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Abstract—For a complex autonomous robotic system such as a
humanoid robot, motor-babbling-based sensorimotor learning is
considered an effective method to develop an internal model of the
self-body and the environment autonomously. However, learning
process requires much time for exploration and computation.
In this paper, we propose a method of sensorimotor learning
which explores the learning domain actively. Our approach
discovers that the embodied learning system can design its own
learning process actively, which is different from the conventional
passive data-access machine learning. The proposed model is
characterized by a function we call the “ confidence”, and is
a measure of the reliability of state control. The confidence for
the state can be a good measure to bias the exploration strategy
of data sampling, and to direct its attention to areas of learning
interest. We consider the confidence function to be a first step
toward an active behavior design for autonomous environment
adaptation. The approach was experimentally validated in typical
sensorimotor coordination such as arm reaching and object
fixation, using the humanoid robot James and the iCub simulator.

Index Terms—sensorimotor learning, neural networks, state
prediction, state control, humanoid robot, confidence

I. INTRODUCTION

Learning in robotics is one practical solution allowing an
autonomous robot to perceive its body and the environment. As
discussed in the context of the frame problem [1], the robot’s
body and the environment are generally too complex to be
modeled. Even if the kinematics and the dynamics of the body
are known, a real sensory input to the body often differs from
one derived from a theoretical model, because sensor input
is always influenced by interaction with the environment. For
instance, when we grasp an object, the physical parameters
of our arm, such as its mass and momentum, differs from
the nominal state depending on the grasped object. Another
example is that the sense of touch and force depend on the
material of the object and a state of the fingers. Moreover, it
is difficult to evaluate all potential variations in advance, since
real data can vary quite a lot and the behavior of the external
environment is not necessarily controlled by the robot. On the
other hand, learning approaches provide a data-driven solution:
the robot explores the environment and extracts knowledge to
build an internal model of the body and the environment.

∗The work presented in this paper was partially supported by the
ROBOTCUB project (IST-2004-004370) and the CONTACT project (NEST-
5010), funded by the European Commission through the Unit E5 Cognitive
Systems.

Learning-based motor control systems are well studied
in the literature [2][3][4][5][6][7]. Haruno et al. proposed
a modular control approach [3], which couples a forward
model (state predictor) and an inverse model (controller).
The forward model predicts the next state from the current
state and a motor command (an efference copy), while the
inverse model generates a motor command from the cur-
rent state and the predicted state. Even if a proper motor
command is unknown, the feedback error learning procedure
(FEL) provides a suitable approximation [4]. The prediction
error contributes to gate learning of the forward and inverse
models, and to weight output of the inverse models for the
final motor command. Motor prediction, based on a copy of
the motor command, compensates for delays and noise in
the sensorimotor system. Moreover, motor prediction allows
differentiating self-generated movements from externally im-
posed forces/disturbances [5][6].

Learning-based perception is applicable not only for motor
control but also to model the environment using multiple sen-
sorial modalities, such as vision, audition, touch, force/torque,
and acceleration sensing. In our earlier approach, we devel-
oped a learning system aimed at predicting future sensor data
based on current sensor data and motor commands [8]. In
the study we explored the possibilities for the robot to detect
changes in its body or the environment in an autonomous
manner: no other information, such as a kinematic model, was
given to the system. Following this concept, we investigated
a function called confidence, focused on sensory prediction
learning [9]. The function of confidence is to quantify inequal-
ities between the predicted state and the real state of the body
and the environment.

One of the significant problems in learning is that learning
domain is too large to be completely covered, as mentioned at
the beginning with the frame problem. An efficient learning
strategy is necessary to enhance learning speed while keeping
its quality high. A random exploration strategy, such as a
conventional motor babbling, is often considered to be the
most robust approach for unknown learning domain. Because
the random exploration theoretically covers the whole learn-
ing domain uniformly. If the learning system has a specific
learning domain of interest, however, the random exploration
is not a direct way to get learning samples of the domain,
and it leads to cost more sampling time. A marked problem
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in sensorimotor learning here is that the learning system does
not know a correct motor output to reach the domain of interest
in the beginning of learning.

We propose an improvement of the exploration strategy:
active motor babbling based on confidence for the state.
That is, the learning evaluation on motor control affects the
exploration strategy for learning of motor control. If the
evaluation of the motor control is low, the random exploration
strategy functions in high possibility. If the evaluation is high,
the directed exploration strategy does in high possibility. This
approach is an extension of [9] to deal with both the problems
of state prediction and state control.

