundant. In a mathematical sense,
redundancy corresponds to the fact that the same configuration
of the system can be achieved by different positions of the
actuators. Classical techniques can be used to exploit the
advantages of redundant systems [13]. However, in our case
there are additional constraints that will guide the controller
design in handling redundancy.

To understand the structure of the problem, let us reduce the
structure to a two dimensional space. In this situation, we have
two independent motors to actuate a single degree of freedom,
nominally the slope of the surface on which the head is
mounted. Consider first the system whose actuation scheme is
given in Figure 5. With both motors we could actually control
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Fig. 6. Equivalent two dimensional scheme of james’s neck.

two DOFs: the slope of the neck top (with respect to the neck
base) and the spring compression. Therefore, considering the
top surface slope as our control task, this system becomes
redundant. Roughly speaking, shortening both cables of the
same length does not produce any slope movement but only
a variation of the spring compression. Classically, this is
what we define redundancy in the actuation'. As previously
said, in our case there are additional constraints that rule
out this redundancy. In fact, the spring at the base of the
neck is entirely compressed by the weight of the carried
electronics and mechanics? (motors, cameras, chassis, etc.
etc.), as indicated in Figure 6. As a consequence of this fact,
shortening/lengthening both cables simultaneously no longer
produces a variation of the spring compression but only varies
the cables tensions. Remarkably, these tensions should be kept
under control: high tensions damage (misalign) the spring
spirals and low tensions cause wrong alignment of the cables
on the capstans. Ideally, the tension of the cables can be
controlled if we could use some sort of tension sensors. In our
system these sensors are not currently available. Therefore, in
the present paper we show how to keep the cable tensions
under control by means of a kinematic model of the system.

Note that, due to the presence of the spring, the neck top slope could be
controlled with just one motor, even if with a limited workspace.

2The description of the system in Figure 5 is merely for understanding
the issue of redundancy. Practically speaking it would be very difficult to
model the forward kinematics of this system. The actual system, i.e. the
one schematically represented in Figure 6, will be much easier to model
kinematically. This is the reason why we did not choose a stiffer spring capable
of sustaining the head weight.



IV. CONTROL OF THE NECK

The peculiar structure of the neck has required the design
of an original control technique. The final design makes use
of the 3-axis orientation tracker positioned on top of the robot
head. Though the given sensor is capable of measuring its
absolute rotation along three orthogonal axes, in the given
application we used only part of the available information.
In particular, we used the measurements corresponding to the
head pitch and roll rotations, denoted 6, and 0, respectively;
these rotations correspond to the degrees of freedom actuated
by the three motors at the base of the neck. The third sensor
measurement, the yaw rotation 6, (a rotation around an axis
orthogonal to the “neck top” as indicated in Figure 3), will
not be used for two reasons: first, it is not influenced by the
first three motor positions; second, it can be better measured
using the encoder mounted directly on the shaft of the fourth
motor.

A. Neck control in details

As already pointed out, the neck structure is characterized
by three degrees of freedom: pitch ¢, roll 6, and yaw 0,.
The yaw movement, is directly actuated by a single dc motor;
its control is based on a standard PID controller. The control
strategy for the remaining two movements will be instead
described in details in this section.

The design of the pitch and roll control loops has required
the development of a neck structure model 3. As already
pointed out the system is somehow redundant (3 actuators
versus 2 degrees of freedom) but the redundancy needs to be
ruled out in order to keep the tendons tension within certain
limits and the spring spirals aligned. Practically, because of
redundancy, the same neck orientation x = [6,, 6,] € R? (i.e.
the orientation tracker measurements) can be achieved with
different tendons (cables) configurations q = [d1, dz, d3] € R3
(i.e. the position of the motors). Mathematically speaking, the
neck forward kinematic is described by a function:

x = f(q)

The function f cannot be directly inverted because the same x
can be achieved by different configurations q. Among all these
configurations, there is an ideal one q* which corresponds to
straight tendons and constant curvature of the spring. This
configuration can be easily computed (see IV-B for details)
thus leading to the following:

q* = finv(x)~

The other tendons configuration corresponding to the same x
are less desirable because of the reasons explained before.
The reader should notice that (IV.2) is a sort of inverse

f:R3 = R% (IV.1)

