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Abstract 
 
In developmental robotics, there is a lot of work related to learning, which focuses on how to 

enable robots with adaptive capabilities. However, there is not much understanding of how the 

morphology of sensors and actuators affects the learning process. By taking inspiration from the 

human vision system, we explore how the sensor integration, its morphology together with the 

body of the robot, are the conditions that enable infants, in the first months of life, to achieve 

behaviors such as attention, vergence, reaching and grasping. Hence the sensor morphology is 

an important aspect that can be exploited, first to reduce the amount of inputs without disrupting 

perception, and second it limits the possible actions and behaviors that enable the agent to learn 

whether an environment model or a specific task. In this report, we present an information 

theoretic analysis of three experiments showing how foveation and the creation of a single image 

from two images demand the vergence behavior as a mechanism to increase the information 

structure not just among the pixels in the image but also among the motor actions and the pixels, 

establishing the prerequisite for learning. We also speculate on the implications of our results for 

theories of human development.  

 

1. Introduction 
 
In the field of developmental robotics, there has been increasing interest concerning the creation 

of algorithms that enable robots or artificial agents not just to cope with changes in the 

environment but also to acquire new task-independent skills as a living being (Schmidhuber 2009, 

Oudeyer et. al., 2007, Barto et. al., 2004). However, in all these works, the sensory input is not 

rich in states, on the contrary they are generally binary, far from what we can observe in nature, 

and there is little work related to how a rich sensory system should be implemented in order to 

increase the learning performance.  

 
Living beings are embodied and embedded in their ecological niches. It follows presence of 

information structure and directed information flow induced by dynamically coupled sensory-

motor activity, including effects of motor outputs on sensory inputs. The selection of an 

appropriate sensory morphology is going to provide an initial quality that restricts the possible 

actions and behaviors, because not all the actions executed by the agent can provide a complex 

structured information full of relations and dependencies among the sensory system and the 

actions, which are critical for learning, action selection, adaptability and developmental process 

(Körding et al., 2006, Thelen et al., 1994). This relation of the sensors, and the different kind of 



interactions that the agent can engage in, are the source of general principles to design robots 

able to extend their sensory-motor competences during their life.  

 
To study what features are necessary to bootstrap adaptive behaviors, we used the active vision 

head of the robot platform iCub (Beira et al., 2006). In the first months of life, a child is able to 

develop sensory-motor competences almost from scratch (Smith et al., 1998). Behaviors such as 

tracking, saccadic movements and fixation start to develop at the beginning of a child’s life and 

are mature after about three months (Tondel et al., 2007; Aslin, 1977). This report presents 

through different experiments why behavior such as vergence increases the information structure 

of the robot, which means that the statistically dependencies as well as causality (Pearl, 2000; 

Pearl, 2009) relations among the image pixels and the actions are strengthened, and therefore 

establishes all the preliminary relevant aspects for any kind of learning. However, this is just a 

feature that could be exploited thanks to the morphology of the sensor and the coupling between 

different sensory systems.  

 

The learning allows the infant to predict because through its sensory stimulus and its life history 

intrinsically there is knowledge concerning the world, and about what could happen, this 

information is used to improve its actions and reactions. This drives us to think that at the end, 

our mind is just an approximator that exploits a relation between the actions and the sensory 

input. However, what is more interesting, is that not all the possible actions are going to give us 

the possibility to learn, and our mind has to select the appropriate set of actions that increase the 

relation between them. In addition these actions are going to depend in the characteristics and 

morphology of the sensors. Following this idea the relations among actuators and sensors and 

going to be constrained by theses aspects. In order to measure how much the agent can learn 

given a specific sensory morphology we use the information measurements based on Shannon 

entropy (Shannon, 1948, Cover and Thomas, 1991). 

 

In the case of vergence the coupling exploited in our experiments is between the visual system 

and the propioceptive system. The results presented here enlighten the possible extension of this 

approach, in term of the development of the attention systems based not just in the visual data 

but in the relations among different sensory systems. This allows the robot to develop its own 

sensory-motor coordination to be able to learn, to predict and exploit the sensory system. The 

development of the attention system then enables the agent to extract the information relevant for 

its own tasks providing the substrate for the emerging of behaviors like eye hand coordination.  

 

Even though the complexity of the robot head, or the data acquired with the cameras do not have 

all the variables of the human vision system, the principal features are taking into account in the 

development of the experiments. The results of the experiments present how the behavior is 

affected thanks to sensor morphology. This helps understanding why the features presented in 

our natural sensory system, our body, and the motor system are the key property that defines our 

behaviors such as vergence.  

