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Abstract The performance of Kernel Machines depends to a large extent on its ker-
nel function and hyperparameters. Selecting these is traditionally done using intu-
ition or a costly “trial-and-error” approach, which typically prevents these methods
from being used to their fullest extent. Therefore, two automated approaches are
presented for the selection of a suitable kernel function and optimal hyperparam-
eters for the Least-Squares Support Vector Machine. The first approach uses Evo-
lution Strategies, Genetic Algorithms, and Genetic Algorithms with floating point
representation to find optimal hyperparameters in a timely manner. On benchmark
data sets the standard Genetic Algorithms approach outperforms the two other evo-
lutionary algorithms and is shown to be more efficient than grid search. The sec-
ond approach aims to improve the generalization capacity of the machine by evolv-
ing combined kernel functions using Genetic Programming. Empirical studies show
that this model indeed increases the generalization performance of the machine, al-
though this improvement comes at a high computational cost. This suggests that the
approach may be justified primarily in applications where prediction errors can have
severe consequences, such as in medical settings.
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1 Introduction

Kernel Machines allow the construction of powerful, non-linear classifiers using rel-
atively simple mathematical and computational techniques [35]. As such, they have
successfully been applied in fields as diverse as data mining, economics, biology,
medicine, and robotics. Much of the success of the Kernel Machines is due to the
kernel trick, which can best be described as an implicit mapping of the input data
into a high dimensional feature space. In this manner, the algorithms can be applied
in a high dimensional space, without the need to explicitly map the data points. This
implicit mapping is done by means of a kernel function, which represents the inner
product for the specific hypothetical feature space.

The performance of Kernel Machines is highly dependent on the chosen ker-
nel function and parameter settings. Unfortunately, there are no analytical meth-
ods or strong heuristics that can guide the user in selecting an appropriate kernel
function and good parameter values. The common way of finding optimal hyperpa-
rameters is to use a costly grid search, which scales exponentially with the number
of parameters. Additionally, it is usually necessary to manually determine the re-
gion and resolution of the search to ensure computational feasibility. Selection of
the kernel function is done similarly, i.e. either trial-and-error or only considering
the default Gaussian kernel function. Consequently, tuning the techniques may be
arduous, such that less than optimal performance is achieved. For a successful inte-
gration in real-life information systems, Kernel Machines should be combined with
an automated, efficient optimization strategy for both hyperparameters and kernel
function.

Two distinct approaches are proposed for the automated selection of the param-
eters and the kernel function itself. These models are based on techniques that
fall in the class of Evolutionary Computation, which are techniques inspired by
neo-Darwinian evolution. The first approach uses evolutionary algorithms to op-
timize the hyperparameters of a Kernel Machine in a time-efficient manner. The
second aims to increase the generalization performance by constructing combined,
problem-specific kernel functions using Genetic Programming. Implementations of
both approaches have been evaluated on seven benchmark data sets, for which tra-
ditional grid search was used as a reference.

Kernel Machines and the kernel trick are presented in Sect. 2. We emphasize on
one particular type of Kernel Machine, namely the Least-Squares Support Vector
Machine. In Sect. 3, an introduction is given into the evolutionary algorithms that
are used in the models. A review of related work on hyperparameter optimization
and kernel construction is given in Sect. 4. The two approaches are presented in
Sect. 5, after which the experimental results are presented in Sect. 6. The paper is
finalized in Sect. 7 with the conclusions and suggestions for future work.
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2 Kernel Machines

All Kernel Machines rely on a kernel function to transform a non-linear problem
into a linear one by mapping the input data into a hypothetical, high dimensional
feature space. This mapping – the kernel trick – is not done explicitly, as the kernel
function calculates the inner product in the corresponding feature space. The kernel
trick is explained together with the Least-Squares Support Vector Machine (LS-
SVM), which is a particular type of Kernel Machine.

2.1 Least-Squares Support Vector Machines

Assume a set of ` labeled training samples, i.e. S = {(xi,yi)}`i=1, where x∈X ⊆Rn

is an input vector of n features and y ∈ Y is the corresponding label. In the case Y
denotes a set of discrete classes, e.g. Y ⊆ {−1,1}, then the problem is considered a
classification problem. Conversely, if Y ⊆R, then we are dealing with a regression
problem. The LS-SVM aims to construct a linear function [37]

f (x) = 〈x,w〉+ b , (1)

which is able to predict an output value y given an input sample x. Note that for
binary classification purposes it is necessary to apply the sign function on the pre-
dicted output value. The error in the prediction for each sample i is defined as

yi− (〈xi,w〉+ b) = εi for 1≤ i≤ ` . (2)

The optimization problem in LS-SVM is analogous to that of traditional Support
Vector Machines (SVM) [38]. The goal is to minimize both the norm of the weight
vector w (i.e. maximize the margin) and the sum of the squared errors. In contrast
to SVM, LS-SVM uses equality constraints for the errors instead of inequality con-
straints. Combining the optimization problem with the equality constraints for the
errors (2), one obtains

minimize
1
2
‖w‖2 +

1
2

C
`

∑
i=1

ε
2
i (3)

subject to yi = 〈xi,w〉+ b + εi for 1≤ i≤ ` ,

where C is the regularization parameter. Reformulating this optimization problem
as a Lagrangian gives the unconstrained minimization problem