There are some interesting previous studies related to our
basic idea [10][11][12][13][14][15][16]. Robbel et al. [10]
introduced an active learning approach in motor control, which
is based on the LWR and LWPR model [11][13][14] and
memory-based resettable motor configuration [12]. These ap-
proaches are similar to our approaches. One of our originalities
and differences from these approaches is that we do not exactly
assume the state recovery (resettability) with a given model
such as PID controller. Another difference is that the senso-
rimotor coordination in our case is visul motor coordination,
which is not so trivial like motor-encoder coordination. Active
learning of a complex sensorimotor coordination is not yet
studied well.

This paper is organized as follows: Section II describes
the proposed framework of sensorimotor learning including an
introduction of the confidence function. Section III describes
the experimental results obtained using the humanoid robotic
platform James [17] and the iCub robot simulator. Finally,
Section IV gives the conclusion and outlines some future
tasks.

II. METHOD

A. Sensorimotor learning

Fig. 1 illustrates the internal state space of a sensorimotor
system. Variable notation used in this figure is defined in
Table I. Let s[t] ∈ RNs denote the sensory input vector from
the Ns sensors, and u[t] ∈ RNm be the motor command vector
for the Nm motors at time t. Here, we assume the sensory
input vector as the state vector, and discuss the state space
formed by the set of all state vectors. The state is changed
by the motor command actuation. Let us assume that the
dynamics of s[t] can be defined as:

s[t + δt] = s[t] + δs[t], (1)

δs[t] = Φi(s[t], u[t]), (2)

u[t] = Ψi(s[t], δs[t]). (3)

Here, for simplicity, we assume that δt is sufficiently small,
and a motor command to change the state from s[t] to s[t+δt]
is unique. The goal of learning is to approximate Φ i(·) and
Ψi(·) using data samples acquired through exploration. Let
δŝ[t] and û[t] denote estimated vectors of the sensory input
change δs[t] and that of the actuated motor command u[t],

notation variable
s measured sensory input
δs measured sensory input change
ŝ estimated sensory input
δŝ estimated sensory input change
s∗ desired sensory input
δs∗ desired sensory input change
u actuated motor command
û estimated motor command
u∗ desired motor command

Φi(·) ideal state prediction function
Ψi(·) ideal state control function
Φ(·) approximated state prediction function
Ψ(·) approximated state control function

TABLE I
VARIABLE AND FUNCTION NOTATION.

^

Fig. 1. State transition diagram of the proposed sensorimotor system. Variable
notation is defined in TABLE I,

respectively. Φ(·) and Ψ(·) denote the approximations of Φ i(·)
and Ψi(·), defined as:

ŝ[t + δt] = s[t] + δŝ[t], (4)

δŝ[t] = Φ(s[t], u[t]), (5)

û[t] = Ψ(s[t], δs∗[t]), (6)

u[t] = {u∗[t], û[t]}, (7)

where the desired state change δs∗[t] is used as an input for
the estimation of state control. u[t] is selected from a pair of
u∗[t] and û[t]. The selection rule is defined later. The diagram
of internal state transition is shown in Fig.1.

In order to collect learning data for these function approx-
imations, the robot must move its body. At the beginning of
the learning process, however, the robot does not know how to
control its joint movement. Motor babbling gives us a simple
solution to this problem: the learning system randomly gener-
ates a desired motor command u∗[t]. The robot then actuates
this motor command as u[t] = u∗[t], leading to a random
joint movement. During motor babbling, the learning system
stores measured data {s[t], u[t], δs[t]}t=t1,···,tK at each time
step t. Let us refer to the above process as the U-space motor
command generation (Fig.2). In learning of the functions Φ(·)
and Ψ(·), s[t], u[t], and δs[t] are used as input vectors of
these functions, while δs[t] and u[t] are used as target vectors
of δŝ[t] and u∗[t], respectively.

If the learning process is complete, the robot will be able to
generate a motor command to reach a desired next state s ∗[t]
by Eqn.6, where the estimated motor command û[t] is used
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Fig. 2. The proposed learning system to predict and control the state at the
next time step. Sources of motor commands are given both in the domain
of u (U-Space) or s (S-Space), and one of them are stochastically selected
depending on the confidence for the state control.

for actuation of the robot joints as u[t] = û[t] represented
in Fig. 2. By using the approximated functions in exploration,
the robot is able to collect learning samples of interest in state
space. Let us refer to the above process as the S-space motor
command generation.

Consequently, the robot can refer two manners of motor
command generation, such as U-Space and S-Space motor
generation. The former is useful in the beginning of learning,
and the latter is effective to direct the data sampling in the
middle phase of learning. We can assume several ways to
select or synthesize these two manners. Here, we introduce
a simple stochastic synthesizing approach using confidence,
the temporal evaluation for the state control.

