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Abstract

Learning in robotics is one of the practical solutions allowing an autonomous
robot to perceive its body and the environment. As discussed in the context
of the frame problem [1], the robot’s body and the environment are too com-
plex to be modeled. Even if the kinematics and the dynamics of the body are
known, a real sensory input to the body would be different to one derived from
the theoretical model, because the sensory input is always influenced by the
interaction with the environment. For instance, when we grasp an object, the
physical state of our arm such as a weight and momentum becomes different
to those at the normal state. However, it is difficult to evaluate all potential
variation in advance, since real data can vary quite a lot and the behavior of the
external environment is not necessarily controlled by the robot: in this example,
the state of the arm is always different depending on the grasped object. On
the other hand, learning provides a data-driven solution: the robot explores the
environment and extracts knowledge to build an internal model of the body and
the environment.

Learning-based motor control system is well studied in the literature [2] [3]
[4] [5] [6] [7]. Haruno et al. proposed a modular control approach [3], which cou-
ples a forward model (state predictor) and an inverse model (controller). The
forward model predicts the next state from a current state and a motor com-
mand (an efference copy), while the inverse model generates a motor command
from the current state and the predicted state. The desired motor command
is not available, but the feedback error learning procedure (FEL) provides a
suitable approximation [4]. The prediction error contributes to gate learning of
the forward and inverse models, and to weight output of the inverse models for
the final motor command. Motor prediction based on a copy of motor command
compensates the delays and noise in the sensorimotor system. Moreover, mo-
tor prediction allows differentiating self-generated movements from externally
imposed forces/disturbances [5][6].

Learning-based perception is applicable not only for motor control but also
to model the environment owing to multiple sensorial modalities, such as vision,
audition, touch, force/torque, and acceleration sensing. In a similar approach,
we developed a learning system aiming at predicting future sensing data based



sensing: s[t+δt]

action: u[t]

sensing: s[t]

state spaces: s

sensing: s[t+δt]

action: u[t]

sensing: s[t]

prediction: s[t]

target: s*[t]

^

state spaces: s

prediction error

control error

^

Figure 1: Internal state space. Left: ideal state transision, Right: estimated
state transision.

on current sensing data and motor command [8]. Unlike most studies on sensory-
motor prediction, the robot and the environment are considered dynamic. Thus,
we explored the possibilities for the robot to detect changes in its self or its
environment in an autonomous manner: no other information such as a model
was given to the system. Following this concept, we investigated a function
called confidence, driven in the evaluation process of the sensory prediction
learning [9]. The aim of this function is to detect inequalities between the
predicted situation and the real situation of the body and the environment.
The notion of robotic self-confidence was developed as the first step toward self
diagnosis and self adaptation.

Our global aim is to implement a learning process as a natural adapta-
tion and self-improvement for the robot. In this context, one of the significant
problems in learning is that it requires much time for data sampling and post
treatment. An efficient learning strategy is necessary to enhance the learning
speed while keeping its quality. The random sampling strategy is considered
as the most robust approach for unknown learning environment, on the other
hand maybe there are some more formal ways of choosing the sampling strategy
depending on various factors and constrains of the body and the environment,
which biases robot learning interest. We propose an improvement of the learning
strategy (active motor babbling) based on the confidence function with multiple
sensory modalities: the evaluation of learning is applied to the next exploration
of data sampling.

Fig.1 illustrates internal state space of the robot. Let s[t] ∈ Rns denote the
sensory state vector for the ns sensors, and u[t] ∈ Rnm be the motor command
vector for the nm motors at time t. Let us consider that the dynamics of s[t]
and u[t] can be defined as:

s[t + δt] := Φ(s[t], u[t]), (1)
u[t] := Ψ(s[t], s[t + δt]). (2)

Here, for simplicity, an action to transit the state from s[t] to s[t+δt] is assumed
as unique. The goal of learning is to approximate Φ(·) and Ψ(·) using data
samples acquired through exploration. Let ŝ[t] and û[t] denote estimated vectors
of the next sensory feedback: s[t + δt] and the actuated motor command: u[t].
Φ̂(·) and Ψ̂(·) denote the approximations of Φ(·) and Ψ(·):

ŝ[t] := Φ̂(s[t], u[t]), (3)



û[t] := Ψ̂(s[t], s[t + δt]). (4)

In order to collect learning data, the robot must explore the environment. How-
ever, in the begining of learning, the robot does not know how to explore. A
motor babbling behavior gives a simple solution: the robot generates u[tk] ran-
domly, and stores learning data {s[tk],u[tk], s[tk+1]}k=1,···,K at each time step.
Φ̂(·) and Ψ̂(·) can be optimized by using acquired data s[tk] for s[t], u[tk] for
u[t] and û[t], and s[tk+1] for s[t + δt] and ŝ[t].

If the learning is well performed, the robot is able to generate a motor
command to reach the desired next state: s∗[t], which means that the robot is
able to perform motor babbling not in the joint space: u, but in the state space:
s, defined as:

ŝ[t] := Φ̂(s[t], û[t]), (5)
û[t] := Ψ̂(s[t], s∗[t]). (6)

Learning result can be evaluated as confidence for the state. The confidence is
based on the state prediction error: ||eϕ|| and motor control error: ||eψ|| defined
as:

eϕ[t] := ŝ[t − δt] − s[t], (7)
eψ[t] := s∗[t − δt] − s[t], (8)

where ŝ[t − δt] indicates the prediction of s[t] executed at time t − δt, and
s∗[t − δt] indicates the target state for control at time t − δt. The domain
of the components of eϕ[t] and eψ[t] has no boundary: (−∞,+∞). Here, let
us introduce a transformation of eϕ[t] and eψ[t] into a finite scalar variable:
c[t] ∈ [0, 1] such as

c[t] := exp(−||eϕ||2[t] / 2σ2
ϕ) · exp(−||eψ||2[t] / 2σ2

ψ), (9)

where the variances σ2
ϕ and σ2

ψ determine sensitivity. Accumulation of c[t] de-
pending on the sensory state s[t] provides confidence for a state. Let C[s] ∈ [0, 1]
denote the confidence: a high value of C[s] means that learning of state dynam-
ics at s is reliable. The update rule of the confidence at time t + δt is defined
as:

C[s, t + δt] := (1 − α)C[s, t] + αc[t]. (10)

where the constant parameter α ∈ [0, 1] is an update weight, and C[s, 0] is
initialized as zero. The confidence works as a temporal moving average of nor-
malized learning error.

The principal idea of this framing is to exploit confidence derived from the
past learning, for the next exploration to collect new learning data. If the con-
fidence at the current state is low, the robot generates random motor babbling
in u space, while the confidence is high, the robot directs its action, in s space,
into the lower confidence state to collect new learning data for improvement. In
this work, we are going to discuss the behavior of the algorithm resulting from
the experimental learning using the humanoid robot James, shown in Fig.2.



Figure 2: The humanoid robot James [10].
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