1
2
‖w‖2 +

1
2

C
`

∑
i=1

ε
2
i −

`

∑
i=1

αi (〈xi,w〉+ b + εi− yi) , (4)

where αi ∈ R for 1 ≤ i ≤ `. Note that the Lagrange multipliers αi can be either
positive or negative, due to the equality constraints in the LS-SVM algorithm. The
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optimality conditions for this problem can be obtained by setting all derivatives
equal to zero. This yields a set of linear equations

`

∑
j=1

α j
〈
x j,xi

〉
+ b +C−1

αi = yi for 1≤ i≤ ` . (5)

2.2 Kernel Functions

We observe that the training samples are only present within the inner products in
(5). The kernel function used to compute an inner product is defined as

k (x,z) = 〈φ (x) ,φ (z)〉 , (6)

where φ (x) is the mapping of the input samples into a feature space. If we substitute
the standard inner product with a kernel function in (5), we obtain the “kernelized”
variant

`

∑
j=1

α jk (x j,xi)+ b +C−1
αi = yi for 1≤ i≤ ` . (7)

Usually it is convenient to define a symmetric kernel matrix as K = (k (xi,x j))
`
i, j=1,

so that the system of linear equations can be rewritten as[
K +C−1I 1

1T 0

][
α

b

]
=
[

y
0

]
. (8)

Note that the bottom row and rightmost column have been added to integrate the
bias b in the system of linear equations. Other than the sign function, the algorithm
is identical for both regression and classification. After the optimal Lagrange multi-
pliers and bias have been obtained using (8), unseen samples can be predicted using

f (x) =
`

∑
i=1

αik (xi,x)+ b . (9)

2.2.1 Conditions for Kernels

It is important to obtain functions that correspond to an inner product in some fea-
ture space. Mercer’s theorem states that valid kernel functions must be symmetric,
continuous, and positive semi-definite [38], formalized as the following condition:∫

X ×X
k (x,z) f (x) f (z)dxdz≥ 0 for all f ∈ L2 (X ) . (10)
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Kernel functions that satisfy these conditions are referred to as admissible kernel
functions. If this condition is satisfied, then the kernel matrix is accordingly posi-
tive semi-definite [4]. Unfortunately, it is not trivial to verify that a kernel function
satisfies Mercer’s condition, nor whether the kernel matrix is positive semi-definite.
There are, however, certain functions that have analytically been proven to be ad-
missible. Common kernel functions – for classification and regression purposes –
include the polynomial (11), the RBF (12), and the sigmoid function (13). Note that
the sigmoid kernel function is only admissible for certain parameter values.

k (x,z) =(〈x,z〉+ c)d for d ∈ N, c≥ 0 (11)

k (x,z) =exp
(
−γ‖x− z‖2) for γ > 0 (12)

k (x,z) = tanh(γ 〈x,z〉+ c) for some γ > 0,c ≥ 0 (13)

All these function are parameterized, allowing for adjustments with respect to
the training data. The kernel parameter(s) and the regularization parameter C are the
hyperparameters. The performance of an LS-SVM (or an SVM, for that matter) is
critically dependent on the selection of hyperparameters.

Mercer’s condition can be used to infer simple operations for creating combined
kernel functions, which are also admissible. For instance, assume that k1 and k2
are admissible kernel functions, then the following combined kernels are admissible
[35]:

k (x,z) = c1k1 (x,z)+ c2k2 (x,z) for c1,c2 ≥ 0 (14)
k (x,z) = k1 (x,z)k2 (x,z) (15)
k (x,z) = ak2 (x,z) for a≥ 0 (16)

Moreover, these operations allow modular construction of kernel functions. In-
creasingly complex kernel functions can be constructed by recursively applying
these operations.

3 Evolutionary Computation

Several biologically inspired techniques have been developed over the years for
search, optimization, and machine learning under the collective term Evolution-
ary Computation (EC) [40]. The key principle in EC is that potential solutions are
generated, evaluated, and reproduced iteratively. Between iterations, individuals are
subject to certain forms of mutation and can reproduce with a probability that is pro-
portional to their fitness. A selection procedure removes individuals with low fitness
from the population, so that the more fit ones are more likely to “survive”. Three
of the main branches within EC are Genetic Algorithms, Evolution Strategies, and
Genetic Programming.
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3.1 Genetic Algorithms

Probably the most recognized form of EC is the class of Genetic Algorithms (GA),
popularized by Holland [15]. Genetic Algorithms mainly operate in the realm of
the genotype, which is commonly represented as a bitstring. This means that all
parameters need to be converted to a binary representation and are then concatenated
to form the chromosome. Various types of bit encoding may be used, such as Gray
codes or even floating point representations.

Reproduction of individuals is usually emphasized in preference to mutation in
GA. Two or more parents exchange part of their chromosome, resulting in offspring
that contains genetic information from each of the parents. The common imple-
mentation is crossover recombination, in which two parents exchange a fragment of
their chromosome. The size of the fragment is determined by a randomly selected
crossover point. Mutation, on the other hand, is implemented by flipping the bits in
the chromosome with a certain probability. Note that the implementation of both re-
production and mutation operators may depend on the specific representation that is
used. For instance, reproduction of floating point chromosomes is done by blending
the parents [10].