B. Confidence for a state control

Learning results can be evaluated in terms of the confidence
for a state. The confidence is based on the state control error
eu defined as

eu[t] = |Ψ(s[t], δs[t]) − u[t]|. (8)

Performance of the motor command generation in S-space
defined as

ep[t] = |s∗[t − δt] − s[t]|, (9)

= |δs∗[t − δt] − δs[t − δt]|. (10)

In the following discussion, however, we adopted eu[t].
Let us introduce a modification using the Gaussian function

to map eu, ep ∈ (0, +∞) onto a finite scalar variable c[t] ∈
[0, 1] such as

c[t] = exp
(
−es[t]2

2σ2

)
, (11)

where the constant σ2 determines filtering sensitivity. Accu-
mulation of c[t] provides robust memory of confidence on state
control. Let C[t] ∈ [0, 1] denote the confidence, working as a
temporal moving average of normalized learning error c[t].
The update rule of the confidence at time t is defined as:

C[t] := (1 − α)C[t − δt] + αc[t], (12)

where the constant parameter: α ∈ [0, 1] denotes an update
weight. C[0] is initialized as zero at the beginning of the
learning process. A high value of C indicates that the state
control is reliable. This confidence value is defined at each

Exploration

(On Line)

Learning

(Off Line)

Fig. 3. The proposed learning strategy. A robot explores the environment
to collect learning data, and evaluates sensorimotor functions on-line. After
exploration, the robot optimizes sensorimotor functions with the collected
learning samples off-line. These two processes are repeated alternatingly until
the desired performance is reached.

discretized state of state space, or otherwise simply defined
as a representative value of whole state space. In the former
state-dependent case, the confidence value of a state is inde-
pendently updated only when the system receives its state.

C. Learning strategy

The sensorimotor learning procedure is divided into two
stages: exploration and learning, as illustrated in Fig.3. In
the exploration stage, the robot generates joints movements
(motor babbling) in order to collect learning samples, and
evaluates mapping functions optimized in previous learning
stages. In the learning stage, the robot optimizes the mapping
functions off-line with the collected learning samples in the
previous exploration stages. Motor behavior of the robot in the
exploration stage is generated both in U-space and S-space.
We used this confidence value as an probability to choose
a motor command of u from a pair of u∗and û (Eqn.7).
Therefore, if the confidence for the state control is high, the
S-Space motor generation is selected in high probability.

The principal idea of this framework is to exploit confidence
derived from past learning experience, and then focus subse-
quent exploration to collect new learning data of interest. Here,
we are focusing on increasing learning efficiency to acquire
a specific motor effects such as hand movements in the view.
However, we can exploit the advantages of active exploration
and learning more dynamically. For instance, we can direct the
robot action and learning giving a desired state which attracts
its attention depending on the motor skills of the robot.

D. Implementation by neural networks

The proposed learning system does not limit the type of
function approximators for Φ(·) and Ψ(·). In our implemen-
tation, we use Multi Layer Perceptron (MLP) [18], which is
known as an universal approximator. The MLP has three layers
and is optimized by a simple gradient descent method [18].
The treatments of the MLP in this context is described
in the reference [9]. Here, we present a few mathematical
formulations and a network structure.

yk(x) =
nh∑
j=1

wo
jk · f(

ni∑
i=1

wh
ijxj + wh

0j) + wo
0k, (13)

where yk(·) represents the k-th component of the function
y(·), and x denotes a combined vector of inputs.

f(v) = tanh(
v

τ
), (14)
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TABLE II
SENSORY STATE AND MOTOR COMMAND FOR JAMES.

sensory state motor command
s[t] = (s1[t], s2[t]) u[t] = (u1[t], u2[t])

s1: horizontal position u1: upper-arm roll
s2: vertical position u2: shoulder pitch

where τ is a constant value that adjusts nonlinearity and v is
the weighted sum of the inputs into the elements.

III. EXPERIMENT

A. Experimental setting

We performed experiments on sensorimotor learning using
the humanoid robot James [17]. James is a fixed upper-
body robotic platform dedicated to vision-based manipulation
studies. It is composed of a 7DOF arm with a dexterous 9DOF
hand and a 7DOF head as shown in Fig.4. It is equipped
with binocular vision, force/torque sensors, tactile sensors,
inertial sensors and motor encoders. Low-level sensorimotor
information is processed in local control cards inside the body,
and high-level sensorimotor information is handled in local
networks [19].

