An Application of Receding-Horizon
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Abstract. Optimal trajectory planning of a humanoid arm is addressed.
The reference setup is the humanoid robot James [I]. The goal is to make
the end effector reach a desired target or track it when it moves in the arm’s
workspace unpredictably. Physical constraints and setup capabilities prevent
us to compute the optimal control online, so an off-line explicit control is
required. Following previous studies [2], a receding-horizon method is pro-
posed that consists in assigning the control function a fixed structure (e.g.,
a feedforward neural network) where a fixed number of parameters have to
be tuned. More specifically a set of neural networks (corresponding to the
control functions over a finite horizon) is optimized using the Extended Ritz
Method. The expected value of a suitable cost is minimized with respect to the
free parameters in the neural networks. Therefore, a nonlinear programming
problem is addressed that can be solved by means of a stochastic gradient
technique. The resulting approximate control functions are sub-optimal so-
lutions, but (thanks to the well-established approximation properties of the
neural networks) one can achieve any desired degree of accuracy [3]. Once
the off-line finite-horizon problem is solved, only the first control function is
retained in the on-line phase: at any sample time ¢, given the system’s state
and the target’s position and velocity, the control action is generated with a
very small computational effort.
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1 Introduction

In robotics, the task of positioning the end effectors is fundamental: when-
ever a robot has to move its arm in order to grasp an object, track a moving
target, avoid collision with the environment or just explore it, reaching is in-
volved. Given the target position, estimated for example by a vision system,
it is common practice to plan a suitable trajectory in the cartesian space
and then to find the corresponding joint and torque commands. In industrial
robotics, trajectories usually have a parametrized but fixed structure, e.g.
splines or polynomials, or motor commands can be found analytically after
the minimization of some Lyapunov function describing the reaching goal.
In humanoid robotics, the focus is not only on reaching the target, but on
how the target is reached, that is the criterion which a certain limb accom-
plishes while performing a movement or acting on the environment. One of
the main goals of humanoid robotics is indeed to exploit redundancy and
constraints of the humanoid shape to achieve behaviors that are approxi-
mately efficient as human movements. It is common belief that the human
body moves “optimally” with respect to different cost functions, depending
on action, limbs, task. In order to give a humanoid robot the chance to im-
plement different motion criteria, it is necessary to provide a technique which
allows finding optimal control commands for any given cost function. To this
end, a Finite Horizon (FH) optimal control problem can be considered, but
it is scarcely useful as generally the duration of the movements cannot be
predicted a priori. Moreover, moving through a fixed horizon strategy could
lead to a lack of responsiveness, whenever the target dynamics is too fast and
no previous information is available to predict the target behavior. A Reced-
ing Horizon (RH) approach is suggested. Within the classical RH approach,
at each time instant ¢, when the system state is x;, a FH optimal control
problem is solved and a sequence of N optimal control actions is computed,