In addition to the mutation and recombination operators, the other key element in
GA is the selection mechanism. The selection procedure selects the individuals that
will be subject to mutation and reproduction with a probability proportional to their
fitness. Further, offspring can be created on a generational interval or, alternatively,
individuals can be replaced one by one (i.e. steady state GA).

3.2 Evolution Strategies

Evolution Strategies (ES) operate in the realm of the phenotype and use real-valued
representations for the individuals [2]. An optimization problem with three param-
eters is represented as a vector c = (x1,x2,x3), where the parameters xi ∈ R are the
object parameters. There are two main types of ES, namely (µ + λ )-ES and (µ,λ )-
ES. In these notations, µ is the size of the parent population and λ is the size of the
offspring population. In (µ + λ )-ES, the new parent population is chosen from both
the current parent population and the offspring. In contrast, in (µ,λ )-ES the new
parent population is chosen only from the offspring population, which requires that
λ ≥ µ .

The canonical ES relies solely on the mutation operation for diversifying the
genetic material. The mutation operation is typically implemented as a random per-
turbation of the parameters according to a probability distribution. More formally,

x′i = xi +Ni (0,σi) , (17)

where N denotes a logarithmic normal distribution. Note that this mutation mech-
anism requires the user to specify a standard deviation σi (i.e. the strategy parame-



Evolutionary Optimization of Least-Squares Support Vector Machines 7

Fig. 1 An example tree repre-
sentation for the mathematical
function (3/x)− (y∗5).
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ters) for each object parameter in the chromosome. The common approach is to not
define these standard deviations explicitly, but to integrate them in the chromosome.
This is known as self adaptation, as certain parameters of the algorithm are subject
to the algorithm itself. An example of a chromosome with three object parameters
and the additional endogenous strategy parameters is c = (x1,x2,x3,σ1,σ2,σ3) [3].

3.3 Genetic Programming

A vastly different paradigm within EC is that of Genetic Programming (GP) [22].
GP should rather be considered a form of automated programming than a parame-
ter optimization technique. It aims to solve a problem by breeding a population of
computer programs, which – when executed – are direct solutions to the problem.
Obviously, this gives much more freedom in the structure of the solutions and it
can therefore be applied to wide variety of problems. The common way to repre-
sent programs in GP is by means of syntax trees, as shown in Fig. 1. Other types
of genotype representations, e.g. graphs or linear structures, may be preferred for
certain problem domains.

GP includes recombination and mutation operators that are similar to their GA
counterparts. In crossover recombination, two parents swap a sub-tree rooted at a
random crossover point. Traditional mutation in GP involves randomly selecting a
mutation point in the tree and replacing the sub-tree rooted at this point with a new,
randomly generated tree.

For some problems it may be desirable to impose restrictions on the structure
of the syntax tree, as to ensure that non-terminals operate only on appropriate data
types. Consider, for instance, a binary equality function, which takes two integers as
its children and returns a boolean. Strongly Typed Genetic Programming has been
proposed as an enhanced version of GP that enforces this type of constraint [28].
This influences both the representation of the individuals and the chromosome al-
tering operators. Firstly, while defining the terminals and non-terminals, the user
also has to specify the types of the terminals, and the parameter and return types of
non-terminals. Secondly, the recombination and mutation operators must be altered
in such a way that they respect the type constraints.
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4 Related Work

Hyperparameters and the kernel function are usually selected using a trial-and-error
approach. Trial runs are performed using various configurations, the best of which
is selected. This approach is generally considered time consuming and does not
scale well with the number of parameters. Furthermore, the process often yields
less than optimal performance in situations where time is a limited. More elaborate
approaches have been suggested for both selection problems, which will be summa-
rized below.

4.1 Hyperparameter Optimization

An analytical technique that has been proposed for hyperparameter optimization is
that of gradient descent [5, 20], which finds a local minimum by taking steps in
the negative gradient direction. This approach has been used for hyperparameter
selection with a non-spherical RBF function, which means that each feature has a
distinct scaling factor. Accordingly, there are more hyperparameters than there are
features, demonstrating the scalability of the approach. The gradient descent method
is shown to be able to find reasonable hyperparameters more efficiently than grid
search. However, the method requires a continuous differentiable kernel and ob-
jective function, which may not be satisfiable for specific types of problems (e.g.
non-vectorial kernel functions). Approaches based on pattern search have been pro-
posed to overcome this problem [27]. In this method the neighborhood of a parame-
ter vector is investigated in order to approximate the gradient empirically. However,
the whole class of gradient descent methods has the inherent disadvantage that they
may find local minima.

One of the first mentions of the use of EC for hyperparameter optimization can
be found in the work of Fröhlich et al. [12], in which GA is primarily used for fea-
ture selection. However, the optimization of the regularization parameter C is done
in parallel. Other GA-based approaches focus mainly on the optimization of the hy-
perparameters. The objective function in these type of approaches is either the error
on a validation set [18, 26, 29], the radius-margin bound [7], or k-fold cross valida-
tion [6,33]. Some studies make use of a real-valued variant of GA [17,42], although
it is not clear whether the real-valued representation performs significantly better
than a binary representation. All these studies suggest that GA can successfully be
applied for hyperparameter optimization. However, there are some caveats, such as
heterogeneity of the solutions and the selection of a reliable and efficient objective
function.

