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Abstract—This paper describes how the clustering topology of
an input space data distribution is utilized to properly initialize an
Adaptive Neuro-Fuzzy Inference System (ANFIS). We used a new
unsupervised clustering algorithm called Topology based Fuzzy
Clustering (TFC) that performs better than Growing Neural
Gas (GNG) in extracting the input-space topology. The topology
information in the form of number of nodes, node positions and
node connectivity is used for the initialization of the ANFIS. Using
two robotic modeling tasks as benchmarks, we demonstrate the
improved performance of TFC-derived ANFIS when compared
to the subclustering method found in the Fuzzy Logic Toolbox
of Matlab.

I. INTRODUCTION

Fritzke in [1], has shown how a new kind of neural network,
the “growing neural gas” (GNG), is able to construct the
topology in a data distribution. The topology is generated
incrementally like a self organizing map (SOM) but over-
comes the limitation of the SOM, in which the structure and
dimension of the network must be defined a priori. Taking as
motivation the growing nature of the GNG, other algorithms
have been proposed in the literature such as [2] and [3], where
topology is also grown. Topology information represents a
reduction of dimensionality of the data distribution but still
represents a rich source of information and its exploitation
can help to solve many problems in different fields such as
clustering, regression, data mining, and even control theory.

We tried a new algorithm based on GNG called Topology
Based in Fuzzy Clustering (TFC), proposed by Abhishek Ja-
iantilal in [4], that exploits topological information to perform
fuzzy clustering. The key innovation in TFC is the notion of
an unknown fuzzy membership into a cluster. The following
section shows this in more detail. We then used the topology
obtained by TFC to initialize the structure of an ANFIS neural
network by using node values and node connectivity. To test
whether topology derived information is advantageous we used
the ANFIS to solve the Inverse Kinematics problem in a two-
link robot manipulator and the forward kinematics of a six-
link manipulator. Both problems are employed as benchmarks
to validate the proposed approach by comparing it with the

subclustering algorithm [5] found in the fuzzy logic toolbox of
Matlab. The use of the topology obtained by the TFC method
in initializing an ANFIS is the main contribution of this paper.

The remainder of the paper is as follows. In the second
section are described the algorithms used in this work; the
third section describes the way in which the topology is used to
initialize the ANFIS; in the fourth section the benchmark setup
is detailed; in the fifth section results are presented; finally,
conclusions and planned future works are described in the
sixth section.

II. TOPOLOGY BASED FUZZY CLUSTERING(TFC)

The TFC algorithm proposed is a self-organizing neural
network that takes the best properties of the GNG, i.e. its
adaptivity, execution time and shape independence. However
it is more effective than the GNG because it is just an one
pass algorithm and its ability to find clusters and deal with
outliers is superior to the GNG as reported in [4].

First is calculated the ‘reference value’ of every node
(neuron) that is defined as a measure of the most exterior to
the most interior node and are initialized with values between
0 and 1. The idea behind this was that the edge structure and
relative distances between nodes can be used to find the central
node(s) of the cluster. For each node a reference value is
found, using the edge connection of the nodes and the relative
distance between the nodes and neighbors and iterating the
following equation:

Φ
′
p = ∑k

n=1 Φ′
n ∗Rn

∑k
n=1 Φ′

n ∗∑k
n=1 Rn

(1)

where Φ′
p is defined as the reference value of the node itself,

n (from 1 to k), set of k neighbors of the node including itself,
Φ′

n reference value of the nth node in the neighborhood, Rn,
average distance between nodes and its neighbors. The initial
reference values can be chosen at random. The iteration of
this equation gives the converged reference values. The node
with smallest reference value is considered the center of the



cluster. The proof of convergence and detailed examples can
be found in [4].

