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Abstract—For a complex autonomous robotic system such
as a humanoid robot, the motor-babbling based sensory-motor
learning is considered effective to develop an internal model
of the self-body and the environment autonomously. In this
paper we propose a methodology of sensory-motor learning
and its evaluation towards active learning. The proposed model
is characterized by a function called confidence, which works
as a memory of reliability for state prediction and control.
The confidence for the state can be a good measure to bias
the next exploration strategy of data sampling, such as to
direct its state to the unreliable domain. We consider the
confidence function as the first step to an active behavior design
for autonomous environment adaptation. The approach was
experimentally validated using the humanoid robot James.

Index Terms—Sensory motor prediction, Neural networks,
Learning, humanoid robot, Confidence

I. I NTRODUCTION

Learning in robotics is one of the practical solutions
allowing an autonomous robot to perceive its body and
the environment. As discussed in the context of theframe
problem [1], the robot’s body and the environment are too
complex to be modeled. Even if the kinematics and the
dynamics of the body are known, a real sensory input to the
body would be different to one derived from the theoretical
model, because the sensory input is always influenced by
the interaction with the environment. For instance, when
we grasp an object, the physical state of our arm such as
a weight and momentum becomes different to those at the
normal state. However, it is difficult to evaluate all potential
variations in advance, since real data can vary quite a lot and
the behavior of the external environment is not necessarily
controlled by the robot: in this example, the state of the arm
is always different depending on the grasped object. On the
other hand, learning provides a data-driven solution: the robot
explores the environment and extracts knowledge to build an
internal model of the body and the environment.

Learning-based motor control systems are well studied in
the literature [2] [3] [4] [5] [6] [7]. Haruno et al. proposed
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a modular control approach [3], which couples a forward
model (state predictor) and an inverse model (controller).
The forward model predicts the next state from a current
state and a motor command (an efference copy), while
the inverse model generates a motor command from the
current state and the predicted state. Even if a proper motor
command is unknown, the feedback error learning procedure
(FEL) provides a suitable approximation [4]. The prediction
error contributes to gate learning of the forward and inverse
models, and to weight output of the inverse models for the
final motor command. Motor prediction, based on a copy
of the motor command, compensates the delays and noise in
the sensory-motor system. Moreover, motor prediction allows
differentiating self-generated movements from externally im-
posed forces/disturbances [5][6].

Learning-based perception is applicable not only for motor
control but also to model the environment owing to mul-
tiple sensorial modalities, such as vision, audition, touch,
force/torque, and acceleration sensing. In a similar approach,
we developed a learning system aiming at predicting future
sensing data based on current sensing data and motor com-
mand [8]. Unlike most studies on sensory-motor prediction,
the robot and the environment are considered dynamic. Thus,
we explored the possibilities for the robot to detect changes
in its self or its environment in an autonomous manner:
no other information such as a model was given to the
system. Following this concept, we investigated a function
called confidence, driven in the evaluation process of the
sensory prediction learning [9]. The aim of this function is
to detect inequalities between the predicted situation and the
real situation of the body and the environment. The notion of
robotic self-confidence was developed as the first step toward
self diagnosis and self adaptation.

Our global aim is to implement a learning process as a
natural adaptation and self-improvement for the robot. In this
context, one of the significant problems in learning is that it
requires much time for data sampling and post treatment. An
efficient learning strategy is necessary to enhance the learning
speed while keeping its quality. The random sampling strat-
egy is considered as the most robust approach for unknown
learning environment, on the other hand maybe there are
some more formal ways of choosing the sampling strategy



notation variable
s measured sensory input
u actuated motor command
ŝ estimated next sensory input
û estimated motor command
s∗ desired next sensory input
u∗ desired motor command
Φ(·) state prediction function
Ψ(·) state transition function
χ(·) state design function
Φ̂(·) approximated state prediction function
Ψ̂(·) approximated state transition function

TABLE I
NOTATION OF VARIABLES AND FUNCTIONS.

depending on various factors and constrains of the body
and the environment, which biases robot learning interest.
We propose an improvement of the learning strategy (active
motor babbling) based on the confidence for the state, which
is an extension of [9] to deal with both of sensory state
prediction and control: the current learning evaluation on
state prediction and control can be applied to the next
exploration strategy of data sampling, which focuses on a
state domain of learning interest.