ES have only scarcely been used for hyperparameter optimization [11]. In this
approach, ES optimizes not only the scaling, but also the orientation of the RBF ker-
nel. An improvement on the generalization performance is achieved over the kernel
parameters that were found using grid search. This result should be interpreted with
care, as the optimal grid search parameters are used as the initial solutions for the
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evolutionary algorithm. The classification error on separate test sets is used as the
empirical objective function.

The main advantage of evolutionary algorithms in comparison to grid search
is that they usually find good parameter settings efficiently and that the technique
scales well with the number of hyperparameters. An advantage compared to gradient
descent methods is that they cope better with local minima. Furthermore, they do not
impose requirements on the kernel and objective functions, such as differentiability.

4.2 Combined Kernel Functions

It is intuitive that combined kernel functions are capable of improving the gener-
alization performance, as the implicit feature mapping can be tuned for a specific
problem. Several methods have been proposed for the composition of kernel func-
tions. One of the first manifestations of combined kernel optimization was inves-
tigated by Lanckriet et al. [23]. This work considers linear combinations of ker-
nels, i.e. K = ∑

m
i=0 aiKi for a > 0 and Ki chosen from a predefined set of kernel

functions. The optimization of weight factors a is done using semi-definite pro-
gramming, which is an optimization method that deals with convex functions over
the convex cone of positive semi-definite matrices. This method can be applied to
kernel matrices, since these need to be semi-definite to satisfy Mercer’s condition.
However, other methods may be used for the optimization of the weights, such as
so-called hyperkernels [30], the Lagrange multiplier method [19], or using a gener-
alized eigenvalue approach [36].

Lee et al. argue that during the combination of kernels some potentially useful
information is lost [24]. They propose a method for combining kernels that aims to
prevent this loss of information. Instead of combining various kernel matrices into
one, their method creates a large kernel matrix that contains all original kernel ma-
trices and all possible mixtures of kernel functions, e.g. ki, j (x,z) =

〈
φi (x) ,φ j (z)

〉
,

where φi is the mapping that belongs to kernel function ki and φ j the mapping that
belongs to kernel k j. This eliminates the requirement to optimize the weight factor
for each kernel, as this is done implicitly by the SVM algorithm. However, spe-
cial mixture functions need to be provided for the combination of two kernel func-
tions. Furthermore, the spatial and temporal requirements of the algorithm increases
drastically, as the kernel matrix is enlarged in both dimensions in proportion to the
number of kernels in the combination.

Other EC inspired approaches have been proposed to combine kernel functions.
Most of these optimize a linear combination of weighted kernels using either GA
or ES. The distinguishing elements are the set of kernel functions that is consid-
ered and the type of combination operators. Some only consider linear combina-
tions (i.e. the addition operator) [9, 31], whilst others may allow both addition and
multiplication [25]. These studies suggest that combining kernel functions can im-
prove the generalization performance of the machine. However, the combinations
are restricted to a predefined size and structure.
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Howley and Madden propose a method to construct complete kernel functions
using GP [16]. In this method, a kernel function is evolved for use with an SVM
classifier. They use a tree structured genotype, with the operators +, −, and ×
in both scalar and vector variants as the non-terminals. The terminals in their ap-
proach are the two vectors x1 and x2. Since the kernels are constructed using sim-
ple arithmetic, they are not guaranteed to satisfy Mercer’s condition. Nonetheless,
the technique still keeps up with (or outperforms) traditional kernels for most data
sets. It is emphasized that techniques such as GP require a sufficiently large data
set. Dioşan et al. have proposed some enhancements; their method differs from the
original approach by an enriched operator set (e.g. various norms are included) and
small changes to certain operators [8]. Similar modifications are presented for Ker-
nel Nearest-Neighbor classification by Gagné et al., who also use co-evolution to
keep the approach computationally tractable [14]. Besides a species that evolves
kernel functions, there are two other species for the training and validation sets. The
training set species cooperates with the kernel function on minimizing the error and
thus maximizing the fitness, whereas the species for the validation set is competitive
and tries to maximize the error of the kernel functions.

5 Evolutionary Optimization of Kernel Machines

Two methods for the evolutionary optimization of hyperparameters and the ker-
nel function are proposed. The first approach uses ES, GA, and GA with floating
point representation to optimize the hyperparameters for a given kernel function
(EvoKMES, EvoKMGA, and EvoKMGAflt, respectively). The aim is to find optimal
hyperparameters more efficiently than using traditional grid search. Our second
model uses GP to evolve combined kernel functions (EvoKMGP), with the aim to
increase the generalization performance.

5.1 Hyperparameter Optimization

In the hyperparameter optimization models, ES and GA are used to optimize the
hyperparameters θ . Two variants of the GA model have been implemented; one that
uses the traditional bitstring representation with Gray coding and another that uses
a floating point representation. Evolutionary algorithms are highly generalized and
their application on this specific problem is straightforward.