Once the equation 1 has converged the fuzzy membership of
each node in its corresponding cluster is calculated, according
to:

f uzzyic(Φic) =
min(re f erencec)

re f erenceic
(2)

Where f uzzyic(Φic) is the fuzzy membership of the ith node in
cluster c, and min(re f erencec) is the minimum of the reference
values in cluster c. This step normalizes each node’s reference
value with the least reference value within the cluster. For the
four node example in Figure 1, equation 1 converges after 4
iterations:

Fig. 1. Topology representation. Nodes are represented by blue diamonds,
edges are in red. Average radius is drawn in blue circles. Values shown are
the fuzzy membership

Iter1:referenceM= [0.3333 0.3333 0.3333 0.3333]
Iter2:referenceM= [0.5000 0.2500 0.3333 0.3333]
Iter3:referenceM= [0.5141 0.2539 0.3349 0.3349]
Iter4:referenceM= [0.5144 0.2540 0.3348 0.3348]

fuzzyM= [0.4937 1.000 0.7586 0.7586]
Modification of the learning rate of the nodes is done

inversely proportional to the node’s fuzzy membership into
the cluster, thus the node having the highest membership value
has the least learning rate and vice-verse for the node with the
least membership. Thus

∆WS1 = eb(x−WS1) (3)

for winner node S1 is modified to

∆WS1 = eb(x−WS1)
1

FuzzyMembership(S1)
(4)

and for each neighbor Si of S1

∆Wi = en(x−Wi) (5)

is modified to

∆Wi = en(x−Wi)
1

FuzzyMembership(Si)
(6)

eb and en, are the learning rates for winner node and the
neighbors respectively, the conditions for cluster creation and
deletion are within the next cases:

1) Edge creation can cause cluster merging.
2) Edge deletion can cause cluster splitting.
3) Node deletion can cause cluster deletion.
4) Node insertion causes current cluster to increase in size.
After this phase, the algorithm passes through a phase of

testing in which it tries to eliminate the outliers, the complete
description of the algorithm and pseudocode is given in [4].

A. Adaptive Neuro Fuzzy Inference System (ANFIS)

Before showing how TFC is used to initialize the ANFIS,
using a two input example, the ANFIS is reviewed briefly.
Adaptive Neuro-Fuzzy Inference Systems are Fuzzy Sugeno
models put in the framework of adaptive systems, a fuzzy
Sugeno type is composed by rules of the type:

Rule 1 : i f x1 is A1 and x2 is B1,

then f1 = a1x1 +b1x1 + c1

Rule 2 : i f x1 is A2 and x2 is B2,

then f2 = a2x1 +b2x2 + c2

In Figure 2 is illustrated the architecture of the network. In
the first layer the degree of the membership of the input is
computed using a Gaussian membership function:

µAi(x) =
1

1+[( x−ci
ai

)2]bi

where ai, bi, and ci are the parameters of the gaussian
function. Furthermore these parameters can be initialized by
two approaches: grid partitioning and scatter partitioning. The
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Fig. 2. ANFIS architecture

second layer calculates the firing strength (or weight) wi of
the ith rule,

wi = µAi(x1)µBi(x2)



In the third layer the firing strengths are normalized with the
sum of all rule’s firing strengths:

wi =
wi

w1 +w2

In the fourth layer the output is calculated as the product of
the normalized firing rate and the parameters set:

wi fi = wi(pix+qiy+ ri)

Finally in the fifth layer is calculated the overall output as the
addition of all incoming signals,

∑
i

wi fi = ∑i wi fi

∑i wi

Training the network consists of finding suitable parameters
for layer 1 and layer 4. Gradient descent methods are typically
used for the non-linear parameters of layer 1 while batch or
recursive least squares are used for the linear parameters of
layer 4 or even a combination of both. See [6] for details.

B. Grid Partitioning Approach vs Scatter-Partitioning

Grid partitioning is an approach for initializing the structure
in a fuzzy inference system. For example, if Gaussian mem-
bership functions are chosen, the centers of the Gaussians are
confined to corners of a rectangular grid in the initialization
of the Fuzzy inference system.

