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Associating word descriptions to learned manipulation task models

V. Krunic G. Salvi A. Bernardino

Abstract— This paper presents a method to associate mean-
ings to words in manipulation tasks. We base our model on
an affordance network, i.e., a mapping between robot actions,
robot perceptions and the perceived effects of these actions
upon objects. This knowledge is acquired by the robot in an
unsupervised way by self-interaction with the environment.
When a human user is involved in the process and describes
a particular task, the robot can form associations between
the (co-occurrence of) speech utterances and the involved
objects, actions and effects. We extend the affordance model
to incorporate a simple description of speech as a set of words.
We show that, across many experiences, the robot is able form
useful word-to-meaning associations, even without considering
grammatical structure in the learning process and in the
presence of recognition errors. Word-to-meaning associations
are then used to instruct the robot to perform tasks and also
allow to incorporate context in the speech recognition task.

I. INTRODUCTION

Nowadays, robots are required to work in social en-
vironments (hospitals, museums, homes) and to interact
with humans. Learning and adaptation have emerged as a
programming paradigm to cope with the highly dynamic,
unstructured and stochastic scenarios where the the robots
operate. When interacting with humans, a robot also needs
to communicate with people to understand their needs and
intentions. The by far most natural way for a human to com-
municate is language. This paper deals with the acquisition
by a robot of language capabilities linked to manipulation
tasks. This is a first step towards the long term objective of
developing robots able to learn language through interaction
with humans.

Our approach draws inspiration from infant cross situa-
tional word learning theories that suggest that infant learning
is an iterative bootstrapping process [14]. This learning
procedure is highly complex and starts very early in the first
months of life, following a developmental paradigm. The
acquisition of language capabilities requires the continuous
interaction between the learner and the teacher. It also
occurs in an incremental way (from simple words to more
complex structures) and involves multiple tasks such as word
segmentation, speech production, and meaning discovery.
Furthermore, it is highly coupled with other learning process
such as manipulation, for instance, in mother infant interac-
tion schemes [8].
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According to the previous discussion, we adopt a devel-
opmental robotics approach [18], [11] to tackle the language
acquisition problem. In particular, we consider the develop-
mental framework of [13]. Initially, the robot explores the
capabilities of its own body, both in term of motor actions
and perception, and learns to execute and perceive basic
actions. When it masters (to a certain point) the control of
its own body, it starts interacting with objects and learns
the effects of their actions upon the objects (affordances).
After having acquired good enough models of how objects
behave, the robot is ready to interact with humans, using the
object affordance model as a link to perceive and imitate
others’ actions, as well as to predict their intentions. This
can be seen as an implicit form of communication, whereby
a human teacher can describe a task to the learner by means
of showing many examples of the execution task [10].

In this paper we focus, out of the multiple aspects of
language acquisition, on the ability to link previously learned
models of manipulation (as the affordance model described
above) to verbal descriptions provided by a human. At
the moment, these descriptions are formed by a set of
words provided by a trained speech recognizer. We use
the affordance Bayesian network model of [13]. Roughly
speaking, the network captures the statistical dependencies
among a set of robot basic manipulation actions (e.g. grasp
or tap), object features and the observed effects by means of
statistical learning techniques exploiting the co-occurrence
of stimuli in the sensory patterns.

We extend the previous model to consider the utterances
spoken by the user as input data, and use the same learning
mechanisms to associate speech segments to the meanings —
actions, object properties and effects. Currently, we do not
use any social cues, nor the number and order of words.
The objective is to provide the robot with the means to
learn and refine the meaning of words in such a way that
it will develop an understanding of speech based on its own
experience. This type of learning, exploiting the redundancy
and co-occurrence of stimuli in multiple situations, is called
“cross-situational” and will allow the development of more
natural human-robot-interaction interfaces.

Our model has been evaluated using a humanoid torso able
to perform simple manipulation tasks and to recognize words
from a basic dictionary. We show that simply measuring the
frequencies of words with respect to a self-constructed model
of the world, the affordance network, is enough to provide
information about the meaning of these utterances even with-
out considering prior semantic knowledge or grammatical
analysis. By embedding the learning into the robot own task
representation, it is possible to derive links between words
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such as nouns, verbs and adjectives and the properties of the
objects, actions and effects. We also show how the model
can be directly used to instruct the robot and to provide
contextual information to the speech recognition system.