This paper is organized as follows: Section II describes the
proposed framework of sensory-motor learning including an
introduction of confidence. Section III describes the exper-
imental results using the humanoid robotic platform James
[10]. Finally, Section IV gives conclusion with some future
tasks.

II. M ETHOD

A. Sensory-motor learning

Fig. 1 illustrates internal state space of a sensory-motor
system. Notations of the variables used in this figure are
defined in the Table I. Lets[t] ∈ RNs denote the sensory
input vector from theNs sensors, andu[t] ∈ RNm be the
motor command vector for theNm motors at timet. Here,
we assume the sensory input vector as the state vector, and
discuss the state space spanned by the state vector. The state
is transited by the motor command actuation. Let us consider
that the dynamics ofs[t] andu[t] can be defined as:

s[t + δt] := Φ(s[t],u[t]), (1)

u[t] := Ψ(s[t], s[t + δt]). (2)

Here, for simplicity, a motor command to change the state
from s[t] to s[t + δt] is assumed as unique based on thatδt
is a small value. It is a modeling manner of state transition
without considering redundancy in the local domain.

The goal of learning is to approximateΦ(·) andΨ(·) using
data samples acquired through exploration. Letŝ[t] and û[t]
denote estimated vectors of the next sensory input:s[t + δt]
and the actuated motor command:u[t], respectively.̂Φ(·) and

sensing: s[t+δt]

action: u[t]

sensing: s[t]

state spaces: s

sensing: s[t+δt]

action: u[t]

sensing: s[t]
prediction: s[t]

designed state s*[t]

^
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prediction error

control error

^

a) Ideal b) Estimated

Fig. 1. Internal state space of a sensory-motor system. (a) ideal state
transition, (b) estimated state transition.

Ψ̂(·) denote the approximations ofΦ(·) andΨ(·), defined as:

ŝ[t] := Φ̂(s[t], u[t]), (3)

û[t] := Ψ̂(s[t], ŝ[t]), (4)

where the estimated next state:ŝ[t] is used as an input for
the estimation of state transition. The functionsΦ̂(·) and
Ψ̂(·) represent internal sensory-motor dynamics, which can
be exploited for state prediction and state transition control,
as shown in the Fig. 2.

In order to collect learning data for these function approx-
imations, the robot must move its body. In the beginning of
learning, however, the robot does not know how to control
its joint movement. A motor babbling gives a simple solution
for this problem: the learning system randomly generates a
motor commandu∗[tk], output of the state design function
illustrated asχ(·) in the Fig. 2a. The robot, then, actuates this
motor command asu[tk] = u∗[tk], leading to random joint
movement. During the motor babbling, the learning system
stores measured data:{s[tk], u[tk], s[tk+1]}k=1,···,K at each
time step:tk. Let us define this motor command generation as
theU-spacemotor command generation (Fig.2a). In learning
of the eqn. (3) and (4),s[tk], u[tk], ands[tk+1] can be used
as input vectors ofs[t], u[t], and ŝ[t], respectively, while
s[tk+1] and u[tk] can be used as target vectors ofŝ[t] and
û[t], respectively.

If the learning is performed sufficiently, the robot is able
to generate a motor command to reach a desired next state:
s∗[t], defined as:

ŝ[t] = Φ̂(s[t], û[t]), (5)

û[t] = Ψ̂(s[t], s∗[t]), (6)

where the estimated motor command:û[t] is used as an input
for state prediction and actuation of the robot asu[t] = û[t],
as shown in the Fig. 2b. By using the approximated functions,
the robot is able to generate a motor command to collect
learning samples ofinterest. Let us define this motor com-
mand generation as theS-spacemotor command generation
(Fig. 2b).
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Fig. 2. Sensory-motor learning systems.