Uyt Uy, U (corresponding to velocity, acceleration or torque com-

mands, depending on the controller design), which minimize a suitable cost
function affecting the motion performance; then only the first control vector
is applied: ult? = ug f . This procedure is repeated at each instant ¢, thus
yielding a feedback control law. Stabilizing properties of RH control have
been shown for both linear and nonlinear systems, in continuous and dis-
crete time, using the terminal equality constraints x;yy = 0 [4], relaxing it
[5] and just imposing the attractiveness of the origin by means of penalty
functions [2]. The classical RH technique assumes the control vectors to be
generated after the solution of a nonlinear programming problem at each
time instant: this assumption is generally unrealistic in the case of humanoid
robotics, as the robot’s and the target’s dynamics are fast and the complex-
ity of the problem increase with the number of DOF to control. In order to
solve the optimization problem on-line, with the guarantee of respecting the
temporal constraint, a suitable hardware and software are required, usually
a real-time processing unit supporting fast and highly precise computations,
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directly connected to the robot’ sensing and actuation devices, which is ut-
terly complicated for complex kinematic structures. Unfortunately, different
multi-level control architectures often do not support this control scheme.
This is the case of our humanoid robot, James [I]. James is a humanoid
torso, consisting of a head and a left arm , with the overall size of a 10 years
old boy. Of the 7 DOF of the arm (3-shoulder, 1-elbow, 3-wrist), only 4 have
been used in this paper (the wrist is considered as the end-effector), while
numerical results are shown for the 2 DOF case. Torque is transmitted to
the joints by rubber toothed belts, pulleys and stainless-steel tendons, actu-
ated by rotary DC motors. The robot’s motion can be controlled by sending
position and velocity commands from a remote PC to 12 Digital Signal Pro-
cessing (DSP) boards (Freescale DSP56F807, 80MHz, fixed point 16 bits), via
CAN bus. DSP boards have limited memory and computation capability and
cannot support more than simple operations, namely low level motor control
(mostly PID controllers, 1KHz rate), signal acquisition and pre-filtering from
the encoders. For this reason, implementing an on-line controller is impossi-
ble in the current setup: an explicit off-line RH controller is considered. The
goal of this work is to design a feedback RH regulator for reaching tasks,
with the requirement of being quick and reactive to changes, in particular to
track a target moving unpredictably in the robot’s workspace. We will also
describe a technique which concentrates the computation of a time-invariant
feedback optimal control law in an off-line phase , for every possible system
and target states belonging to an opportune set of admissible states. The pro-
posed algorithm consists of two steps. In the first step, a suitable sequence of
neural networks is trained off line, so that they can approximate the optimal
solutions of a stochastic FH control problem, which is generalized for every
possible state configuration. In the second (online phase), only the first con-
trol law is applied, at each time instant. The Extended RItz Method (ERIM)
[6] is chosen as a functional approximation technique. The use of feedforward
neural networks (thanks to their well known approximation capabilities [7])
guarantees that the optimal solutions can be approximated at any desired
degree of accuracy. We would like to remark that the computation demand
is concentrated in the off-line phase, while in the on-line phase only the com-
putation of a single control law is performed, thus yielding a fast response
to unpredictable changes in the target’s state, since we can do the compu-
tations quickly. The feasibility of this approach has already been tested on
the control of a thrusts-actuated nonholonomic robot [§]. James can be mod-
eled as an open kinematic chain. In the following we shall only focus on the
arm motion control, in particular from the shoulder up to the wrist, which
will be considered as the end effector of the kinematic chain, and neglect
the rotation of the hand. Let us denote by x/ the cartesian coordinates of
the end effector with respect to a base frame fixed to the robot waist, and
by q the vector of the joint coordinates of the arm. Then the forward kine-
matics X, = farm(Q), farm : R™ — R™ can be easily found by measuring
the length of the robot links and represent it with the Denavit-Hartenberg
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Fig. 1 James’s arm control scheme. Velocity commands are sent through a CAN
bus, while direct motor control is performed by DSP cards. The retrieving of the
target’s cartesian coordinates is not modeled, as it would require to discuss the
robotic visual system. The arm kinematic model is reported. We indicated two arm
joints (q1, q2), corresponding to the case of a 2 DOF arm (nq = 2)

convention [9]. We shall denote by x} and xJ the robot’s end effector state
vector and the target’s one at time instant ¢. We remark that once the opti-
mal control uy is found, then the optimal velocity controls in the joint space
can be easily computed with standard formulations, i.e., ¢ = J#(q;)x}°,
where J# denotes the Moore-Penrose pseudo-inverse of the jacobian matrix
J(q) = Ofarm(q)/0q, being X%, = J(q)q. In particular, as explained in the
previous section, they are computed by a standard Pentium based PC, then
sent through the CAN bus to the DSP cards, where the low level control loop
is performed. The control scheme is shown in Figure 1.

2 Receding Horizon Regulator: A Neural Approach

The goal of the reaching control problem is to find, at any time instant ¢,
the optimal control uf minimizing a suitable cost function, which is chosen
so as to characterize the trajectories of the end effector reaching or tracking
a target moving unpredictably in the robot workspace. We denote by x;, at
time instant ¢, the difference between the end effector and the target cartesian
coordinates and velocities (x; = col(x! — x},%x? — %})). Let us represent the

previous equations in the more general and compact form
Xt+1 = f(xt,ut) y t:O,l,

where at the time instant ¢, x; is the state vector, taking values from a finite
set X C R", and u; is the control vector, constrained to take values from
a finite set U C R™. At any time instant ¢, the desired state is xj = 0,
meaning that the goal is to bring the difference between the end effector and
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the target to zero. By making this assumption, we implicitly apply a certainty
equivalence principle: at time instant ¢, the target vector x{ is supposed to
remain constant for N time instants, that is: x{,;, , =xJ ;,i=0,...,N -1
We can now state a RH control problem.