IV.2)

3The model is based on the assumption that the spring has a constant
length. Practically, when the spring bends on a side, it maintains its length on
that side (remember that the spring is compressed by the head weight) while
stretching on the opposite side. When the spring is bent, the assumption is
that its curvature is constant along the entire spring length.

kinematic model* expressing the configuration of the motors
to achieve a desired neck orientation. Geometrically speaking,
(IV.2) defines a two dimensional manifold M embedded in the
three dimensional space of the cables configurations. Clearly,
keeping the cable configuration q as close as possible to M
is desirable because it corresponds to almost straight tendons
(thus guaranteeing a minimum tendon tension) and almost
constant curvature of the spring (thus guaranteeing aligned
spring spirals). Therefore redundancy is ruled out by the
additional requirement of remaining as close as possible to
M.

In the remaining of the current section we first give details
about the kinematic model that leads to (IV.2), then we
describe how to control the three motors in order to position
the neck on a desired configuration x4 = [0, 7] while
keeping the position of the motors as close as possible to the
manifold described by the kinematic model.

B. Partial inverse kinematic model

The three main assumptions are the following: the spring
length is constant (remember that the spring is completely
compressed by the head weight), it has a constant curvature
and it always lays on a plane. Only the two extremities of
the spring are attached to the robot, one to the fixed base
of the neck (reference frame ;) and the other to a movable
plane on which the orientation tracker (reference frame ;) is
mounted (see also Figure 3). Practically the sensor measures
the orientation of the this plane with respect to the gravitational
force vector. In the remaining of this section, we express the
sensor measurement in terms of the z-axis of the reference
frame ;. Given the configuration of the system, this axis,
denoted z, is always parallel to gravity and can be easily
expressed in terms of ), and 6,:

z, = [—sin(6,) sin(f,)cos(d,) — cos(6,) cos(@,.)]—r

In order to compute the function f;,, which expresses the
ideal tendons length q given the sensor measurement x, we
proceed by computing the position of X, as a function of
x. Remarkably, notice that the orientation of ¥, is already
known given that z, is known and the system does not rotate
with respect z,. Therefore we are left with determining the
translation of ¥,, or equivalently the position of its origin
O, with respect to ;. The first problem to solve consists
in finding the plane P on which the spring lays. Given the
assumptions, P is orthogonal to z, and zs and passes trough
the origin O of ¥,. These considerations easily follow from
the fact that the spring extremities are always orthogonal to the
planes on which they are attached. Therefore, P is uniquely
determined by its normal z,, = z, X z; and one of its points
Oyp. Once P has been uniquely determined we only need to
determine the position of Oy within this plane. This is a two
dimensional problem and can be easily illustrated (Figure 7).

“In absence of modeling errors we have f(fino (X)) = x, ¥x € R2.
Notice that the forward counterpart (IV.1) is complicated to be analytically
computed and its computation falls outside the scope of this paper.
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Fig. 7. Scheme for computing the inverse kinematic function f;,,. On the
bottom picture, everything has been reduced to plane P to which both zs and
z;, belong.

We now restrict to the 2D case since the extension to 3D is
just a matter of a rotation. Practically speaking, the spring
describes an arc of a circle (see Figure 7) whose length is
L (the length of the compressed spring) and whose angular
amplitude is @ = arcos(z, - zp). The radius of this circle is
therefore: I

R = ik
Considering a two dimensional reference frame (yp, zp) with
origin in Oy, the relative position between O, and Oj is
described by the vector [(R+ Rs)(1—cos(8), (R+ Rs) sin(6)]
being R, the spring radius. This vector can be used to
describe the position of O with respect to >, and therefore
the relative position between ¥, and 3,. Once this position
is known we can compute the cables length q given the
system kinematic parameters; in particular we have q =
[|E1 — P1|, ‘EQ — P2|, |E3 — Pg” (SCC Figure 7) where
E; are all fixed in X4 and P; are all fixed in X.