B. Confidence for a state

Learning results can be evaluated asconfidencefor the
considered state. The confidence is based on the state pre-
diction error: ||es|| and motor control error:||eu|| defined
as:

||es[t]|| := ||ŝ[t] − s[t]||, (7)

||eu[t]|| := ||û[t] − u[t]||, (8)

whereŝ[t] indicates the prediction ofs[t] calculated at time
t − δt, and û[t] indicates the estimation for motor control
calculated at timet, when u[t] (= u∗[t]) is given by U-
spacemotor command generation.s[t] and u[t] denote the
measured sensory input and the actuated motor command at
time t, respectively. If the motor command is given byS-
spacemotor command generation, Eqn. (8) cannot be used,
since the equation:̂u[t] = u[t] is always true, leading
to permanent zero control error. In this case, we use the
following error vector instead ofeu[t]:

ep[t] := s∗[t] − s[t], (9)

which gives the error between the measured state and desired
state by motor control, meaning the performance error of the
state control in theS-space.

Let us introduce the Gaussian filtering of||es||, ||eu|| ∈
(0,+∞) into a finite scalar variable:c[t] ∈ [0, 1] such as

c[t] := exp
(
−||es[t]||2

2σ2

)
· exp

(
−||eu[t]||2

2σ2

)
, (10)

where the constant:σ2 determines sensitivity of the filtering
(Fig.3). Accumulation ofc[t] depending on the states[t]

^

|| s[t] - s[t] ||

css[t] cus[t]

|| s*[t] - s[t] ||

^
|| u[t] - u[t] ||

Fig. 3. Confidence of a state for the state prediction function:Φ̂ (left) and
the state transition function:̂Ψ (right). Note that the confidence of̂Ψ can
be evaluated by two different behavior space:U-spaceor S-space.

provides robust memory of confidence for the states[t] on
prediction and control. LetCs ∈ [0, 1] denote theconfidence,
working as a temporal moving average of normalized learn-
ing error:c[t]. The update rule of the confidence fors at time
t is defined as:

Cs[t] := (1 − α)Cs[t − δt] + αc[t], (11)

where the constant parameter:α ∈ [0, 1] denotes an update
weight. Cs[0] is initialized as zero at the beginning of the
learning. A high value ofCs indicates that knowledge of
state dynamics at the states is reliable.

The principal idea of this framing is to exploit confidence
derived from the past learning, for the next exploration to
collect new learning data ofinterest. If the confidence at
the current state is low, for instance, the robot can generate
motor babbling inU-space. If the confidence is high, the
robot can direct its actions in theS-spacetoward the lower
confidence state to collect new learning data for improvement
of learning, or direct the action toward the state which attracts
its attention.

C. Implementation by neural networks

The function approximations of̂Φ(·) and Ψ̂(·) were im-
plemented with Multi Layer Perceptron (MLP) as shown
in Fig.4 [8][11]. MLP is a universal function approximator,
which parameters can be optimized by learning. We adopted
the MLP with three layers and the conventional gradient
descent method as a learning strategy [11].

Let ni andnh denote the numbers of the units in the first
and second layer, respectively. Here, the function of MLP is
defined as follows:

yk(x) =
nh∑
j=1

wo
jk · f(

ni∑
i=1

wh
ijxj + wh

0j) + wo
0k, (12)

where yk(·) represents thek-th component of the function
y(·), andx denotes a combined vector of inputs, for instance,
xT = (sT , uT ) for Φ̂(·), and xT = (sT , ŝT ) for Ψ̂(·).
wh denotes the weight coefficients connecting the first to
second layer, andwo connecting the second to third layer.
wh

0j and wo
0k are bias coefficients. As shown in Fig.4, the

activation functionf(·) of the units in the second layer is a
differentiable non-linear function, while the activation func-
tions of the units in the first and the third layers are identity



Fig. 4. Multi Layer Perceptron (MLP) usesd for approximation of the state
prediction function and state transition function.

Exploration
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(Off Line)

Fig. 5. Learning strategy: a robot explores the environment to collect
the next learning data, and evaluates the past learning from on-line expe-
rience. After the exploration, the robot optimizes mapping functions with
the collected learning samples off-line. These two stages are performed
successively. Motor behavior of the robot is generated by motor babbling in
U-spaceor S-space.

functions. We adopted the hyperbolic tangent functionf(·)
in the second layer as follows:

f(v) = tanh(
v

τ
), (13)

whereτ is a constant value to control non-linearity andv is
the weighted sum of the inputs into the units.