 

This report is organized as follows. First, we describe the robot head platform used for our 

experiments, the sensory morphology, and each informational measure employed to quantify the 

results in the experiments. Then, we present the experiments and the results of each one. Before 

concluding the report, we discuss our results and some of their implications for theories of infant 

development. 

 
 



2. Materials and Methods 
 
Robot. The RobotCub project developed an open humanoid platform, iCub. This platform is the 

tool to develop studies in cognitive systems and embodied cognition.  Our experimental test bed 

was the 6 degrees of freedom (DOF) iCub robot head described in (Beira et al., 2006). A 

difference among this and robots such as QRIO, ASIMO, HOAP-2, are the 3 DOF to pan and tilt 

the two DragonFly cameras. The image delivered by each camera has a resolution of 640x480 at 

30 fps. Moreover, both eyes can pan independently thanks to a belt system with a motor behind 

the camera. The common tilt movement is actuated for another belt system placed between the 

cameras; all the belt systems have a tension adjustment mechanism. The motors used are 

Faulhaber DC micromotors, equipped with optical encoders and planetary gearheads. The other 

3 DOF are used to control the neck of the head in a configuration that best represents the human 

neck movements, the motors used are Faulhaber DC micromotors with planetary gearheads and 

magnetic encoders. The motor control boards are integrated in the head and connected to the 

computer through a CANbus. 

 

 

Figure 1: iCub robot head. 

 

 

Sensor morphology and control. The human vision system has to interpret a 3D world from 2D 

projections, and in this process the ocular motions play an important role, these motions are not 

defined as an intrinsic feature, but are developed through the interaction with the environment, 

moreover abilities such as stereopsis (depth perception from binocular vision that exploits 

parallax disparities) that allow the depth perception are a result of this development in the first 

months of life (Birch et al. 1996 and Birch et all. 2005). The question is what mechanism drives 

this process, and what could be the contribution of eyes morphology and muscle to this.  

 

The iCub robot head was selected as a test bed for the experiments. It has an appropriate 

number of DOF in order to emulate behaviors like vergence, smooth pursuit, and saccades, 

typical of the vision system. Taking advantage of the results that show that neurons respond to 

simple features such as intensity contrast, color, orientation, and motion (Nothdurf 1990), which 

defining the pre-attentive visual cues (Itti & Koch 2001), computed in parallel  and in separated 

cortical streams (Dacey 1996) in the brain. Color was the main feature selected as a measure in 

all the experiments. In addition, there is also a well known visual illusion produce by the binocular 

single image phenomena (Wheatstone, C 1838), where if you focus your attention in an object in 

front of your nose and then you put your thump between your nose and the object, keeping your 

focus in the previews object then you should see two thumbs and if you now focus the thumb, 

then the previews object is going to appear twice. Because the image in our mind is a 



combination of the images from both eyes. In our implementation we applied the average of both 

cameras as the image function that happens in our mind. Another important characteristic is the 

foveation. Our eye has in the center a greater amount of receptors and these decreases with the 

radius. This was modeled with the log-polar transform
1

, the transformation changes the 

coordinate system from Cartesian (x,y) to the logarithm of the magnitude and the angle: 
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Figure 2: Log-Polar Transform of 60X60 Image. (A) Raw image. (B) Log-polar transform with M = 20. (C) 
Inverse log-polar transform. (D) Log-polar transform with M=12. (E) Inverse log-polar transform. 

 
The parameter M was used to increase or decrease the amount of pixels used in the log-polar 

space. In our experiments, we used color, foveation and image composition from the two 

cameras to find out whether the vergence behavior increases the information structured and how 

the agent can learn to exploit it. 

 

Information metrics. In order to present how the association and causal relations among the 

variables (actuators and sensors) are going to depend on the morphology and specific behaviors 

we have adopted five measurements, all of them fundamentally based on Shannon entropy 

(Shannon 1948, Cover and Thomas1991). Entropy, mutual information, integration, and 

complexity (Lungarella et al., 2005), which measure statistical regularities among random 

variables without taking into account temporal precedence. Transfer Entropy is the fifth 

measurement used to quantify causal relations (Schreiber 2000). These measurements were 

                                                
1
 Implemented in OpenCv 



selected to compare the results in the experiments, because with them it is possible to find all the 

nonlinear statistical patterns and understand why a specific behavior could give better relations 

among the data. 