A. Related Work

Computational models for cross situational word learning
have only been studied recently. Perhaps one of the earliest
works is the one by Siskind [17] who proposes a mathemat-
ical model and algorithms for solving an approximation of
the lexical-acquisition task faced by children. The paper in-
cludes computational experiments, using a rule based logical
inference system, that shows that the acquisition of word-
to-meaning mappings can be performed by constraining the
possible meanings of words given their context of use. They
show that acquisition of word-to-meaning mappings might
be possible without knowledge of syntax, word order or
reference to properties of internal representations other than
co-occurrence. This has motivated a series of other research
in cross-situational learning.

Yu and Ballard [20] developed a model based on machine
translation methods and time co-occurrence of the utterances
and visual information about the objects or actions. They
also include non-speech contextual information such as the
speaker’s gaze direction, head direction, hand movements
which allows incorporating extra information about the actual
intentions of the speaker. Frank, Goodman and Tenenbaum
[5] presented a Bayesian model for cross-situational word-
learning that learns a “word-meaning” lexicon relating ob-
jects to words. Their model explicitly deals with the fact
that some words do not represent any object, e.g., a verb
or an article. By modeling the speaker’s intentions, they are
also able to incorporate social cues typically used by hu-
mans. Dominey and Voegtlin [4] propose a system extracting
meaning from narrated video events. The system requires the
knowledge of the grammatical construction of the narrations.
Some recent works have also studied robot language acqui-
sition based on self-organizing neural networks [6] or word-
object associations through incremental one class learning
algorithms [9].

Probably, the closest work to ours is presented in [19],
where a human subject was instrumented with devices to
perceive its motor actions, speech discourse and the inter-
acting objects (camera, data glove and microphone), and
an automatic learning system was developed to associate
phoneme sequences to the performed actions (verbs) and
observed objects (nouns). Common phoneme patterns were
discovered in the speech sequence by using an algorithm
based on Dynamic Programming. These patterns were then
clustered into similar groups using and Agglomerative Clus-
tering Algorithm in order to define word-like symbols to
associate to concepts. This association was done computing
the probability of each word given every possible meaning
and then running the EM algorithm to compute the maximum
likelihood association.

The proposed work differs from [19] in the following
aspects:

o Whereas in [19] the information about the performed
action is hidden in the perceptual data, in our case this
information is explicit. Once the robot has decided to
perform a certain action, the action value is determin-
istic.

e The work in [19] deals explicitly with the object con-
cept. In this work, following the affordances model
described in [13], objects are represented by their
features (shape, color, size) rather by their category,
thus allowing a more flexible description of objects,
using not only their nouns, but also their properties
(adjectives).

e Our work also deals with learning the description of
the effects (outcomes of actions), therefore addressing
the acquisition of concepts related to the behaviors (e.g
“the ball is moving”, “the box is still”).

e The work in [19] focused only on the learning problem.
In this work we want to address also the use of speech to
instruct the robot to perform tasks. The task description
and the mode of execution will be determined by
concepts transmitted verbally to the robot.

This rest of the paper is organized as follows. In Sec-
tion Il we briefly describe, through our particular robotic
setup, the problem and the general approach to be taken
in the learning and exploitation phases of the word-concept
association problem. Section III presents the language and
manipulation task model and the algorithms used to learn and
make inferences. In Section IV we describe the experiments
and provide some details on the speech recognition methods
employed. Results are presented in Section V and finally,
in Section VI, we conclude our work and present ideas for
future developments.

II. APPROACH

In this section, we provide an overview of the full system.
As mentioned before, we assume that the robot is at a
developmental stage where basic manipulation skills have
already been learned up to a maturity level that includes a
model of the results of this actions on the environment (see
[13] for further details). In order to make the presentation less
abstract, we describe the particular robotic setup used in the
experiments and the skills already present in the system.

