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Abstract. In this paper we propose a computational model for learning from demon-
stration. By adequate adjustment of a few parameters, our model is able to produce
di�erent learning behaviours, taking into account di�erent elements of the demonstra-
tion. In particular, our model takes into consideration the actions of the demonstrator,
its e�ects on the environment/surroundings, the demonstrator's inferred goals, and the
interests and preferences of the learner itself. We present results where we show that
our model can reproduce (in simulation) several well-known results from standard ex-
perimental paradigms in developmental psychology and also an application to a real
robotic imitation learning task.

1 Introduction

In social learning, a learner makes use of information provided by an expert to improve its
learning or acquire new skills. For example, an individual that observes the actions of a second
individual can bias its exploration of the environment, improve its knowledge of the world
or even reproduce parts of the observed behaviour. Two such social learning mechanisms
have raised particular interest among the research community, these being imitation and
emulation [1]. Imitation describes novel action acquisition arising from adhering to the goal of
the demonstration as inferred by the learner, while replicating the observed actions and e�ects
on the environment. In contrast with imitation, emulation is focused on the reproduction of
the observed e�ects on the environment.

In [2], social learning is described as arising from considering three fundamental sources
of information (see Fig. 1): the actions observed during a demonstration, the e�ects caused
by such actions and the goals that led to such actions. Experiments in children and in chim-
panzees also showed that they can understand the purpose of an action [3,4,5], even when
the action fails [6,7,4]; the dynamics of the world [8]; and the restrictions of the demonstrator
[9]. In [10], several learning mechanisms are described in terms of social in�uence and social

learning, making them distinct from what is called �imitative behaviour�. In this work we
propose a new computational model for imitation-like behaviours. Our model is inspired by
the taxonomy depicted in Fig. 1 and is able to reproduce several social learning behaviours
such as imitation or emulation. Many models from the robotics community focused on goal-

directed imitation are closer to emulation than it is to actual imitation, as no inference on the
intentions of the demonstrator takes place during the learning process. Other models, that
rely on the replication of some observed e�ect in the environment without taking into account
the corresponding actions, can be found in [11,12,13,14]. More recent works have provided
models in which a learner does infer the goal of the demonstrator and adopts this goal as
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Fig. 1: Behaviour classi�cation in terms of goal, actions and e�ects (reproduced from Call and
Carpenter [2].

its own [15,16,17,18]. This class of behaviour is closer to imitation as de�ned in [2]. Finally,
several works contrast with those referred above in that they are able to generate multiple
social-learning behaviours [19,20,21].

In this paper we propose a general model that is able to integrate di�erent sources of
information from a demonstration, exhibiting di�erent classes of imitative behaviour. Our
model replicates the behaviour observed in several well-known experiments [22,9,8].

The paper is organized as follows. In Section 2 we introduce our new learning model and
proceed in 3 by presenting the (simulated) results obtained with out model in well-known
scenarios from the developmental biology literature. We also present the results obtained in
a robotic imitation learning task. Finally, we conclude on Section 4.

2 Social learning algorithm

In this section we describe the fundamental process by which the learner perceives the task
to be learned after observing the demonstration by another agent (e.g., a human). In our
computational model, we make use of di�erent sources of information to compute a utility
function that the learner will then use to determine its behaviour. We show that, by assigning
weighting in di�erent ways these sources of information, the learner can exhibit fundamentally
di�erent behaviours. In the continuation, we formalize how each of these sources can be
explored separately by going over the general approach and then providing the full details.

� The �rst source of information is the learner's preference between actions in terms of the
respective energetic costs. This preference translates the natural inclinations of the learner



and can be formalized as a preference relation over the action repertoire, represented by
the corresponding utility function QA.

� The second source of information corresponds to the desire of the learner to replicate the
e�ects observed in the demonstration. For example, the learner may wish to reproduce
the change in the surroundings observed during the demonstration, or to replicate some
particular transition experienced by the teacher. This can be translated in terms of a
utility function by assigning a positive value to the desired e�ect and propagating that
value to all states and actions. The utility function thus obtained will be denoted as QE .

� The third source of information is related to the desire of the learner to pursue the
same goal as the teacher. This means that the learner makes some inference about the
underlying intention of the teacher. Inferring this intention from the demonstration is
achieved by a teleological argument [23]: the goal of the demonstrator is perceived as
the one that more rationally explains its actions. Note that the goal cannot be reduced
to the �nal e�ect only, since the means to reach this end e�ect may also be part of the
demonstrator's goal. We denote the corresponding utility function by QG.