As defined in [7], the grid-partitioning approach to fuzzy
systems has the serious disadvantage that the very regular
partition of the input space may be unable to produce a rule
set of acceptable size which is able to handle a given data set
well. If, for example, the data contains regions with several
small clusters of different classes, then small rule patches have
to be created to classify the data in this region correctly. This
problem becomes even more serious as the dimension of the
input data increases.

To eliminate the problems associated with grid-partitioning,
other ways of dividing the input space have been proposed.
The approach in [7], known as scatter partitioning, is to allow
the IF-parts of the fuzzy rules to be positioned at arbitrary
locations in input space. This means that the centers of the
Gaussians are not anymore confined to corners of a rectangular
grid. Rather, they can be chosen freely, e.g., by a clustering
algorithm working on the training data.

A problem to be solved with scatter partitions is to find
a suitable number of rules and suitable positions and width
of the rule patches in input space. As stated in [7], instead
of first constructing a possibly poor neuro-fuzzy system and
then improved later on, scatter partitioning has the advantage
of immediately building a good system for the problem at
hand.

The approach proposed in this paper uses TFC as the
clustering tool for scatter partitioning the input space, and
compare it with the subclustering algorithm which is also an-
other scatter partitioning algorithm. The subclustering method
is an extension of the mountain clustering method proposed
by R. Yager and detailed in [5].

III. USING TFC ALGORITHM TO FIND THE DATA
TOPOLOGY AND INITIALIZE THE ANFIS

The TFC is used to cluster the input training data. As
shown in Figure 3 for the two-link inverse kinematics data,
the topology involves a set of nodes interconnected by links.
Each node belongs to a cluster (no multiple memberships) and
depending on the distribution of the data the topology may
have one or more clusters.

The ANFIS is constructed and initialized in this maner:
1) The number of rules (R) is equal to the number of nodes

(N). The number of membership functions (Mx) for each
input variable (x) is also equal to the number of nodes.

R = Mx = N;

2) The parameters of the first layer are taken from the
nodes. For node (i), a Gaussian membership function is
created for each input variable. So for the input variable
x a Gaussian membership function is created Gix with
center cix equal to the x coordinate of node i.

3) The spread a of Gix is taken from the x component of the
average distance vector d of node i with its connected
neighbors.

~di =
∑Neighbors

k ‖(ni−nk)‖
Neighbors

4) After the ANFIS structure is created and layer 1 ini-
tialized, the parameters of layer 4 are computed by a
batch least squares method that finds an estimate of the
linear parameters of this layer based on the input and
output training data. In [6] we can find a more detailed
explanation of how the update is done.

At this stage, the ANFIS can be tested for initial performance
with the training and test set.

IV. BENCHMARKS SETUP

A. Inverse Kinematics for the Two Link Manipulator

In order to explore how topology can be used in robotics
applications, It is used as a benchmark the known problem of
the inverse kinematics in a robotic arm with two degrees of
freedom. The inverse kinematics problem for a two link robot,
as the one show in Figure 3, consists in finding the joint angle
configuration (θ1 and θ2 angles for the first and second joint
respectively) that can let us move the end effector to a desired
position (X and Y ) in the cartesian space. Inverse kinematics is
a well known problem that has a simple mathematical solution,
but becomes a cumbersome problem when the number of
degrees of freedom of the robot is increased. The inverse
kinematics solution for a two link manipulator will be our
first benchmark to test the potential of our approach.