A. Robot skills and developmental stage

We used Baltazar, a 14 degrees of freedom humanoid torso
composed by a binocular head and an arm (see Figure II).

The robot is equipped with the skills required to perform a
set of simple manipulation actions denoted by a; on a number
of objects. In our particular experiments we consider the
actions grasp, tap and touch. In addition to this, its perception
system allows it to detect objects placed in front of it and
extract information about them. More precisely, it extracts
simple visual features that are clustered in an unsupervised
way to form symbolic descriptions of object characteristics
such as color, size or shape. We denote with f;, fo and
fs the color, shape and size descriptor labels of objects.
When performing an action, the robot can also detect and



Fig. 1. Baltazar, the humanoid torso used in the experiments.

categorize the effects produced by its actions. Effects are
mainly identified as changes in the perception such as the
object velocity (ey), the velocity of the robot’s own hand
(e2) and the persistent activation of the contact sensors in
the hand (e3).

Based on this action-perception basic skills, the robot has
also undergone a training period that allowed it to establish
relations between actions, object features and effects!. This
model captures the world behavior under the robot actions.
It is important to note that the model includes the notion
of consequences’ and, up to a certain extent, an implicit
narrative structure of the execution of an action upon an
object.

The robot is also equipped with audio perception capabil-
ities that allow it to recover an uncertain list of words based
on a previously trained speech recognizer.

B. Incorporating speech

Given this state of the robot, we aim to exploit the co-
occurrence of verbal descriptions and simple manipulation
tasks to associate meanings and words. Our approach is
the following. During the execution of an action, the robot
listens to the users speech and recognizes some words
of the speech stream and stores them in a bag of words
({w;}), i.e. an unordered set where multiple occurrences
are merged. These words are correlated with the concepts
of actions, object features and effects present in the world.
Our objective is to learn the correct relationships between
the word descriptions and the previous manipulation model
through a series of robot-human interaction experiments.
These relations implicitly encode word-meaning associations
grounded to the robot’s own experience.

We will model this problem in a Bayesian probabilistic
framework where the actions A, defined over the set A =

I'This is not strictly necessary in the model presented in the next section.
However, in order to test the expressiveness of the method we made this
assumption.

20ne should be always careful about causality inference. However,
under certain constraints one can at least guess about induced statistical
dependencies [15].
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Fig. 2. Overview of the setup.

{a;}, object properties F, over F = {f;} and effects
E, over & = {e;} are random variables. We will denote
X = {A F,E} the state of the world as observed by
robot. The joint probability p(X) encodes the basic world
behavior grounded by the robot through interaction with the
environment. The verbal descriptions are denoted by the set
of words W = {w; }. Figure 2 illustrates all the information
fed to the learning algorithm.

If we consider the world concepts or meanings being
encoded by X, then, to learn the relationships between words
and concepts, we estimate the joint probability distribution
p(X, W) of actions, object features, effects, and words in
the speech sequence. Once good estimates of this function
are obtained, we can use it for many purposes, for example:

o to compute the associations between words and con-
cepts, by estimating the structure of the joint pdf
p(W, X);

« to plan the robot actions given verbal instructions from
the user in a given context, through p(A, F' | W);

« to provide context to the speech recognizer by comput-
ing p(W | X).

In the following section we detail the methods and tech-

niques used to learn and exploit word-meaning associations.

III. MODEL - ALGORITHMS

In this section, we present the model and methods used to
learn the relations between words and the robot own under-
standing of the world. Our starting point is the affordance
model presented in [13]. This model uses a discrete Bayesian
network to encode the relations between the actions, object
features and the resulting effects. The robot is able to learn
the network from self-experimentation with the environment
and the resulting model captures the statistical dependencies
among action, object features and the consequences of the
actions.