In EvoKMES, the chromosomes contain the real-valued hyperparameters and the
corresponding endogenous strategy parameters σ , which yields for the RBF ker-
nel the chromosome c =

[
γ,C,σγ ,σC

]
. Note that all the models use the hyper-

parameters on a logarithmic scale with base-2. Each hyperparameter is initialized
to the center of its range and mutated according to the initial standard deviation
σi = 1.0. An interesting issue is whether to use (µ + λ )-ES or (µ,λ )-ES in the
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model. Both types have their own specific advantages and disadvantages. Typical
application areas of (µ + λ )-ES are discrete finite size search spaces, such as com-
binatorial optimization problems [3]. When the problem is an unbounded, typically
real-valued search spaces, then (µ,λ )-ES is preferred [34]. Furthermore, Whitley
presents empirical evidence that indicates that (µ,λ )-ES generally performs better
than (µ + λ )-ES [41]. We prefer to follow both the heuristic and the empirical indi-
cations and adopted (µ,λ )-ES for our model. Unfortunately, there is no guarantee
that the search process will converge, as would have been the case with (µ + λ )-ES.
For our model, we have empirically selected µ = 3 and λ = 12 based on preliminary
experimentations.

EvoKMGA and EvoKMGAflt differ from EvoKMES in terms of the the operators
and the genotype representation. EvoKMGA uses a Gray code of 18 bits for each
parameter, and one-point crossover recombination and bit-flip mutation operators.
One disadvantage of GA, as compared to ES, is that there are many more parameters
parameters that need to be set. The population size of 10 is relatively low for GA
standards. However, one must take into account that the maximum number of eval-
uations is limited to several hundreds up to a few thousand and, moreover, the goal
is to see convergence to good solutions within the first hundred evaluations. Large
population sizes, e.g. larger than 50, would have a disadvantage in this context, as
the algorithm can only perform one or two generations within this range. Further,
preliminary experiments have shown that a population size of 10 shows similar con-
vergence to larger population sizes. Other parameters of EvoKMGA have been tuned
using a coarse grid search as well. One-point crossover recombination occurs with
a probability of pc = 0.2. During mutation, each bit in the chromosome is inverted
with a probability of pm = 0.1. The number of participants in tournament selection
is 5. Further, the steady state variant of GA has been used.

EvoKMGAflt, on the other hand, uses a floating point representation. Crossover
recombination in this model is performed by blending two individuals using the
BLX-α method [10]. This recombination operator is applied with a probability
of pc = 0.3 and with α = 0.5. Additionally, each parameter has a probability of
pm = 0.4 of being mutated using a random perturbation according to the normal
distribution N (µ,σ), where µ = 0 and σ = 0.5. All other settings are equal to
those for EvoKMGA.

5.2 Kernel Construction

The second optimization method constructs complete kernel functions using GP. In
this model, the functions are represented using syntax trees. The syntactic structure
of the trees is based on the combination operations that guarantee admissible kernel
functions, cf. (14), (15), and (16). These operations form the set of non-terminals,
whereas the polynomial and RBF kernels form the set of terminals. This is formal-
ized in the context-free grammar shown in Fig. 2. The model makes use of Strongly
Typed GP, as it needs to ensure that the syntactic structure is enforced for all indi-
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〈kernel〉 → 〈add kernels〉 | 〈multiply kernels〉 |
〈weighted kernel〉 | 〈polynomial〉 | 〈rbf〉

〈add kernels〉 → 〈kernel〉 ‘+’ 〈kernel〉

〈multiply kernels〉 → 〈kernel〉 ‘×’ 〈kernel〉

〈weighted kernel〉 → a ‘×’ 〈kernel〉 for a ∈ R+

〈polynomial〉 → ‘(〈x,z〉+ c)d’ for d ∈ N, c ∈ R+

〈rbf〉 → ‘exp
(
−γ||x− z||2

)
’ for γ ∈ R+

Fig. 2 Context-free grammar – in Backus-Naur form – that constrains the generated expressions
for the GP model.

Fig. 3 An example of a tree
generated by the GP model. x, z γ = 0.001

RBF

x, z γ = 0.315

RBF

Add

a = 0.184
x, z d = 2 c = 4096

Poly

Wgh

Mul

viduals. An example chromosome of a kernel function using the tree representation
is shown in Fig. 3. Note that the regularization parameter C is omitted in this figure;
it is included in an separate real-valued chromosome.

A common heuristic with regard to population size in GP is that difficult prob-
lems require a large population. As time efficiency is of primary concern for this
model, the population size is set to 2000 and each run spans 13 generations1. Fur-
ther, the following operators and settings are used within the EvoKMGP model:

1. Reproduction occurs with probability pr = 0.05, i.e. an individual is directly
copied into the offspring population, without any kind of mutation.

2. Crossover recombination occurs with probability pc = 0.2, i.e. two parents ex-
change a subtree at a random crossover point; the two new individuals are both
inserted in the offspring population.

3. Random mutation occurs with probability pm = 0.15, i.e. substituting a subtree
of the individual with a new random subtree.

4. Shrink mutation occurs with probability ps = 0.05, i.e. replacing a subtree with
one of the branches of this subtree in order to reduce the size of the tree.

5. Swap mutation occurs with probability pw = 0.05, i.e. replacing a subtree in the
individual with another subtree, effectively swapping two branches of the same
tree.

6. PDF parameter mutation occurs with probability pp = 0.5, i.e. mutating a hy-
perparameter according to a probability density function.