Given the three sources of information, formalized in terms of the utility functions QA,
QE and QG, the learner will then adhere to the decision-rule obtained by combining the
three functions. In particular, the learner will adhere to the decision-rule associated with the
function

Q∗ = λAQA + λEQE + λGQG, (1)

with λA+λE +λG = 1. By resorting to a convex combination as in Eq. 1, there is an implicit
tradeo� between the di�erent sources of information. As a simple example, by considering
λA = λE = 0 and λG = 1, the learner will focus on pursuing the same goal as the teacher, dis-
regarding both its natural interests and any desire to reproduce any particular e�ect observed
in the demonstration.

It is only to be expected that the use of di�erent values for the parameters λA, λE and
λG will lead to di�erent behaviours from the learner. This is actually so, as illustrated by the
results in our experiments. We also emphasize that QE greatly depends on the world model
of the learner while QG greatly depends on the world model of the teacher.1

Formalism Now we proceed with the details about the underlying model. At each time
instant, the learner must choose an action from its repertoire of action primitivesA, depending
on the state of the environment. We represent the state of the environment at time t by Xt

and let X be the (�nite) set of possible environment states. This state evolves according to
the transition probabilities

P [Xt+1 = y | Xt = x,At = a] = Pa(x, y), (2)

where At denotes the learner's action primitive at time t. The action-dependent transition
matrix P thus describes the dynamic behaviour of the process {Xt}.

We consider that the demonstration consists of a sequence H of state-action pairs

H = {(x1, a1), (x2, a2), . . . , (xn, an)} .

Each pair (xi, ai) exempli�es to the learner the expected action (ai) in each of the states visited
during the demonstration (xi). From this demonstration, the learning agent is expected to

1 Clearly, the world model of the learner includes all necessary information relating the action
repertoire for the learner and its ability to reproduce a particular e�ect. On the other hand, the
world model of the teacher provides the only information relating the decision-rule of the teacher
and its eventual underlying goal.



perceive what the demonstrated task is and, eventually by experimentation, learn how to
perform it optimally. A decision-rule determining the action of the learner in each state of
the environment is called a policy and is denoted as a map δ : X −→ A. The learner should
then infer the task from the demonstration and learn the corresponding optimal policy, that
we henceforth denote by δ∗.

In our adopted formalism, the task can be de�ned using a function r : X −→ R describing
the �desirability� of each particular state x ∈ X . This function r works as a reward for the
learner and, once r is known, the learner should choose its actions to maximize the functional

J(x, {At}) = E

[ ∞∑
t=1

γtr(Xt) | X0 = x

]
,

where γ is a discount factor between 0 and 1 that assigns greater importance to those rewards
received in the immediate future than to those in the distant future. We remark that, once r
is known, the problem falls back to the standard formulation of reinforcement learning [24].

The relation between the function r describing the task and the optimal behavior rule can
be evidenced by means of the function Vr given by

Vr(x) = max
a∈A

r(x) + γ
∑
y∈X

Pa(x, y)Vr(y)

 (3)

The value Vr(x) represents the expected (discounted) reward accumulated along a path of
the process {Xt} starting at state x, when the optimal behavior rule is followed. The optimal
policy associated with the reward function r is thus given by

δr(x) = arg max
a∈A

r(x) + γ
∑
y∈X

Pa(x, y)Vr(y)


The computation of δr (or, equivalently, Vr) given P and r is a standard problem and can be
solved using any of several standard methods available in the literature [24].

Methodology In the formalism just described, the fundamental imitation problem lies in
the estimation of the function r from the observed demonstrationH. Notice that this is closely
related to the problem of inverse reinforcement learning as described in [25]. We adopt the
method described in [19], which is a basic variation of the Bayesian inverse reinforcement

learning (BIRL) algorithm in [26].
For a given r-function, the likelihood of a pair (x, a) ∈ X ×A is de�ned as

Lr(x, a) = P [(x, a) | r] =
eηQr(x,a)∑
b∈A e

ηQr(x,b)
,

where Qr(x, a) is de�ned as

Qr(x, a) = r(x) + γ
∑
y∈X

Pa(x, y)Vr(y)

and Vr is as in (3). The parameter η is a user-de�ned con�dence parameter that we describe
further ahead. The value Lr(x, a) translates the plausibility of the choice of action a in state
x when the underlying task is described by r. Given a demonstration sequence

H = {(x1, a1), (x2, a2), . . . , (xn, an)} .



the corresponding likelihood is

Lr(H) =
n∏
i=1

Lr(xi, ai).

The method uses MCMC to estimate the distribution over the space of possible r-functions
(usually a compact subset of Rp, p > 0), given the demonstration [26]. It will then choose the
maximum a posteriori r-function. Since we consider a uniform prior for the distribution, the
selected reward is the one whose corresponding optimal policy �best matches� the demon-
stration. The con�dence parameter η determines the �trustworthiness� of the method: it is a
user-de�ned parameter that indicates how �close� the demonstrated policy is to the optimal
policy [26].