In this paper, we extend the previous model to include also
information about the words describing a given experience.
Recall that X denote the set of (discrete) variables repre-
senting the affordance network. For each word in W, let w;
represent a binary random variable. A value w; = 1 indicates
the presence of this word, while w; = 0 indicates the absence
of this word in the description. We impose the following
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Fig. 3. Graphical representation of the model. The affordance network is
represented by three different sets of variables: actions (A), object features
(F;) and effects (E;). Each word w; may depend on any subset of A, F;
and F;.

factorization over the joint distribution on X and W

[T p(w: | Xuw)p(X). (1)

w; EW

P(X,W) =

where X, is the subset of nodes of X that are parents of
word w;. The model implies that the set of words describing
a particular experience depends on the experience itself>.
On the other hand, the probability of the affordance network
is independent of the words, thus the affordance part of the
model is equal to the one in [13]. Figure 3 illustrates our
model.

In our model, each variable w; is a discrete random vari-
able that indicates the presence or not of a word according
to the particular configuration of the affordance network.
A strong assumption of our model is the independence
among words. This is actually known as the bag of words
assumption and is widely used, for instance, in document
classification ([2]), and information retrieval. Given a net-
work structure, i.e. the set of X,,, per each word w;, our
model simply computes the frequency of such a word for
each configuration of the parents.

We are also interested in selecting among all the possible
models described by Eq. 1 that best fit the data. This model
selection problem has been widely studied in the machine
learning literature (see [7] for a review). In our case, we use
a variation of the simple greedy approach known as K2 al-
gorithm [3] to select the most likely graph given a set of data

G* = argmazgp(D | G) 2)

where D = {(X;,W;)} represents the training data, i.e.
a set of pairs of world meanings and verbal descriptions.
Note that despite the fact we may have a huge number of
nodes, our model restricts the set of possible networks to
the factorization in Eq. 1. As a result the space to search
is reduced considerably. However, we may loose some
dependencies among words that are part of speech.

3This point requires a careful treatment when dealing with baby language
learning and, usually, explicit attention methods are required to constraint
the relations between words and the meanings they refer to.

Finally, let us briefly describe some inference queries that
can be solved by our model once learned. As mentioned
in Section II, the network allows to perform several speech
based robot-human interactions. First, the robot can be easily
instructed to perform a task. This corresponds to recovering
the (set of) action(s) given the words W provided by the
recognizer, e.g. p(A | W). When dealing with a particular
context, i.e. a set of potential objects to interact with, the
robot may maximize.

<a*, 0" > = argmatq, e,co.p(ai, o, | Ws) (3)

X H p(wi Qq, Foi )p(ai7 FOi) “)
w; EWy

where Oy is the set of objects detected by the robot and F,,
the features associated to object o;. Assuming that we have
non informative priors over the actions and objects, the robot
seeks to select the action and object pair that maximizes the
probability of W,. Alternatively, the robot may compute the
k-best pairs.

The proposed model also allows to use context to improve
recognition. Consider the case where the recognizer provides
a list of possible sets of words. The robot can perform
the same operation as before to decide what set of words
is the most probable or rank them according to their
posterior probabilities. In other words, one can combine
the confidence of the recognizer on each sentence with the
context information to select.

IV. EXPERIMENTS

In this section we describe the experimental protocol taken
in the word-concept learning phase.

A. Verbal Description of the Experiences

Each experience from [12] was verbally described by a
number of observers with utterances in a predefined form.
Each utterance describes first the action the robot performs
on a certain object and then the effects that the action has
produced. Examples of this are: ‘“Baltazar is grasping the
ball but the ball is still.”, “The robot touches the yellow box
and the box is moving.”, “He taps the green square and the
square is sliding.”. Each action, object property and effect is
represented by a varying number of synonyms for a total of
49 words. Three alternative descriptions of each experience
were considered.

B. Speech input

In order for the robot to learn from the verbal descriptions,
we equipped it with hearing capabilities. We assume that
one of the basic skills of the robot is the ability to classify
speech input into sequences of words. This assumption was
motivated by the focus of the current work on associating
words and meanings. A thoroughly developmental approach
to speech classification would involve learning the words
from sequences of acoustic classes as in [19] and, even,
learning the acoustic classes themselves from the data as
in [16]. We leave these developments for future work.
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Fig. 4. Full network, top: synthetic data, bottom: recognizer

son

Fig. 5.