The PDF mutation operator is specially crafted for our model. This operator en-
sures that the optimization includes the hyperparameters, as well as evolving the

1 The total number of evaluations will thus be less than 26000, as unmodified individuals are not
reevaluated.
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structure of the kernel functions. The common GP operators would only be able to
mutate these parameters by substituting them for another randomly selected param-
eter.

5.3 Objective Function

When applying EC techniques it is important to decide which objective function
to use, as this is the actual measure that is being optimized. It should, therefore,
measure the “quality” of a solution for the given domain. In the context of this
study quality is best described as the generalization performance of the machine.
A very important aspect is that the fitness function must prevent overfitting of the
machine to the training data. This is especially true for EvoKMGP, as this model
tunes both the hyperparameters and the kernel function for the specific data set.
There are several methods to estimate this generalization performance, of which
cross validation can be applied to practically any learning method. Both k-fold and
leave-one-out cross validation have been shown to be approximately unbiased in
terms of estimating the true expected error [21]. However, k-fold cross validation
usually exhibits a lower variance on the error than the leave-one-out measure. For
this reason, k-fold cross validation is used as fitness function for both approaches.

6 Results

All models have been validated experimentally on a standard set of benchmark prob-
lems. An LS-SVM has been implemented in C++ using the efficient Atlas library
for Linear Algebra [39]. This implementation uses an approximate variant of the
LS-SVM kernel machine [32], so as to reduce the computational demands of the
experiments. The size of the subset that is used to describe the model is set to 10%
of the total data set. Although LS-SVM is only one specific type of kernel machine,
all relevant aspects of the models have been kept generalized, so that extension to
other types of Kernel Machines (e.g. SVM) is straightforward. Two kernel functions
have been considered in these experiments. The first is the RBF kernel function, cf.
(12), which is commonly regarded the “default” choice for kernel machines. The
second is the polynomial function, cf. (11).

The evolutionary algorithms in the models have been implemented using the
OpenBeagle framework for EC [13]. The objective function is, as explained, k-fold
cross validation with k = 5. This value gives a adequate tradeoff between accuracy
and computational expenses. For classification problems, the error measure is the
normalized classification error; in case of regression problems the mean-squared-
error (MSE) is used.
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Table 1 Basic characteristics of the data sets used in the experiments.

Name Type #Samples #Features %Positive

Concrete regression 1005 8 n/a

Diabetes classification 768 8 65.1%

Housing regression 506 13 n/a

Reaching 1 regression 1126 4 n/a

Reaching 2 regression 2534 4 n/a

Reaching 3 regression 2737 4 n/a

Wisconsin classification 449 9 52.6%

6.1 Data Sets

Seven different benchmark data sets have been selected for the empirical valida-
tion. Five of these data sets are regression problems, whereas the remaining two
are binary classification problems. The data sets Concrete, Diabetes, Housing, and
Wisconsin are well-known benchmark data sets obtained from the UCI Machine
Learning repository [1]. The data sets Reaching 1, 2, and 3 are obtained internally
from the LiraLab of the University of Genoa2. These data sets concern orienting the
head of a humanoid robot in the direction of its reaching arm. The features are the
traces of 4 arm encoders, whereas the outputs are the corresponding actuator values
for 3 head joints. Table 1 shows standard characteristics of the data sets after pre-
processing. The exact preprocessing steps that have been performed on the data sets
are as follows:

1. All features have been (independently) standardized, i.e. rescaling to zero mean
and unit standard deviation.

2. For regression problems, output values have been standardized in the same man-
ner as the features. For classification problems, labels have been set to +1 for
positive labels and −1 for negative labels.

3. Duplicate entries have been removed from the data sets.
4. The order of the samples in the data set has been randomized.

6.2 Results for Hyperparameter Optimization

The models for hyperparameter optimization have been verified using the following
scenario: a very coarse grid search has been performed to identify an interesting
region for the parameter ranges for each data set and kernel function. Subsequently,

2 These data sets can be obtained from http://eris.liralab.it/wiki/Reaching_
Data_Sets.
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a very dense grid search is performed on this region to establish a reference for our
models. For the polynomial kernel function, which has two parameters, the degree
has been kept fixed at d = 3 in order to keep the search computationally tractable.
This reference contains the number of evaluations used for grid search3 and the
corresponding minimum error, which serves as the target for our models.

The evolutionary models have been used on the same parameter ranges as the
grid search. The only exception is that for the polynomial kernel we have not kept
the degree fixed at d = 3; instead it is set within a range of d = {1, ..,8}. This
exception is made to investigate the scaling properties of the ES-based approach,
i.e. to see whether evolutionary optimization can yield better solutions by optimizing
more parameters. The evolutionary search is terminated after the same number of
evaluations as used for the grid search.

A comparison of the generalization performance of the grid search and the evo-
lutionary models is shown in Table 2. The overall impression is that all the evolu-
tionary algorithms are able to find competitive solutions. In particular EvoKMGA

shows stable performance, as it finds equal or better solutions for all of the data sets.
The only minor exception is the Diabetes data set, for which it finds solutions that
are only marginally worse than those found using grid search. Another observation
is that for the majority of the data sets the inclusion of the degree of the polyno-
mial kernel indeed decreases the generalization error. This suggests that the meth-
ods scale well with the number of parameters and, moreover, that the extra degree
of freedom is used to decrease the error. Furthermore, EvoKMES and EvoKMGAflt

perform worse than that of the GA-based model on this real-valued optimization
problem, suggesting that real-valued chromosomes are not necessarily beneficial
for hyperparameter optimization.