The parameters of the functionwh
ij andwo

jk are modified
for each input x[t] to minimize the error||es[t]||2 and
||eu[t]||2 defined by Eqn. (7) and (8), using the gradient
descent method as follows:

∆wh
ij [t] = −η

∂

∂wh
ij

|e[t]|2, ∆wo
jk[t] = −η

∂

∂wo
jk

|e[t]|2,

(14)
where the constant:η denotes a learning rate.

III. E XPERIMENT

We show experiments of sensory-motor learning dealing
with visual sensing as a sensory input, and arm joints actua-
tion as a motor command effect. When proceeding iterations
of on-line joint movements and off-line learning, as illustrated
in Fig. 5, the confidence value defined by Eqn. (11) increases
as theoretically expected. The behavior of the algorithm will
be discussed in this section with the learning results using
the humanoid robot James (Fig.6).

A. Learning strategy

The procedure of sensory-motor iterative learning is or-
ganized in two stages:exploration and learning, as illus-
trated in Fig.5. In theexplorationstage, the robot generates
joints movements randomly (motor babbling) in order to
collect learning samples, and evaluates the past learning. In
the learning stage, on the other hand, the robot optimizes

Fig. 6. The humanoid robot James [10].

mapping functions with the collected learning samples off-
line. Motor behavior of the robot in theexploration stage
is generated by motor babbling inU-spaceor S-space. In
this experiment, we set the motor babbling inU-spaceas
basic motor behavior. If the confidence of the state at timet
is high enough (Cs[t] > β), the robot is allowed to search
the minimum-confidence state in the discrete eight-neighbor
states, and generate a motor command to direct to this state.

B. Platform setting

Experiments of the sensory-motor learning were performed
using the humanoid robot James (Fig. 6). James is a fixed
upper-body robotic platform dedicated to vision-based ma-
nipulation studies. It is composed of a seven dof arm with
a dexterous nine dof hand and a seven dof head as shown
in Fig.6. It is equipped with binocular vision, force/torque,
tactile, inertial sensors and encoders. Low-level input and
output of sensors and motors are processed in local control
cards, and high-level sensory-motor information can be han-
dled in local networks with anonymous numbers of servers
and PCs [12].

The selection of the sensory modality and types of motor
control are not limited in this framework. In this experiment,
we used the image data of the left eye as the sensory input for
the sensory-motor learning system, and a velocity command
as the system output, which drives actuators of the left
arm joints. Motor driving in the experiment was performed
stationary: the velocity command is sent to the joints during
the first half of the temporal intervalδt, while it is set as
zero during the second half of the interval. Therefore, James
moves and stops at each time step.

The input and output variables are summarized in Table II.
The sensory input vector is the horizontal and vertical coordi-
nate of an attention object on an image obtained from the left
eye camera, as shown in Fig. 7. The command output vector
corresponds to the roll joint of the upper arm and the pitch
joint of the shoulder. These joints movements generate the



TABLE II
INPUT AND OUTPUT VARIABLES.

input output
s[t] = (x1[t], x2[t]) u[t] = (u1[t], u2[t])

x1: horizontal position u1: upper-arm roll
x2: vertical position u2: shoulder pitch

Joint Movements Object detection

u1

u2

s1

s2

Fig. 7. Experiment setting of sensory-motor learning. The robot moves its
arm and the position of the arm is recognized by a green maker mounted
on the hand

horizontal and vertical view shift. Let us assume the attention
object as a small green maker mounted on the left arm of
James. The object is detected based on the color feature. The
color format of the obtained image is transformed from the
RGB format to the YUV format to extract the hue of color
robustly. The green regions on the image are filtered in this
domain. The conclusive coordinates of the attention object is
the center of the extracted regions. The thresholds for filtering
were experimentally determined, and are enough robust to
detect the attention object against external visual noise such
as lighting change and passing people in the experimental
field.

When the robot is sampling data in the exploration stage,
the orientation of the head in the task space is fixed for
simplicity. Therefore, the prediction system learns the posi-
tion change of the attention object in the visual field caused
only by the self-generated arm movements. Therefore, if the
orientation of the head is modified, the state prediction and
control are disturbed [9].