The speech-to-text unit is implemented as a hidden
Markov model (HMM) automatic speech recognizer (ASR).
Each word belonging to the language described above is
modeled as an HMM with a number of states proportional to
the phonemic length of the word. Additionally a three-state-
model is defined in order to model silence.

A set of recordings were used to train the model pa-
rameters. These include single words recordings for model
initialization and utterances in the form described above
for training. The recordings were performed by 17 non-
native speakers of English. The hardware and location of the
recordings was freely chosen by the speakers and usually
involved a computer and headsets with a close microphone.
Only orthographic transcriptions were available with no time
stamps and the ASR models were trained with the Baum-
Welch iterative algorithm [1].

No grammatical structure other than a simple loop of
words was imposed to the decoder at run time, in agreement
with our hypothesis that a grammar is not necessary in order
to learn simple word-meaning associations. The performance
of the recognizer was computed with a leave-one-out tech-
nique by iteratively training the models on all but one speaker
in the data set and testing on the remaining speaker. The
resulting percentage of correctly classified words was about
81%. The decoder produces, besides confusions between
words, also a number of insertions and deletions of words
in the utterance. In these experiments, the relative number
of insertions and deletions was not controlled, resulting in
roughly double as many insertions than deletions. Short
words such as “and”, “but”, “the”, “he” and “is” are likely
to be inserted. The word “the” was also deleted in many
utterances.

V. RESULTS

We first describe in this Section the word-meaning associ-
ations acquired by the robot and, then, exemplify the possible
use of this model.

A. Learning

The results of learning word meaning associations are
displayed in Figure 4 and detailed in the following figures.

Object properties words

Figure 4 displays two graphs corresponding to the Bayesian
networks learned with perfect speech recognition (top), and
with the real speech recognizer (bottom). In each graph,
affordance nodes are filled whereas word nodes have white
background. The full networks were included to give an
impression of the overall complexity of the model and to
observe that the errors from the recognizer had a small effect
in learning the word meaning associations.

In the following we will always refer to the results ob-
tained with real speech recognition and, in order to simplify
the discussion, we will focus on subsets of words.

Some of the word nodes do not display any relationship
with the affordance nodes. The so called non referential
words are: “robot”, “just”, “the”, “he” (plus “Baltazar” and
“has” in the perfect recognition case). This result is not
surprising if we notice that the affordance network did not in-
clude a representation of the robot itself (“Baltazar”, “robot”,
“he”), nor a representation of time (“just”). Moreover, articles
and auxiliary verbs were also expected to be non referential.
The exception to this is the verb “is” that is linked to the node
Velocity. This requires further explanation, but is probably
due to asymmetries in the data set, i.e. an unbalanced set of
examples from our strict verbal descriptions.

Words expressing object features are displayed in Figure 5.
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Fig. 6. Actions words (excluding grasping)

Fig. 7.

Action words (grasping)

Fig. 8. Effect words: generic movement

These are clearly linked to the right affordance node. This
result is in accordance with previous research that showed
that it was possible to learn word object associations.
Words expressing actions are displayed in Figure 6 and
7. In general (Figure 6) action words are correctly linked
to the Action node in the affordances. For words indicating
the specific action grasp, the link is to the node HV (hand
velocity), and in one case to Contact, even though the latter
was not present with perfect recognition. The reason for this
is that, in our data, HV is high only for grasping actions.
The information on hand velocity is, therefore, sufficient to
determine whether a grasp was performed. Moreover, HV
can only assume two values (high, low), while Action can
assume three values (grasp, tap and touch), thus making the
first a more concise representation of the concept grasp.
Words describing effects usually involve more affordance
nodes. In case of words indicating generic movement the link
is to the object velocity node, as expected (See Figure 8).
In case of more specific movement the results are shown
in Figure 9 and Figure 10 where the effects of recognition
errors are also illustrated. Figure 9 shows how the words for
rising and falling are connected to nodes that can describe
successful and unsuccessful grasps. In fact, rising is only
observed in our data in case of a successful grasp and falling
in case of an unsuccessful grasp. Hand velocity (HV), as
explained earlier, is a compact representation of the action
grasp. The presence or absence of hand-object contact, on the

Fig. 9. Effect words: some specific movement

@ rolls

Fig. 10. Effect of the errors in the speech recognizer: perfect recognition
(left) and real recognition (right)

other hand, determines if the grasping was successful. This
is an example where a more complex concept is created by
combining more than one affordance node.