More interesting than the optimal solutions is the rate of convergence of the vari-
ous methods. This has been analyzed by considering the number of evaluations that
were needed to reach an error that is close to the target, cf. Table 3. These results
confirm the previous observation that EvoKMGA outperforms the two other models
in most situations. The GA method converges to the target error in only a fraction of
the number of evaluations used for grid search, with the exception of the Diabetes
data set. Furthermore, in almost all situations, it is able to find solutions within a
range of 5% of the target within the first 100 evaluations.

The ES and GAflt methods converge slower than EvoKMGA, although EvoKMES

outperforms the others on a number of regression data sets. Conversely, it performs
much worse on the Wisconsin classification data set. One of the reasons for this
behavior is that ES uses the mutated offspring to sample the proximity of the parent
individuals. This information is then used to find a direction in which the error is
decreasing, in a manner similar to gradient descent or pattern search. The difficulty
with classification problems is that the error surface incorporates plateaus. Offspring
individuals in the proximity of a parent are thus likely to have an identical fitness
score and the algorithm will perform a random search on the plateau. Smoothness
of the fitness landscape may be regarded as a prerequisite to efficient optimization

3 Note that the number of evaluations directly translates into time, as solving the LS-SVM problem
is independent of the chosen parameters.
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Table 2 Comparison of the minimum errors of grid search and the evolutionary optimization meth-
ods. Note that the results of the latter are averages over 25 runs.

Grid Search EvoKMES EvoKMGA EvoKMGAflt

Name Kernel εmin Eval. ε̄min ε̄min ε̄min

Concrete RBF 0.1607 1221 0.1591 ± 0.0000 0.1590 ± 0.0000 0.1590 ± 0.0000
Poly. 0.1700 899 0.1741 ± 0.0000 0.1698 ± 0.0001 0.1778 ± 0.0235

Diabetes RBF 0.2200 621 0.2201 ± 0.0004 0.2202 ± 0.0006 0.2207 ± 0.0015
Poly. 0.2213 777 0.2226 ± 0.0003 0.2215 ± 0.0012 0.2231 ± 0.0016

Housing RBF 0.1676 2793 0.1674 ± 0.0000 0.1674 ± 0.0000 0.1674 ± 0.0000
Poly. 0.1675 1739 0.1641 ± 0.0016 0.1661 ± 0.0015 0.1646 ± 0.0022

Reaching 1 RBF 0.0683 3185 0.0683 ± 0.0000 0.0683 ± 0.0000 0.0683 ± 0.0000
Poly. 0.0720 1517 0.0670 ± 0.0002 0.0670 ± 0.0001 0.0677 ± 0.0029

Reaching 2 RBF 0.0042 561 0.0042 ± 0.0000 0.0042 ± 0.0000 0.0042 ± 0.0000
Poly. 0.0063 399 0.0045 ± 0.0004 0.0043 ± 0.0001 0.0045 ± 0.0003

Reaching 3 RBF 0.0019 561 0.0019 ± 0.0000 0.0019 ± 0.0000 0.0019 ± 0.0000
Poly. 0.0032 399 0.0022 ± 0.0001 0.0021 ± 0.0001 0.0023 ± 0.0003

Wisconsin RBF 0.0423 3185 0.0467 ± 0.0025 0.0423 ± 0.0000 0.0432 ± 0.0017
Poly. 0.0401 2337 0.0433 ± 0.0031 0.0400 ± 0.0017 0.0424 ± 0.0017

Table 3 Comparison of the convergence of the evolutionary models. The column ETT (Evalua-
tions To Target) denotes the number of evaluations that the average run needs to reach the target
error. Analogously, the column ETT5% denotes the number of evaluations needed to reach an error
that is at most 5% higher than the target error.

Grid Search EvoKMES EvoKMGA EvoKMGAflt

Name Kernel εmin Eval. ETT ETT5% ETT ETT5% ETT ETT5%

Concrete RBF 0.1607 1221 243 135 98 79 274 134
Poly. 0.1700 899 >899 39 513 102 > 899 285

Diabetes RBF 0.2200 621 >621 3 >621 10 >621 10
Poly. 0.2213 777 >777 3 >777 10 >777 10

Housing RBF 0.1676 2793 267 123 306 64 333 135
Poly. 0.1675 1739 291 27 550 19 558 39

Reaching 1 RBF 0.0683 3185 435 207 165 35 446 84
Poly. 0.0720 1517 39 15 28 19 18 10

Reaching 2 RBF 0.0042 561 63 51 128 71 237 136
Poly. 0.0063 399 39 39 44 44 82 44

Reaching 3 RBF 0.0019 561 75 51 183 88 278 130
Poly. 0.0032 399 39 39 28 28 65 65

Wisconsin RBF 0.0423 3185 >3185 >3185 802 28 >3185 80
Poly. 0.0401 2337 >2337 >2337 2158 270 >2337 >2337
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Fig. 4 Convergence of the various optimization methods in several problematic combinations of
data sets and kernels.

using ES [3]. The situation is somewhat similar for EvoKMGAflt, as this model also
incorporates a random perturbation operator for mutation. However, this model has
a larger population size and a recombination operator, which can “diversify” the
population when progress is ceased on a plateau.