C. Control solutions

1) Purely model based solution: If the model were perfectly
corresponding to the real system, the problem of orienting the
neck in a desired configuration x; would be easily solved
by computing the desired tendons length q4 = finy(X4) and
controlling the positions of the three motors® so as to regulate
the tendons to the desired configuration. Practically speaking,
every model has its own errors and therefore the proposed
scheme will never orient precisely the neck. In order to check
the quality of the model we evaluated the error in positioning
the neck in the configuration x,4. Specifically, we computed
e = x — X4 where x is the sensor measurement after having
positioned the motors in the configuration q; = fin.(xq) With
the following control law:

q=—-Ky(a—qy), (IV.3)

where K, € R3*3 is an arbitrarily chosen gain matrix. It is
well known that using (IV.3) is such that q converges to q; €
M. Theoretically®, in absence of modeling errors we should
have e = 0; practically, we obtained the errors in Figure 8.

5The three motors are equipped with encoders so that the motor position
control has been easily achieved with a simple PID controller based on
feedback from encoders.

6According to what we have seen in the previous section the f;,, have
the following property x = f(finv(Xq)) = Xq.
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Fig. 8. Evaluation of the model. The bottom pictures show the errors e =
Xg — X = [0% — 0p,02 — 6,] in performing a sequence of movements
x4 = [30,0] — [20, 30] — [0, 30] — [—30,0] — [—30,—30] — [0, —30].
The sequence is repeated four times as shown in the top picture. The observed
root mean squared error (RMSE) is 0.43 deg for the pitch and 0.72 deg for
the roll.

Remarkably, the final configuration satisfies the requirements
that we imposed on M: constant spring curvature and straight
tendons.

2) Jacobian based solution: In order to improve the posi-
tioning errors shown in Figure 8 we need to use the sensor
measurement x as a feedback signal to reach the desired pose
X4. A typical control structure for guaranteeing x — x4 is the
following (see [13] for details):

q=—Jr(q)(x —xq), (Iv.4)

where J(q) € R?*3 is the Jacobian of (IV.1), and Ar €
R™*"™ denotes a right inverse of a matrix A € R™*" ie.
AAgR = I.In our case, we do not have direct access to J since
we do not have an analytical expression for the function f in
(IV.1). All we have is f;,, whose Jacobian J;,, is somehow
related to J. Specifically, it can be shown that:

J(flnv (X))Jinv (X) =17

which implies that J;,, is a right inverse for J in every q
belonging to the manifold M described by (IV.2). Therefore,
if we remain on that manifold, we can use J;,, in place of
Jr in Eq. (IV.4). The final control law will be the following:

—Jine (%) (x — x4).

Remarkably, the time derivative ¢ belongs to the tangent plane
of M in q. As a consequence of this fact, if the q(0) € M

Vx € R?, (IV.5)

q= (1V.6)
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Fig. 9. Evaluation of the closed loop controller. The bottom pictures show
the errors e = xg — x = [0 — 0,,0% — 6,] in performing a sequence
of movements x4 = [30,0] — [20,30] — [0,30] — [-30,0] —
[-30, —30] — [0, —30]. The actual movement is shown in the top pictures.
The observed root mean squared error (RMSE) is 0.09 deg for the pitch and
0.05 deg for the roll.

then q(t) € M, V¢ > 0. Therefore, (IV.6) is exactly equivalent
to (IV.4) and convergence of x to x4 is guaranteed. However,
from a practical point of view, the implementation of (IV.6)
is obtained with a digital controller so that the commanded
velocity q is not continuously modified but only updated every
T, = 0.01 seconds, the controller rate. Therefore, we are
not guaranteed that the system configuration remains on M.
Figure 9 shows the performance of the discrete time controller.
Positioning errors are greatly improved with respect to the
previously proposed controller (IV.3); the pitch RMSE has
been reduced from 0.43 deg to 0.09 deg while the roll RMSE
from 0.72 deg to 0.05 deg. However, as a consequence of the
discretization of the controller, the system is not guaranteed
to remain on M as shown in Figure 10.