Comparing the results we obtained with perfect recogni-
tion and the real speech recognizer, we observe that most of
the dependencies inferred by the model were the same. Two
examples in Figure 10 illustrate the cases were we observed
a difference in the Bayesian network. The figure depicts two
alternative graphs for the words “rolls”, “rolling” (top) and
the words “slides”, “sliding” (bottom). The left graphs are
obtained with perfect speech recognition, whereas the right
graphs with the real recognizer. In general the recognition
errors add extra complexity to the data. This results in the
introduction of new dependencies in the model. The extra
nodes that are linked to the words are, however, related to
the concepts the words stand for. For example, in the case
of “sliding”, Velocity was added, which is consistent with



Fig. 11. Conjunctions “and” and “but”

movement. In the case of “rolling”, the inclusion of Shape
is related to the fact that only balls can roll, whereas the
inclusion of Contact probably and artifact and should be
explained by looking at the recognition results in details.

Finally the conjunctions “and” and “but” are linked to
the affordance nodes Contact and Velocity as depicted in
Figure 11. There is no simple explanation of this association,
and we believe the reason for this is two-fold. Firstly this
result is strongly affected by recognition errors that mostly
involve short words, as pointed out in the previous Section.
If we consider the perfect recognition case, the conjunctions
are linked to three nodes: object-hand velocity, hand velocity
and contact. By inspecting the probabilities of the word for
each combination of the values of these nodes, we can infer
that “and” is always used in conjunction with a successful
action, while “but” is associated with unsuccessful grasp.
This is not surprising because the action that is most likely
to fail in our data is grasp. More in general, associations that
involve different concepts in the experiments, as in this case,
are simply more difficult to learn, than direct associations
as, e.g., with object properties. Dealing with more complex
concepts probably requires a richer set of experiences, and
therefore a larger and more complete data set.

B. Using the model

Some possible uses of the word meaning association
model are described in this Section.

Table I shows some examples of using incomplete verbal
descriptions to assign a task to the robot. The robot has a
number of objects in its sensory field (represented by the
object features in the first column in the Table). The Table
shows, for each verbal input Wg (column) and each set
of object features F,, (row), the best action computed by
Equation 3 when the set of objects Oy is restricted to a
specific object 0;. The global maximum over all actions and
objects for a given verbal input, corresponding to the general
form of Equation 3, is indicated in bold face in the table.

If the combination of object features and verbal input is
incompatible with any actions, P(a;, F,, | Wgs) may be 0
Va; € A. These cases are displayed with a dash in the Table.
In case this happens for all available objects (as for “ball
sliding” in the example), the behavior of the robot is not
defined. A way to solve such cases may be, e.g., to initiate
an interaction with the human in order to clarify his/her
intentions.

Another application of our model is to use the knowledge

TABLE I
EXAMPLES OF USING THE BAYESIAN NETWORK TO SELECT MULTIPLE
INTERPRETATIONS OF THE INPUT UTTERANCE

N-best list from ASR (N=3)

objects on the table “tapping ball ~ “tapping box  “tapped ball

sliding” slides” rolls”
light green circle big 0 0 0.0567
yellow circle medium 0 0 0.0567
dark green box small 0 0.0605 0
blue box medium 0 0.0589 0
blue box big 0 0.0605 0
dark green circle small 0 0 0.0567

stored in the Bayesian network to disambiguate between
possible interpretations of the same speech utterance, given
the context. The Viterbi decoder in the speech recognizer
can be configured, e.g., to return an N-best list of hypotheses
for the transcription of a given utterance, the entries in the
list being ranked with the corresponding likelihood. This
is used when building dialog systems because the correct
transcription may not be the first in the list, and the dialog
manager may use context from the interaction with the user
to select the hypothesis that is most consistent with the
situation.