C. Parameter setting

The experimental parameters are presented in Table III,
where E [epochh] denotes the iterated number of the ex-
ploration and learning cycle,K and L [ts] (time steps)
denote the number of data sampling and learning in each
stage, respectively. The trajectories of the arm were generated
at random in each epoch. In order to match domains of
input/output values and initial weight coefficients of MLP,
all inputs and outputs values for MLP were normalized,
and the initial weight coefficients were randomly selected
from the finite domain:Dw as described in Table III. The

TABLE III
EXPERIMENTAL PARAMETERS.

Parameter Value Definition
E 25 [epoch]∗ exploration-learnig cycle
K 50 [ts]∗∗ exploration iteration
L 10,000 [ts] learning iteration
δt 4.0 [s] time step interval
ni 4 MLP units (1st layer)
nh 30 MLP units (2nd layer)
no 2 MLP units (3rd layer)
η 0.01 MLP learning rate
τ 1.0 MLP parameter

Dw [-0.01, +0.01] MLP initial weight domain
Su {−1, 0, +1} motor command set
G 10.0 motor input gain
α 0.1 confidence gain

∗epoch: iterated number of the exploration and learning cycle.
∗∗ts: descrete time steps.

number of the hidden units of MLP:nh is an design-oriented
parameter, which defines the complexity of MLP connected
to approximation performance. A value ofui[t] (i = 1, 2)
during motor babbling was randomly selected from a finite
set: Su = {−1, 0, +1} for simplicity, whereas the motor
command was proportionally amplified by the gainG and
sent to the motors.

D. Results

Fig.8 shows maps of state prediction and motor command
estimation at the beginning and the late of the exploration-
learning epoch: top and bottom figures show the state and
motor command maps, and left and right figures show the
begining map (at epoch 1) and the late maps (at epoch 20).
In the beginning epoch, both plots concentrates in the small
domain, while in the late epoch, maps are widely spread
to estimate the variables well. Even though the estimation
of the motor command are not accurate (see right bottom
figure), the system can compensate its analogue outputs by
quantizing as{-1, 0, +1} for conclusive outputs. Comparing
to the top and bottom figures of the actuated motor command
u and the measured states, we can see the nonlinearity
from U-spaceto S-space, since the square-shape distribution
in U-spaceis mapped onto the nonlinearly distorted square-
shape distribution inS-space. It suggests that even if the robot
performs the uniformly random motor babbling inU-space,
the outcome inS-space, where the robot performs tasks, is
not uniformly searched. If uniform density of sampling data
is required in theS-space, the robot must generate motor
command in theS-space, by using its acquired knowledge of
motor control:Ψ̂(·).

Fig.9 shows the evolution of confidence for the state. The
left 5x5 images show the state prediction confidence from
epoch 1 to epoch 25, while the right 5x5 images show the
state transition confidence. Brightness in the image indicates
high confidence value (Confidence in [0,1] is mapped onto
the intensity in [0,255] proportionally). These two confidence
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Fig. 8. State maps and motor command maps. Left top: state map at epoch
1, Right top: state map at epoch 20, Left bottom: motor command map at
epoch 1, Right bottom: motor command map at epoch 20.

maps correspond to the first and second exponential term of
Eqn. (10) accumulated by Eqn. (11), respectively. The initial
confidence image is located at the left top and the final one
is at the right bottom. The order of image arrangement is like
the Z-shape. In both image sets, we can see the increase of
intensity and area. During the iterations of exploration, the
confidence is accumulated. If the target marker is out of view,
in the experiment, the joint position is reinitialized at some
joint configuration, which allocates the arm near the center of
the view. This effect leads to sample data in the center of the
view more often than the corner of the view. The confidence,
therefore, is greater in the center domain. Comparing to the
left and right image sets, the confidence value of the state
transition is less than that of the state prediction. One of the
reasons for this difference comes from the use ofŝ[t] as an
input for Ψ̂(·), instead of inputs[t+δt] which is not available
for on-line evaluation at timet, as discussed with Eqn. (4).

Fig.10 shows a motor behavior of active data sampling.
The left and right figures show state prediction confidence
and state transition confidence at epoch 15, respectively. At
the end of this epoch, the current state confidence is detected
as a higher value than the preset threshold, and then, motor
command was generated in S-Space to change the current
state to the minimum confidence state in eight-neighbors (in
this case, to the right state indicated by an arrow.) The active
data sampling is now in the preliminal level, however, the
experimental result suggests its availability. Farther analysis
to trace the motor behavior of the active data sampling should
be discussed in the next work.