3) Weighted solution: Keeping the system configuration on
the manifold M is important for the reasons illustrated in
Section IV-A. Practically, running (IV.6) for a long time results
in misalignment of the spring spirals (high tension on one of
the cables) and/or wrong alignment of the cables on the motor
capstans (low tension). Therefore the solution proposed in the
previous section is not desirable. According to Figure 10 the
longer we control the system the bigger becomes the distance
from manifold. The first solution to this problem is a mixture
of the two proposed controllers (IV.3) and (IV.6):

q = —pKp(a— finv(xa)) = (1 = 1) Jino (x) (x = xa), AV.7)

where p € [0,1] is an arbitrary weighting scalar factor and
the other quantities have been defined in the previous sections.
Choosing the value of the variable p is not an easy task since it
is meant to privilege either the distance to the manifold (u ~ 1)
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Fig. 10. Distance of q from the manifold M. The top picture shows the
three components of the vector f;n,(X) —q = q* — q during the movement
described in Figure 9. The bottom picture shows instead the time behaviour of
its norm , i.e. ||@* — q||. As expected the system configuration progressively
abandons the manifold.

or the achievement of a precise positioning (x ~ 0). Choosing
p =~ 0.5 leads to the results in Figure 11. Remarkably the
distance from the manifold is reduced (the observed RMSE is
0.1cm) at the cost of an increased error in the positioning: the
pitch-RMSE drops down from 0.09 deg to 1.32 deg, while the
roll-RMSE from 0.05 deg to 1.17 deg.
4) Minimization solution: The control law (IV.7) is always
a compromise between accuracy in positioning and accuracy
in remaining close to the manifold M. Practically, we cannot
achieve both tasks simultaneously because the definition of
M is based on a model of the system which is usually
affected by modeling errors. The best way to satisfy both
tasks simultaneously consists in requiring accurate positioning
(x = x4) while requiring the system configuration q to be as
close as possible to the manifold configuration q* = fi,,(X).
Practically, to reach the orientation x; we should move the
system to the configuration:
a=minga- fuGal’  fl@)=x. AV
The so called resolved motion rate control technique (see [13]
for details and proof of convergence) can be used to solve the
above problem:

q=—Jr(q)(x —xq) — (I - JR(OI)JIE(Q)) (4= finu(xa)),

Iv.9)
where Jp is a right inverse of the Jacobian J = g—(’; and J;
is its Moore-Penrose pseudo-inverse. This control strategy can
be proved to guarantee that q converges to the solution q4 of
(IV.8). Once more, an implementation of (IV.9) on our system
is complicated by the fact that we have access neither to the
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Fig. 11. Top: positioning errors x4 — X for the two components of x =
[9p, 0,]; bottom: distance of q from the manifold M. The usual sequence
of movements has been repeated twice with the controller (IV.4) and twice
with (IV.7). The switching between the two controllers happens after about
60 seconds causing a rapid fall of the distance from the manifold.

function f nor to its Jacobian J. Using the same idea proposed
before we have that as long as we stay on the manifold the
following relationship holds: Jr = J;,,. Therefore, we can
implement (IV.9) as follows:
q = *va(x)(xfxd)f (I - Jiml(x)JiTnv (x)) (q - finv(xd)) .
(IVv.10)
Clearly, (IV.10) is similar to (IV.7) but in this case the manifold
distance is controlled by performing movements in the null
space of the primary task, the neck orientation. Theoretically,
(IV.9) will be equal to (IV.10) only if we guarantee to remain
on the manifold. Practically, all we are interested in is the con-
vergence of the control to the desired final configuration; fairly
weak conditions to guarantee the convergence can be found
n [13]. These conditions’ can be used to prove convergence
of the proposed control scheme under the assumption that the
system configuration remains close enough to M. Further and
more formal investigations on this sketch of convergence proof
will be given on a forthcoming paper. The results concerning
this control strategy compared with the previously proposed
controller (IV.4) are shown in Figure 12. Remarkably the
distance from the manifold is reduced (the observed RMSE
is 0.3cm) while maintaining a good positioning accuracy: the
pitch-RMSE is 0.03 deg, while the roll-RMSE is 0.03 deg.