Matlab is used to simulate the robot of Figure 3. For the
simulation the first link length has 10 units and the second link
length is of 7 units. To generate the training data in Matlab
θ1 is defined as an angle that can be within 0 and π

2 radian
degrees with an increment of 0.1, θ2 as an angle within 0 and
π radian degrees and with an increment of 0.1 degrees. The
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Fig. 3. Configuration of the two link manipulator

data for the training set is obtained from the mathematical
solution of the forward kinematics:

X = L1∗ cos(θ1)+L2∗ cos(θ1 +θ2) (7)

Y = L1∗ sin(θ1)+L2∗ sin(θ1 +θ2) (8)

and for the testing set the solution of the inverse kinematics is
used. For the coordinate X the data used is in a range within 0
and 2 with an increment of 0.1. For the coordinate Y the data
is in range within 8 and 10 with an increment of 0.1 using the
inverse kinematics equations:

cos(θ2) = (X2 +Y 2−L12−L22)/(2∗L1∗L2)

sin(θ2) = sqrt(1− cos(θ2)2)

θ2 = atan2(sin(θ2),cos(θ2)); (9)

k1 = L1+L2∗ cos(θ2)

k2 = L2∗ cos(θ2)

θ1 = atan2(Y,X)−atan2(k2,k1); (10)

The size of the training data is 512 samples while the testing
data is 441 samples. Since the ANFIS is a sugeno fuzzy type
inference system which has only one output, the two-link
inverse kinematics problem is solved by two ANFIS systems-
one for each output variable, θ1 and θ2.

B. Forward Model for the Six Link Manipulator

The second benchmark is to use the TFC-ANFIS to find
the forward kinematic model of a six link manipulator. The
motivation to try this test stems from one of the challenges
in developmental robotics - how to find a sensory motor map
by conducting self exploratory movements. This exploratory
motor babbling is similar to how an infant creates his own
sensory motor map that becomes an internal model for a
reaching or grasping task. This approach of using motor
babbling to create a forward model of an unknown robotic
system is common in a developmental approach to robotic
control as in [9].

Similarly an ANFIS neural network initialized with the
TFC algorithm is used to find this forward model, that is,
a relation between the joint angles of the manipulator and
the position of the end effector in 3 dimensional space. The
robotics toolbox of Peter Corke ([8]) for matlab is used as a
simulation platform.

In order to generate the training data the robot passes
through a phase of motor babbling, in which the workspace of
the robot is divided into 4 regions and the joints are perturbed
for a fixed number of cycles in each region. The end effector
position is calculated using the forward kinematics of the
robot. The total number of collected samples is split into 1000
and 400 for the training and testing set respectively. Three
ANFIS systems are derived from the topology, one for each
of the three output variables X , Y and Z.

C. TFC setup

TFC like GNG, has six parameters (eb, en, α , β , Amax and
λ ) that control how the topology is created from the data.
eb and en control the adaptation rate of the winner and its
topological neighbors as can be seen from equation 8 and
10. Node creation is controlled by λ , while edge deletion is
controlled by Amax (note that nodes without any emanating
edges are deleted as in the original GNG [1]). During node
insertion, the error of the node with the maximum error (and its
neighbor with the highest error) is adjusted using parameter α
while the error of the other nodes are adjusting using parameter
β .

Since, TFC is a single pass algorithm by fixing λ and Amax,
the number of nodes can be fixed.

1) Amax, λ , manner of data presentation: We did prelimi-
nary runs to find values of λ that would result in fewer than 20
nodes for the two-link inverse kinematics problem. Also, we
relaxed the one-pass option of TFC by duplicating each data
sample, effectively doubling the training data, and randomly
presenting it to the TFC algorithm in one pass. For the six-
link forward model, the same data preparation and random
presentation format (with Amax and λ values chosen to create
less than 40 nodes).

2) eb, en, α and β : These parameters were tuned by a
genetic algorithm instead of manually tuning them. For the
two-link, the fitness function was based on the Theta1 testing
error of an ANFIS created from the TFC topology. Note,
these 4 parameters were then used for the two-link inverse
kinematics data the parameters in column 1 of Table I resulted
in a topology with 17 nodes, while for the six-link forward
kinematics data the parameters in column 2 resulted in a
topology with 34 nodes.