Problem 1. At every time instant ¢ > 0, find the RH optimal controls ug €
U, where uy is the first vector of the control sequence uglt, e ,u}’v_llt that
minimize the FH cost functional

J(x¢) = {Z hi(Xiq, wgp) + hN(Xt—i-N)} .

=0

The classical RH control assumes that at each time instant of control a
FH control problem is solved, and a sequence of N optimal controls is found.
As we previously discussed, this approach is not suitable in our case, for the
hardware limitations imposed by the DSP cards. Therefore we will change
the problem’s formulation so as to be able to compute the control laws in an
off-line phase.

Problem 2 (RH). For every time instant ¢ > 0, find the RH optimal control
law uy = pf(x;) € U, where uf is the first control function of the sequence
/‘S\w . 7”?\/—1\1& that minimize the FH cost functional [

N-1
Ji= E {Z hi(Xtyis pige (Xe44)) + hN(Xt+N)} .

X
x € =0

Thanks to the time invariance of the system dynamics and of the cost
function, ¢t = 0 can be considered as a generic time instant. Then, a single
(functional) FH optimization problem is addressed.

Problem 3 (FH). Find a sequence of optimal control functions ug, ..., u3_1,
that minimize the cost functional

N-—1
JXEX{Z hi(xiv,ui(xi))JrhN(xN)} (1)
0€ 1=0

subject to the constraints pf € U C R™ and x;41 = f(xi, i (Xi))-

The RH control strategy will correspond to use pg as a time invariant control
function, i.e., to apply uf = pftH (x;) = pd(x;).

! Hereinafter, the notation E {g(£)} means the expectation of function g with
13

respect to the stochastic variable €. It is important to notice that in Problem 1
the expectation is not necessary, because it is a deterministic problem.
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2.1 From a Functional Optimization Problem to a
Nonlinear Programming One

In order to solve Problem FH we shall apply the ERIM [6], by which the
functional optimization problem is transformed into a nonlinear program-
ming one. More specifically, we constrain the admissible control functions
o, M1, - -+, in—1 to take on a fixed parametrized structure, in the form of
one-hidden-layer (OHL) neural networks:

v
fio(xi,wi) = col | Y cnjeon(xiy ki) +b; (2)
h=1

where f;(-,w;) : R? x RvHDvH@+lm o Rm o, b € Rk, € RFj =
1,...,m, being v the number of neurons constituting the network. By sub-
stituting (@) into (), calling w; the parameters of the i-th OHL network
fi;(x;,w;), the general functional cost J(uo, 1, .., pn—1) is turned into a
function 7, (w) which is only dependent on a finite number of real parame-
ters, w = col(w;,1 =0,1,..., N —1). We can now restate Problem [3] as:

Problem 4 (FH,). Find the optimal vectors of parameters wg,..., w3 _,
that minimize the cost function

xo€X

N-—1
J,= E {Z hi(xi, fui(Xi, wi)) + hN(XN)}
1=0

subject to the constraints fi;(x;,w;) € U C R™ and x;41 = £(x, fi; (X, w;)).

Then, for every time instant ¢, the time-invariant RH control law corresponds
to ufH = ﬂRH(Xtvw(c))) = ﬂg(xtvw(c)))'

2.2 Solution of the Nonlinear Programming Problem
by Stochastic Gradient

The optimal parameters in the OHL control functions can be found by a
usual gradient algorithm, i.e.

wik +1) = wi(k) — a(k)Ve, E {ju [w(k),xo]}, k=0,1,... .
{xo0}

Within this context, it is impossible to calculate exactly all the gradient com-
ponents, because of the stochastic nature of xg; then, instead of the gradient
Vo FE {j,, (w,xo)} a single “realization” V,J, (w,%o(k)) is computed, where
the stochastic variable x is generated randomly according to its known prob-

ability density function. Then a simple gradient steepest descent algorithm
can be applied:
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wik +1) = wi(k) = a(k)Vu, Ty [w(k), 0 (k)] + n(w (k) —wi(k —1))

for k =0,1,..., where we added a regularization term, weighted by n € [0, 1],
as it is usually done when training neural networks. The convergence of the

method, which is known as stochastic gradient, is assured by a particular
choice of the step size a(k), that must fulfill a set of conditions [10]. Of
course, one has to compute the partial derivatives of the cost [, with respect
to the parameters to be optimized, w;:

0J, 0T, Ofui(xi,w;)

8wi (’“)ui 6&)1‘

The proposed algorithm for the computation of the optimal parameters
consists in two phases, a forward and a backward one, and in a back-
propagation technique. In the forward phase we “unroll” the system and
the neural controllers in time, making the feedback explicit. At iteration
step k, given the initial state xg, we compute all the state and controls
generated by the sequence of OHL networks that is u; = fi;(x;,wi(k)),
given xo,%x; = f(Xi—1,u;-1) , ¢ = 1,...,N. Then we can compute all
the partial costs h;(x;), hy(xn). In the backward phase, we compute all
the gradient components and “back-propagate” them through the networks’
chain. The recursive propagation is described by the following equations, for
i=N-1,N-2,...,0:

0J, _ Ohi(x;,w;) L 0, Of (xi,ui)

8u1- 8u1- 8xi+1 8ui
8_j,, - 8hi(xi,ui) + &7,, 8f(x1-,u1-) + 8jl, 3ﬂi(xi,wi)
8xi N 8xi 6Xi+1 8xi (’“)ui 6Xi

initialized by 8j,,/8xN = 0hn(xN)/OxXN-
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Fig. 2 A minimum jerk movement of James’arm: cartesian and joints position
and velocity are shown, as well as samples of the planar trajectory. The neural
approximation and the analytical solution [I1] coincide (m.s.e. = 1077)
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Fig. 3 James’ left end effector tracking a target moving in an unpredictable way,
according to cost function (@), where V; = diag(1.0,80.0,5.0,10.0), Vay = 401.
Moreover, N = 30,v = 40

3 Results

Many neuro-computational studies investigate the arm motion on a plane,
considering the arm as a two-rotative joints limb. In this case, it has been
shown that the human arm movement can be approximated by the function
optimizing the following cost function (minimum jerk principle) [I1]:

T 3.7\ 2 3,7\ 2
d d
J = / ar + y dt .
0 dt3 dt3
This criterion has been chosen to verify the effectiveness of the proposed
method. We set n, = n. = 2 to consider James’ arm as a two-link rigid body,
moving on a planar surface, T = 60, v = 40, and used approximatively 10°

samples for the off-line training of the neural networks. Results are shown in
Figure 2. The method has been also tested with a different cost function:

t+N—1
J = Z c(w) +x7 Vig1Xis1 (3)

i=t

where the criterion for the task accomplishment is a tradeoff between the min-
imization of the energy consumption (for physical limits, it is important not
to exceed in the maximum rated current consumption) and the “best” end-
effector proximity to the target during and at the end of the manoeuvre (it
could not be able to reach it perfectly, as a consequence of the unpredictable
behavior of the target or the robot’s intrinsic physical limits). Weight matrices
Vi are chosen such as to obtain reasonable compromise between the attrac-
tiveness of the target and the energy consumption, whereas c(u}),j = z,y is
a nonlinear but convex function (the same reported in [8]). An example of a
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RH trajectory during a tracking task are shown in Figure 3. We remark that
the constraints on the admissible values of x; and u; are always verified. To
be more precise, the classical OHL networks were slightly modified, specif-
ically by adding two bounded sigmoidal functions o(z) = U tanh(z) to the
final output layer: with this choice, the constraints on the control values can
be removed from the problem formulation since the neural networks already
embed them.

4 Conclusion

This paper focused on the computation of a neural time invariant feedback
control law optimized off-line. The on-line computation of the control action is
efficient, as it consists only of few mathematical operations. We point out that
the requirement of computing control values in real-time as fast as possible
is strict. Given that this method has been designed to be applied to a full
body humanoid robot, we concentrated in making the computation of the
control law as efficient as possible. We have presented simulations to clarify
the problem. Early experiments on James, controlling 2 DOF, have confirmed
the effectiveness of the proposed approach. Simulations for the control of the
4 DOF arm are currently ongoing. In the future, the control scheme will take
into account singularities, redundancies of the kinematic chain, and delays
which have been neglected for the moment.
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Systems, Robotics and Interfaces”.
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