Similarly to Table I, Table II shows a situation in which a
number of objects are in the range of the robot’s sensory
inputs. The utterances corresponding to each column in
the Table are, this time, the simulated output of a speech
recognizer in the form of an N-best list with length three.
The other difference from Table I is that the probabilities
in each entry are computed by integrating over all possible
actions.

The second hypothesis, in bold face in the Table, is
selected when the posterior probability over all possible
actions and objects is computed. This in spite of the fact that
the recognizer assigned a higher probability to the hypothesis
in the first column. This was, however, a preliminary result
based on a simulation. In order to prove the effectiveness
of the method for this application, experiments with the real
speech recognizer should be used.

VI. CONCLUSIONS AND FUTURE WORK
A. Conclusions

We have shown how a robot can learn the meaning of
words in manipulation tasks by exploring the correlations
between speaker’s utterances and the sensory information
related to actions, objects and outcomes of its own exper-
imentation of the world. The learning process does not use
the order of the words on the speech signal, thus making
it more flexible toward changes in speaking style, it is
known, e.g., how spontaneous speech may fail to comply
to the grammatical structure of the specific language. It also
facilitates the usage of the acquired knowledge in instructing
the robot to perform tasks. In this case the formulation of a
task may assume a different form than the description of a
manipulation experiment.

Experimental results show that the robot is able to learn
clear word-to-meaning association graphs from a set of 49



TABLE I
EXAMPLES OF USING THE BAYESIAN NETWORK TO SELECT ACTIONS AND OBJECTS

objects on the table “small grasped”  “moving green”

“ball sliding”

Verbal input

“big rolling” “has rising” “sliding small”  “rises yellow”

light green circle big -

grasp, p=0.034 -
yellow circle medium - -

tap, p=0.227  grasp, p=0.019 - -

grasp, p=0.073 grasp, p=0.3

dark green box small grasp, p=0.122 grasp, p=0.041 - - grasp, p=0.037 tap, p=0.25

blue box medium - - - - grasp, p=0.037 - -

blue box big - - - tap, p=0.022 grasp, p=0.017 - -

dark green circle small | grasp, p=0.127 tap, p=0.127 - - grasp, p=0.064 - -
words and a dozen of concepts with just a few hundred REFERENCES

human-robot-world interaction experiences.

B. Future Work

Despite the encouraging results, the proposed model is a
first step towards a more complete model that will allow to
capture the language acquisition process more accurately. In
particular we seek to relax some of the main assumptions
done in this paper.

The first assumption is the existence of a predefined set of
words and the ability of the robot to extract the identity of
such words from an acoustic input. This allows us to learn
all the word-meaning associations at once. Working directly
with the audio signal, or at a phonemic level, is a more
realistic setup for our developmental learning approach. We
are currently studying the way to incorporate word discovery
in our model. This will require to develop incremental
strategies and inclusion of social cues as in [5], [20] to
cope with the huge search spaces of the full problem. In
particular, we are considering bootstrapping our model with
a few words, e.g. by word spotting, and then incrementally
adding words by associating the unknown part of the speech
input with different nodes in the affordance network. Another
important direction for research is to look into the interaction
mechanisms that allow children to develop language.

The second assumption is that the language used to instruct
the robot is rigidly defined and does not resemble the natural
interaction between parents and their children. This has
allowed us to learn from a limited number of experiences
because each utterance contains an almost complete descrip-
tion of the situation. The drawback is that any asymmetry in
the data may result in spurious dependencies in the model
as noted in Section V. The introduction of an incremental
approach, as described above, may allow us to relax this
assumption and cope with very sparse descriptions of each
experience by focusing at each time step on a limited set
of possible word-meaning associations. This will hopefully
increase the robustness of the method to asymmetries in the
data.

Finally we assume no interactions between words. By
linking words to the affordance network, we allow some
dependencies among them. However language has a rich
structure where word order, grammar and other context
situations play an important role. By relaxing this assumption
we might be able to model part of this complexity and even
to build more abstract associations where phrases, instead of
single words, are linked to meanings.
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