Some important remarks are in order. First of all, to determine the likelihood of the
demonstration for each function r, the algorithm requires the transition model in P. If such
transition model is not available, then the learner will only be able to replicate particular

aspects of the demonstration. However, as argued in [19], the imitative behaviour obtained in
these situations may not correspond to actual imitation.

Secondly, it may happen that the transition model available is inaccurate. In this situation
(and unless the model is signi�cantly inaccurate) the learner should still be able to perceive
the demonstrated task. Then, given the estimated r-function, the learner may only be able
to determine a sub-optimal policy and will need to resort to experimentation to improve this
policy.

3 Experiments

In this section we start by comparing the simulation results obtained using our proposed
model with those observed in well-known biological experiments in children and primates.
We also illustrate the application of our imitation-learning framework in a task with a robot.

3.1 Application to human imitative tasks

In a simple experiment described in [22], several infants were presented with a demonstration
in which an adult turned a light on by pressing it with the head. One week later, most infants
replicated this peculiar behaviour, instead of simply using their hand. Further insights were
obtained from this experiment when, years later, a new dimension to the study was added
by including task constraints [9]. In the new experiment, infants were faced with an adult
turning the light on with the head but having the hands restrained/occupied. The results
showed that, in this new situation, children would display a more signi�cant tendency to
use their hands to turn the light on. The authors suggest that infants understand the goal
and the restriction and so when the hands are occupied they emulate because they assume
that the demonstrator did not follow the �obvious� solution because was of the restrictions.
Notice that, according to Fig. 1, using the head corresponds to imitation while using the hand
corresponds to (goal) emulation.

We conducted two experiments. In the �rst experiment, we disregarded the preferences
of the learner (i.e., we set λA = 0) and observed how the behaviour changed as we assigned
more importance to the replication of the observed e�ect (i.e., as λE goes from 0 to 1). The
results are depicted in Figure 2. Notice that, when faced with a restricted teacher, the learner
switches to an �emulative� behaviour much sooner, replicating the results in [9].

On a second test, we disregarded the observed e�ect (i.e., we set λE = 0) and observed how
the behaviour of the learner changed as we assigned more importance to the demonstration,
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Fig. 2: (left)Change in behaviour as the learner increasingly focuses on replicating the observed
e�ect. (right) Change in behaviour as the learner focuses less on its individual interests and
more on the demonstration (goal, actions and e�ects). Each bar corresponds to a trial of
2, 000 independent runs.

focusing less on its personal preferences (i.e., as λG goes from 0 to 1). The results are depicted
in Figure 2. Notice that, in this test, we set λE to zero, which means that the agent is not
explicitly considering the observed e�ect. However, when combining its own interests with
the observed demonstration (that includes goals, actions and e�ects), the learner tends to
replicate the observed e�ect and disregard the observed actions, thus displaying emulative
behaviour. This is particularly evident in the situation of a restricted teacher.

We emphasize that the di�erence in behaviour between the restricted and non-restricted
teacher is due only to the perceived di�erence on the ability of the teacher to interact with the

environment.

3.2 Application to robot imitation learning

We now present an application of our imitation learning methodology in a sequential task.
We used BALTAZAR [27], a robotic platform consisting of a humanoid torso with one anthro-
pomorphic arm and hand and a binocular head (see Figure 4). To implement the imitation
learning algorithm in the robot we considered a simple recycling game, where the robot must
separate di�erent objects according to their shape (Figure 3). In front of the robot are two
slots (Left and Right) where 3 types of objects can be placed: Large Balls, Small Balls and
Boxes. The boxes should be dropped in a corresponding container and the small balls should
be tapped out of the table. The large balls should be touched upon, since the robot is not
able to e�ciently manipulate them. Every time a large ball is touched, it is removed from
the table by an external user. Therefore, the robot has available a total of 6 possible actions:
Touch Left (TcL), Touch Right (ThR), Tap Left (TpL), Tap Right (TpR), Grasp Left (GrL)
and Grasp Right (GrR).

For the description of the process {Xt} for the task at hand, we considered a state-space
consisting of 17 possible states. Of these, 16 correspond to the possible combinations of objects
in the two slots (including empty slots). The 17th state is an invalid state that accounts for
the situations where the robot's actions do not succeed (for example, when the robot drops
the ball in an invalid position in the middle of the table).
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Fig. 3: (left)Recycling game (right)Transition diagrams describing the transitions for each
slot/object.