The problematic behavior of EvoKMES can be verified in the error convergences
depicted in Fig. 4. Albeit the ES method shows a steep initial convergence, the
search in these situations stagnates, indicating a random search. Further, in Figs. 4(c)
and (d) it can be seen that EvoKMES has a considerably higher initial position. This
can be attributed to the smaller initial population size, as these individuals are used
as the starting points for the search. Additionally, the individuals in EvoKMES are
initialized near the center of the range, in contrast to the two other methods. We
have verified that, for this data set only, the results of EvoKMES can be improved by
initializing the individuals uniformly over the search space, as is done in the other
two models.

Inspection of the solutions confirms the observation that all the evolutionary
models produce heterogeneous “optimal” solutions. This is not necessarily problem-
atic, given that variance in the quality of the solutions is limited. Further, although
the presented results give some insight regarding the performance of various evolu-
tionary algorithms, it must be taken into account that there is a variety of parameters
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Table 4 The minimum errors as obtained with EvoKMGP. Note that ε̄min indicates the average
minimum error over 10 runs, whereas εmin indicates the absolute minimum error.

Grid Search EvoKMGP

Name εmin ε̄min εmin

Concrete 0.1607 0.1513 ± 0.0010 0.1490

Diabetes 0.2200 0.2176 ± 0.0032 0.2096

Housing 0.1675 0.1633 ± 0.0006 0.1620

Reaching 1 0.0683 0.0592 ± 0.0004 0.0587

Reaching 2 0.0042 0.0038 ± 0.0000 0.0037

Reaching 3 0.0019 0.0018 ± 0.0000 0.0018

Wisconsin 0.0401 0.0358 ± 0.0012 0.0333

and operators – in particular for EvoKMGA and EvoKMGAflt – that influence the
speed of convergence. It is likely that additional fine-tuning of these parameters can
improve the performance of these models.

6.3 Results for EvoKMGP

The results from grid search have also been used as a performance benchmark for
EvoKMGP. However, for this model we consider only the quality of the solution
and ignore the temporal aspects (i.e. number of evaluations). The minimum errors
of both grid search and EvoKMGPare shown in Table 4. It can be observed that
EvoKMGP increases the generalization performance for all data sets. However, the
minimum errors are only marginally lower than those obtained by grid search. This
indicates that the combined kernel functions perform only slightly better than sin-
gular kernel functions.

It is difficult to provide strict interpretations of this result, since not finding any
combined kernel functions that drastically improves the generalization performance
does not necessarily mean that they will not exist at all. This relates directly to
the difficulty of finding good configurations for the GP method, as seen with the
GA models as well. There are many parameters that need to be set and one has to
find a suitable evolver model (i.e. the set of individual altering operators and their
order). Unfortunately, there is no structured approach for optimizing the configura-
tion. Therefore, it remains mostly a task that has to be solved using loose heuristics
or even intuition. This problem is particularly evident in this GP context, as the com-
putational demand does not allow for an empirical verification of multiple possible
configurations, as was done for the ES and GA models4.

4 The experiments that we presented for EvoKMGP need more than half a year of CPU time on a
Pentium 4 class computer running at 3 GHz.
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7 Conclusions and Future Work

Two approaches for the evolutionary optimization of LS-SVM have been presented.
The distinction is that the first aims to find optimal hyperparameters more efficiently
than traditional methods (i.e. grid search) and the second aims to increase the gener-
alization performance by means of combined kernel functions. The models for the
first approach are based on ES, GA, and GA with a floating point representation.
In particular the standard GA model has shown to be an efficient and generalized
method for performing hyperparameter optimization for LS-SVM. It was able to
find solutions comparable to optimal grid search solutions in only a fraction of the
computational demands. Furthermore, the method scales well with the number of
parameters. The ES and floating point GA models performed worse than GA, al-
though they are still preferable to grid search for regression problems. Classification
problems, on the other hand, are more challenging particularly for the ES model, as
the error surface is discontinuous. ES uses the offspring individuals to sample the
neighborhood in order to find a direction that minimizes the error. The plateaus
found in the error surface of classification problem interfere with this strategy, as
offspring are likely to have a fitness that is identical to that of the parent. This prob-
lem may be avoided by using the squared error loss function also for classification
problems, such that the error surface becomes continuous. Further, the performance
of all models may be improved upon by fine-tuning the variety of parameters. In
future work, it would be interesting to compare the evolutionary algorithms with
various gradient descent methods in terms of solution quality and convergence rate.

The Genetic Programming approach for the generation and selection of ker-
nel functions increases the generalization performance of the Kernel Machine only
marginally. This suggests that combined kernel functions may not improve the per-
formance as much as one may expect. In most circumstances, this slight improve-
ment will not justify the high computational demands of this model. The fact that
we have not found kernel functions that considerably improve on the generaliza-
tion performance does not necessarily mean that such kernel functions will not exist
at all. The configuration of GP, in terms of the evolver model and parameters, in-
fluences to a great extent the results. However, the numerous options and the high
computational demand make it very difficult to find an optimal configuration for our
model. It is worth investigating whether more advanced variants of GP and further
tuning of the configuration can improve the presented results.
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