Fig. 9. Temporal sequences of the state prediction confidence (left 5x5
images) and the state transition confidence (right 5x5 images) from epoch
1 to epoch 25. The initial confidence image is at the left top and the final
is at the right bottom. The order of image arrangement is like the Z-shape.

Fig. 10. Active data sampling (left: state prediction confidence, right: state
transition confidence). Motor command was generated in S-Space to change
the current state to the minimum confidence state in eight-neighbors.

IV. CONCLUSION

Based on a sensory-motor prediction algorithm previously
implemented [8], we defined a novel function calledcon-
fidence, which works as a memory of reliability for state
prediction and control. The aim of this function is to store
the reliability of learning result for the sensory input, and
exploit it for the next data sampling. If the robot is sure of
its perception and motor behavior, the robot can decide its
exploration and learning based on its learning interest, such
as compensation of weak learning part and reinforcement of
important motion primitives. The notion of roboticconfidence
was developed as the first step to understand the self and
the environment constructively. The approach was discussed
theoretically in this paper, and validated positively in some
experiments with a humanoid robot. Even if, in the experi-
ment, a simple case of prediction and control using visual
sensing and arm movements are examined, the proposed
methodology is not limited in some specific modalities and
is open for any control approach.

Our global aim is to implement a learning process as a
natural adaptation and self-improvement for the robot. We
must then deal with the high-dimensional mechanism to
show that our algorithm remains accurate when dealing with
numerous complementary sensor data, redundant kinematics,
and dynamics. We are now applying the proposed method
to the general body recognition. If the robot finds an object
which is predictable and controllable, it would be acceptable
that robot regards this object as a part of its body. We



think that this direction leads us to embody the robotself-
consciousnessby self-generated movements.

REFERENCES

[1] J. McCarthy, P. J. Hayes, Some philosophical problems from the
standpoint of artificial intelligence, Machine Intelligence 4, pp.463–502,
1969.

[2] M. I. Jordan, D. E. Rumelhart, Forward models: Supervised learning
with a distal teacher, Cognitive Science, 16(3), pp.307–354, 1992.

[3] M. Haruno, D. M. Wolpert, M. Kawato, MOSAIC Model for senso-
rimotor learning and control, Neural Computation, 13, pp.2201–2220,
2001.

[4] M. Kawato, Internal models for motor control and trajectory planning,
Current Opinion in Neurobiology, 9, pp. 718–727, 1999.

[5] D. M. Wolpert, Z. Ghahramani, R. J. Flanagan, Perspectives and prob-
lems in motor learning, Trends in Cognitive Sciences, 5(11), pp.487–
494, 2001.

[6] R. C. Miall, D. M. Wolpert, Forward models for physiological motor
control, Neural Networks, 9(8), pp.1265–1279, 1996.

[7] D.M. Wolpert, JR Flanagan, Motor Prediction, Current Biology 11(18)
R729-732, 2001

[8] R. Saegusa, F. Nori, G. Sandini, G. Metta, S. Sakka, Sensory prediction
for autonomous robots, IEEE-RAS 7th International Conference on
Humanoid Robots (Humanoids2007), Pittsburgh, USA, 2007.

[9] R. Saegusa, S. Sakka, G. Metta, G. Sandini, Sensory prediction learning
–How to model the self and environment–, The 12th IMEKO TC1-TC7
joint symposium on Man, Science and Measurement, Annecy, France,
2008. (to appear)

[10] L. Jamone, G. Metta, F. Nori and G. Sandini, James, a humanoid
robot acting over an unstructured world, Proc. of the Humanoids 2006
conference, pp.143–150, Genoa, Italy, 2006.

[11] D. Rumelhart, J. McClelland, Learning internal representation by error
propagation, Parallel Distributed Processing, pp. 318–362, MIT Press,
1984.

[12] G. Metta, P. Fitzpatrick, L. Natale. YARP: Yet another robot platform.
International Journal on Advanced Robotics Systems, 3(1):43-48, 2006.