The sensory state vector and the motor command vector
used in the experiment are presented in Table.II. In this
experiment we used the position of the hand of the robot in
the image, a two dimensional quantity, as the sensory state
vector as shown in Fig. 4. As the motor command vector,
we used the position-displacement command of the upper-arm
and shoulder joint. Joint actuation affects the visual position
of the hand. During exploration, the motor command was sent
to each joint at an constant temporal interval of δt. The values
of u∗ were given randomly, while the values of s∗ were set
as a maximumly confident state in the discretized neighbor
states of the current state. This implanted motor desire forces
the robot to explore the less confident state more positively
and skip the states enough learned.

We used a small green marker mounted on the James left
arm to recognize the hand. The marker was detected based
on its distinctive color with spot noise filtering. The color
format of the obtained image was transformed from the RGB
format to the YUV format to extract the hue robustly. The
mass centers of the extracted green regions were used as
the position of interest. Even though color parameters were
determined experimentally. The position detection was enough
robust against external visual noise such as lighting changes
and passing people in the visual field. Through the whole
experiment, the position of James’ head and the eye camera
were fixed for simplicity.

Experimental parameters are presented in Table III, where
E [epoch] denotes the epoch number of the exploration
and learning cycle. K and L [ts] (time steps) denote the
number of data sampling events and learning events in each
epoch, respectively. The trajectories of the arm were generated
randomly in each epoch. The initial weight coefficients were
randomly selected from the finite domain Dw. The number
of hidden elements of the MLP nh was selected carefully to

Joint Movements Object detection

u1
u2

s1

s2

Fig. 4. The humanoid robot James was used for experimental validation of
the proposed active sensorimotor learning. Arm position is sensed visually
using a green marker mounted on the hand.

TABLE III
EXPERIMENTAL PARAMETERS.

Parameter Value Definition
E 20 [epoch]∗ exploration-learnig cycle
K 30 [ts]∗∗ exploration iteration
L 10,000 learning iteration
δt 1.0 [s] time step interval
ni 4 MLP units (1st layer)
nh 100 MLP units (2nd layer)
no 2 MLP units (3rd layer)
η 0.05 MLP learning rate
τ 1.0 MLP parameter

Dw [−1.0, +1.0] MLP initial weight domain
Du [−0.5, +0.5] motor command domain
G 10.0 motor input gain
α 0.1 confidence gain

∗epoch: iterated number of the exploration and learning cycle.
∗∗ts: descrete time steps.

adjust the function approximating performance of the MLP,
to avoid under-fitting or over-fitting problem. Values of the
desired motor commands were randomly selected in domain
Du, proportionally amplified by the gain G, and sent to the
motors.

B. Results with James

We performed both active and passive sensorimotor learning
for comparison. Active learning refers to the active mo-
tor babbling in S-Space and U-Space with confidence-based
stochastic switching. Passive learning refers to the passive
motor babbling only in U-Space. Fig.5(left) shows the tem-
poral evolution of state space confidence. In each confidence
map, the state space is quantized as 8x8 pixel regions. Light
intensity in each region indicates the local confidence value.
The figure shows that the high-confidence domain in active
learning spreads faster than in the case of passive learning,
since the exploration by active learning focuses on less well
learned states by referring to the confidence value. The active
learning strategy avoids learning duplication in the states
where learning is complete. Fig.5(right) shows the number
of times that the S-Space was used for motor command
generation. For the first several epochs, the U-Space was
mainly selected. However, after the 10th epoch, the S-Space
was mainly selected, since the confidence value reached a
sufficient threshold at many state regions.
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Fig. 5. Analysis of the results. Left: Temporal evolution of state space
confidence. Light intensity indicates the local confidence value. From left to
right, the columns correspond to the confidence maps of state prediction in
active learning, state control in active learning, state prediction in passive
learning, and state control in passive learning, respectively. From top to
bottom, the row shows the confidence maps obtained at the end of the 0th,
5th, 10th, 15th, and 20th epoch, respectively. Right: The number of times that
S-Space motor command generation was used in each epoch.

Fig. 6. Three different trials of state prediction. The blue cross indicates the
predicted next state.

Fig.6 and Fig.7 show the experimental performance of
state prediction and state control in the physical space. The
results suggest the state prediction and state control worked
successfully.