To test the imitation, we �rst provided the robot with an error-free demonstration of
the optimal behaviour rule. As expected, the robot was successfully able to reconstruct the
optimal policy. We also observed the learned behaviour when the robot was provided with two

di�erent demonstrations, both optimal. The results are described in Table 1. Each state is
represented as a pair (S1, S2) where each Si can take one of the values �Ball� (Big Ball), �ball�
(Small Ball), �Box� (Box) or ∅ (empty). The second column of Table 1 then lists the observed
actions for each state and the third column lists the learned policy. Notice that, as before, the
robot was able to reconstruct an optimal policy, by choosing one of the demonstrated actions
in those states where di�erent actions were observed.

Table 1: Demonstration 1: Error free demonstration. Demonstration 2: Inaccurate and in-
complete demonstration, where the boxed cells correspond to the states not demonstrated or
in which the demonstration was inaccurate. Columns 3 and 5 present the learned policy for
Demo 1 and 2, respectively.

State Demo 1 Learned Pol. Demo 2 Learned Pol.

(∅, Ball) TcR TcR - TcR
(∅, Box) GrR GrR GrR GrR
(∅, ball) TpR TpR TpR TpR
(Ball, ∅) TcL TcL TcL TcL

(Ball, Ball) TcL,TcR TcL,TcR GrR TcL
(Ball, Box) TcL,GrR GrR TcL TcL
(Ball, ball) TcL TcL TcL TcL
(Box, ∅) GrL GrL GrL GrL

(Box,Ball) GrL,TcR GrL GrL GrL
(Box,Box) GrL,GrR GrR GrL GrL
(Box, ball) GrL GrL GrL GrL
(ball, ∅) TpL TpL TpL TpL

(ball, ball) TpL,TcR TpL TpL TpL
(ball, Box) TpL,GrR GrR TpL TpL
(ball, ball) TpL TpL TpL TpL



We then provided the robot with an incomplete and inaccurate demonstration. As seen in
Table 1, the action at state (∅, Ball) was never demonstrated and the action at state (Ball,
Ball) was wrong. The last column of Table 1 shows the learned policy. Notice that in this
particular case the robot was able to recover the correct policy, even with an incomplete and
inaccurate demonstration.

a) Initial state. b) GraspL.

c) TapR. d) Final state.

Fig. 4: Execution of the learned policy in state (Box, SBall).

In Figure 4 we illustrate the execution of the optimal learned policy for the initial state
(Box, SBall).2

To assess the sensitivity of the imitation learning module to the action recognition errors,
we tested the learning algorithm for di�erent error recognition rates. For each error rate, we
ran 100 trials. Each trial consists of 45 state-action pairs, corresponding to three optimal
policies. The obtained results are depicted in Figure 5.

As expected, the error in the learned policy increases as the number of wrongly interpreted
actions increases. Notice, however, that for small error rates (≤ 15%) the robot is still able
to recover the demonstrated policy with an error of only 1%. In particular, if we take into
account the fact that the error rates of the action recognition method used by the robot are
between 10% and 15%, the results in Figure 5 guarantee a high probability of accurately
recovering the optimal policy.

4 Discussion and concluding remarks

We presented a formalism that generates several social learning behaviours, namely, imitation
and emulation. The model makes use of several sources of information such as goals, actions

2 For videos showing additional experiences see http://vislab.isr.ist.utl.pt/baltazar/demos/
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Fig. 5: Percentage of wrong actions in the learned policy as the action recognition errors
increase.

and e�ects. Besides those three sources, suggested in [2], we also explicitly consider knowledge
about the world model (a�ordances) of the demonstrator and of the learner [16]. The di�erence
between them helps to explain which actions may be irrelevant. We also include the agents
actions preferences (in terms of energy �cost�), to be able to quantitatively describe what is
meant by an �ine�cient� action.

The taxonomy in [2] reveals itself very interesting by providing a easy way to develop
a mathematical model of social-learning behaviours, mainly imitation and (goal) emulation.
Notwithstanding, we argue that the separation generally observed between behaviours might
not translate into separable cognitive mechanisms. Under the experimental paradigm de-
scribed previously ([9]) there is no third alternative: the system either performs one of the
two actions and is labelled �emulator� or performs the other and is labelled �imitator�. We
suggest that when the complexity of the task increases, i.e., when considering sequences of
actions or more action possibilities, it will not be possible to label with precision if a particular
behaviour is emulative or imitative, and maybe di�erent percentages of action matching will
be observed.

We also suggest that the di�erence between imitation and goal-emulation is only a matter
of preference/motivation of the learner. As seen from our mathematical model, all cognitive
capabilities might be active at the same time, but when faced with options the motivation to
interact socially or to achieve the results as fast as possible will weight di�erently the di�erent
sources of information.

Finally, the proposed model can provide robotics with better �social skills�, by being able
to understand and predict to some extent the outcome of people's actions.
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