V. FUTURE WORK
Preliminary works have been carried out concerning the

development of a non-model-based controller for James neck,

In practice convergence is guaranteed if J.J;,,, > 0 which is obviously
true on the manifold M where J;n, = Jg so that we have JJ;p, = 1.
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inspired by the recent attempts to use machine learning tech-
niques to control robotic devices without having any model
of the system in consideration (Black Box systems). Some
examples can be found in [14]-[17].

The planned solution makes use of a Receptive Fields Neural
Network (RFNN) to estimate the joint-space velocities needed
to move the head with the desired task-space velocities, given
the actual joint configuration. The learning algorithm is an
implementation, with some modifications, of the Receptive
Fields Weighted Regression proposed by Schaal and Atkenson
[18].

After a training phase, in which the workspace is randomly
explored by the robot and the network learns on-line from the
gathered sensory data, the trained network is able to map the
two spaces (i.e. it has learnt an inverse of the Jacobian matrix).
Unfortunately, as previously stated, due to the redundant
actuation system we deal with, our Jacobian matrix is not
square, and so not invertible. This means that for a given set
of actual joints positions and required task-space velocities
there is not a unique solution in terms of joint-space velocities;
nevertheless, within this family of solutions, just a very limited
set is usable in practice, because a minimum amount of tension
is needed along the tendons to avoid their possible outgo from
the capstans.

To overcome this problem, a solution similar to the one
presented in IV-C.3 as been adopted. The velocities applied
to the motors during the training phase, ¢ € R?, result from
the weighted summation of two terms, as in IV.7, being the
second one a conveniently bounded random value, Qg € R3,



B
TSI

0 15
iteration

-

1]

angle[deg]

angle[deg]
-

0 15
iteration

Fig. 13. Positioning errors x4 — x for the two components of x = [0, 0.
The usual sequence of movements has been repeated four times with the
RFNN controller. The measured RMSE is 0.92 deg for the pitch and 0.88 deg
for the roll.

instead of Jin, (X)(x — X4) :

q=—pkKy(a— finu(x)) = (1 = Wrpa- (V1)

The data provided to the learning algorithm are the 3D vector
of the applied joint-space velocities, ¢ € R3, as output, and
the 5D vector composed by the resulting task-space velocities,
% € R?, and the actual motor configuration, q € R3, as
input. Once the RFNN has learnt enough, we can use it to
control the neck, giving the desired task-space velocities and
the actual motor configuration as input, [X4,q], and obtaining
the appropriate joint-velocities as output, qgq.

In this way the redundancy is solved choosing the solution that
keeps the tendons closer to their optimal lenght, exploiting the
kinematic model in IV.2. Again the weight p has to be tuned
in order to balance the randomness of the exploration and the
respect of the kinematic model (necessary to keep the tendons
into the capstans grooves).

A first stage of development for the discussed controller has
been already reached, and an initial version has been tested on
James. Results show that the system is able to learn a good
approximation of the inverse Jacobian after a training stage
of about a hour, with pitch and roll RMSE lower than in the
IV-C.3 solution, under 1 deg (see Figure 13).

VI. CONCLUSIONS

We proposed an innovative neck mechanical structure which
is highly biologically inspired. The main idea is to have a
flexible structure (neck bone) actuated by surrounding con-
tractile elements (muscles). In the specific implementation
the flexible structure is represented by a steel spring. Its
actuation is achieved with standard dc motors which are used
to pull three tendons surrounding the neck. The final structure
is capable of bending the neck roughly around a sphere.
This new mechanical design has required the development
of an appropriate control structure which uses an orientation
tracker, a model of the system kinematics and a Jacobian
based feedback loop. The peculiarity of the system made it
difficult to model directly its forward kinematics; practically,
it was easier to model a specific solution of the inverse
kinematics. On the basis of this solution, a suitable control

strategy was proposed and implemented on the real robot. A
formal mathematical proof of the convergence of the proposed
control scheme was not given even if simple considerations
seem to pave the way to a complete formal proof. In any
case the controller has been practically shown to work in line
with the required performance (positioning errors < 0.05 deg).
Finally, hints about a non-model-based control scheme have
been given.
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