C. Results with iCub Simulator

We performed farther experiments with the iCub simulator
(Fig.8), which is an ODE-based robot simulator designed for
the humanoid robot, iCub [19]. The aim of this experiment
is to examine how the proposed learning approach functions
in higher-dimensional state space. We performed simultaneous
two learning processes of body movements; the object fixation
and the arm reaching. Regarding the object fixation, the state
was set as four-dimensional input composed of the horizontal
and vertical coordinate of its own hand in the left and right
view. The motor action was corresponding to three cooperated
movements of the both eyes; horizontal, vertical and vergence
movements (TABLE IV, top). Regarding the arm reaching,
the state was set as three-dimensional input composed of the
horizontal, vertical and vergence position of both eyes. The
motor action was corresponding to the upper-arm roll, shoulder
pitch and elbow pitch, which enables three-dimensional hand
movements (TABLE IV, bottom). The motor actions of the

Fig. 7. Two different trials of state control for reaching. The blue cross
indicates the target for the state control.

TABLE IV
SENSORY STATE AND MOTOR COMMAND FOR THE ICUB SIMULATOR.

sensory state(fixation) motor command(fixation)
s[t] = (s1[t], s2[t], s3[t], s4[t]) u[t] = (u1[t], u2[t], u3[t])

s1: horizontal position (L) u1: horizontal eye roll
s2: vertical position (L) u2: vertical eye roll

s3: horizontal position (R) u3: vergence eye roll
s4: vertical position (R)

sensory state(reaching) motor command(reaching)
s[t] = (s1[t], s2[t], s3[t]) u[t] = (u1[t], u2[t], u3[t])
s1: horizontal eye position u1: upper-arm roll
s2: vertical eye position u2: shoulder pitch
s3: vergence eye position u3: elbow pitch

object fixation and arm reaching are independent, however the
state of the arm reaching depends on the motor action of the
object fixation.

The learning process of the object fixation was run firstly,
followed by the learning of the arm reaching. The task goal
of the object fixation is to move the both eyes to watch
the hand in the center of the left and right view. The task
goal of the arm reaching is to move its hand to the desired
position in the view. The intervals of the two actions were
set up differently. The interval of the eye movement was set
up five times faster than the interval of the arm movement.
Therefore, the hand was normally caught in the center of
the view by fixation, and then, the robot reaches out the
arm from the center of the view to the desired position. The
dimension of the two learning processes was totally seven for
the state and six for motor action. Therefore, state prediction
and control requires 13-7 dimensional input-output mapping
and 14-6 dimensional input-output mapping, respectively. For
simplicity, the representative state confidence was used in this
learning. In the same manner as the previous experiments
with James, the values of u∗was given randomly in the both
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Fig. 8. The iCub Simulator (left) and the binocular visual processing system
(right).
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Fig. 9. The temporal evolution of confidence value and the activeness rate
with the iCub Simulator. Fixation in the active mode (top left), fixation in the
random mode (top right), arm reaching in the active mode (bottom left), arm
reaching in the random mode (bottom right)

learning of fixation and reaching. For fixation learning, s ∗was
set as the center of the view (0,0,0,0). For learning of reaching,
the values of s∗was given randomly to explore the view field
(state space) uniformly, canceling biased S-space exploration
nonlinearly-projected by U-space uniform exploration.

Both learning processes were performed successfully in
terms of learning acceleration by the proposed active learn-
ing approaches. After learning, the robot in the simulator
successfully fixated its hand and moved it as desired in the
view field. Here we just present some plots in Fig. 9. These
figures shows temporal evolution of the confidence values and
activeness rates regarding the object fixation and arm reaching.
The results suggested that active learning was helpful to master
sensorimotor skills faster than the normal random (passive)
learning in this high-dimensional learning cases.

IV. CONCLUSION

Based on a sensorimotor prediction algorithm previously
implemented [9], we defined a novel function called the
confidence function, which works as a memory of reliability
for state prediction and control. The aim of this function is to
store information about reliability of state control, and exploit
it for subsequent data sampling. If the robot is sure of its
motor behavior, the robot can direct the exploration in areas
of interest. This can be used to compensate for reinforcement
of important motion primitives. The notion of robotic con-
fidence was developed as a first step towards automatically

understanding of a robot’s self and surrounding environment
constructively. The approach was discussed theoretically in
this paper, and validated in some experiments with a humanoid
robot. Although the experiments examined the simple cases
of sensorimotor coordination, the proposed framework is not
limited to some specific modalities and is open for any
sensorimotor setting.

Our global aim is to implement learning as a natural adap-
tation and self-improvement process for the robot. Accord-
ingly, we must deal with more high-dimensional mechanisms
to show that our algorithm remains accurate when dealing
with complementary sensor data, redundant kinematics, and
dynamics. We are also applying the proposed method to the
general robot coaching, expecting that this direction will lead
us to embody a robot’s interactive education.
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