The parameters of the TFC are summarized in Table I

V. RESULTS

A. Two Link Manipulator Inverse Kinematics

Figure 4 shows the input data distribution for the two-
link data. Comparing this with the topology obtained by TFC
shown in Figure 5, we see that the input distribution is matched
quite well. Following the method outlined in section III we



TABLE I
PARAMETERS OF THE TFC

Parameters Two link Six link
eb 0.4421 0.4041
en 0.0129 0.0014
α 0.0289 0.0889
β 0.0069 0.0012
Amax 80 80
λ 65 60

initialize an ANFIS with 17 rules. The performance of the
TFC-ANFIS with the training and test set is shown in Table II
and III. Initial performance is already good and beats the sub-
clustering algorithm of the Fuzzy Logic toolbox. Performance
with the test set is shown in Figure 6. Performance is further
improved with 100 epochs of the hybrid training method
which is a combination of backpropagation with recursive least
squares. The subclustering initialized ANFIS fails to surpass
the TFC initialized ANFIS even after 100 epochs of training
with the hybrid method.
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Fig. 5. Topology of the input Data

0 50 100 150 200 250 300 350 400 450
−15

−10

−5

0

5
x 10

−3

T
H

E
T

A
1D

 −
 T

H
E

T
A

1P

Deduced theta1 − Predicted theta1

0 50 100 150 200 250 300 350 400 450
−0.01

0

0.01

0.02

T
H

E
T

A
2D

 −
 T

H
E

T
A

2P

Deduced theta2 − Predicted theta2

Fig. 6. Initial performance of TFC-ANFIS with the test set

TABLE II
INVERSE KINEMATICS OF THETA1

error Subclustering TFC
Training 0.030416 0.023636
Testing 0.0087433 0.010197
Training
(100
epochs)

0.024802 0.021374

Testing
(100
epochs)

0.005561 0.0058814

B. Six link manipulator forward kinematics

Figure 7 shows the topology obtained by TFC by plotting
only θ1, θ2 and θ3. It is evident that the four clusters found by
TFC represent the four quadrants where motor/joint babbling
was done. The performance of TFC derived ANFIS for each
output variable X,Y,Z is shown in Tables IV, V, VI. With the
exception of variable Z, using the topology from TFC to create
the ANFIS results in a better performing ANFIS compared
with using the subclustering tool of the toolbox. Performance
is further improved by 100 epochs of hybrid training.

TABLE III
INVERSE KINEMATICS OF THETA2

error Subclustering TFC
Training 0.051657 0.02894
Testing 0.017418 0.0096486
Training
(100
epochs)

0.040799 0.028608

Testing
(100
epochs)

0.015167 0.0087282
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TABLE IV
FORWARD KINEMATICS OF X

error Subclustering TFC
Training 0.004324 0.0041086
Testing 0.005206 0.0048449
Training
(100
epochs)

0.001801 0.0012637

Testing
(100
epochs)

0.003572 0.0019591

TABLE V
FORWARD KINEMATICS OF Y

error Subclustering TFC
Training 0.005142 0.004343
Testing 0.00581 0.005895
Training
(100
epochs)

0.002323 0.00137

Testing
(100
epochs)

0.003342 0.003041

TABLE VI
FORWARD KINEMATICS OF Z

error Subclustering TFC
Training 0.0034549 0.0054177
Testing 0.0044379 0.0067046
Training
(100
epochs)

0.0012921 0.0016889

Testing
(100
epochs)

0.0020448 0.0024902

VI. CONCLUSION

It has been demonstrated in this paper how the topology of
the input-space of the system can be useful in creating sugeno-
type fuzzy inference systems. Also, we show that topology
information creates a better ANFIS. This is the first time that
the new unsupervised clustering algorithm, TFC, is used in
a robotics application and demonstrated its advantages: fast-
clustering (one-pass algorithm), and rich topological infor-
mation. In terms of ease of use for the would-be ANFIS
modeller, the TFC algorithm parameters lambda and Alpha
allow independent control of the number of resulting nodes
and hence the number of rules of the ANFIS.
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