 

Shannon entropy: measures the average uncertainty, or information. Given a discrete time series 

x(t) that can have N different states, it can be calculated using the state probability distribution 

according to: 
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Where Px(i) is the probability of x(t) being in the ith state. When the uncertainty is maximal the 

entropy is maximal (uniform distribution), while deviations from equiprobability states result in 

lowered entropy (increased order and decreased uncertainty).  

 

Mutual information: measures the deviation from statistical dependence between two or more 

random variables, quantifying the error we make in assuming X and Y as independent variables. 

The formal definition of mutual information in terms of single and joint state probability 

distributions is 
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If X and Y are two statistically independent random variables, Pxy(i, j) = Px(i)Py(j) and MI(X,Y) =0. 

For this reason any statistical dependence between X and Y yields MI(X,Y) > 0. However in 

general, the mutual information is insufficient to disclose directed interactions (e.g., causal 

relationships) between X and Y, or between Y and X. 

 

Integration: is the multivariate generalization of mutual information (McGill 1954)  and captures 

the total amount of statistical dependency among a set of random variables Xi forming elements 

of a system X={Xi}. Integration (Tononi et. all 1994) is defined as the difference between the 

individual entropies of the elements and their joint entropy: 
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As for mutual information, if all elements Xi are statistically independent, I(X) = 0. Any amount of 

statistical dependence leads to I(X) > 0.  

 

Complexity: If a system X has positive integration, and also it has locally segregated 

dependencies we would expect to find statistical dependence among units at specific spatial 

scales. A system combining local and global structure has high complexity: 
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Where H(Xi | X – Xi) is the conditional entropy of one element Xi given the complement X – Xi 

composing the rest of the system.  

 



Transfer entropy: is the measure used to disclose the directed flow or transfer of information (also 

referred to as ‘‘causal dependency’’) between time series (Schreiber 2000). Given two time series 

Xt and Yt, transfer entropy essentially quantifies the deviation from the generalized Markov 

property: p(xt+1 | xt)= p(xt+1 | xt, yt ), where p denotes the transition probability. If this deviation is 

small, then Y does not have relevance on the transition probabilities of system X. Otherwise, if 

the deviation is large, then the assumption of a Markov process is not valid, because Y influence 

the transition of system X. 
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Where the sums are over all amplitude states, and the index T(Y → X) indicates the influence of 

Y on X. The transfer entropy is explicitly nonsymmetrical under the exchange of X and Y—a 

similar expression exists for T(X → Y)—and can thus be used to detect the directed exchange of 

information (e.g., information flow, or causal influence) between two systems. As a special case 

of the conditional Kullback-Leibler entropy, transfer entropy is non-negative, any information flow 

between the two systems resulting in T > 0. In the absence of information flow, i.e., if the state of 

system Y has no influence on the transition probabilities of system X, or if X and Y are completely 

synchronized, T(Y → X) = 0 bit.  

 

3. Experiments 
 
Experiment 1. In the first experiment we tested how the morphology of the sensor can help 

increase the information structure in one region of the image and in the region in the space 

defined by vergence. The robot looked from the side of a rotating table with a cup on it, where the 

angle of vergence α was fixed (Fig. 3). We tested four different sensor configurations: (1) the 

average of the left and right image. (2) The inverse log polar of the average of the left and right 

image. (3) The log polar of the average of the left and right image, and (4) a single image, the left 

camera.The results show that the center had more structure than the rest of the image due to the 

fact that the cup in the center is not changing its size with the rotational movement of the table. In 

Figure 4a we can appreciate how pixels outside the center have the cup small behind and big in 

the front.   

 
 
 

 
Figure 3: Experimental Setup. The robot is looking at a fixed area over the rotating table, when the cup is 

not in this area it is blurred. 

 



 
Figure 4: Data from the Experiment. These are the frames saved in the experiment, they show a cup on a 
rotating table that is coming from behind and going out to the front. (A) The frames from the left camera. (B) 
The average images from the left and right. (C) Average inverse log polar transform. (D) Average log polar 
transform. (1) The pixels far from the center (e.g. dotted circle) have less information structure than the 
pixels in the center because the object is changing the size in the image for the rotation. (2) The average 
between left and right images, introduce a distortion in the pixels that are not in the vergence area (e.g. 
dotted circle). (3) The log polar transform has less receptors far from the center increasing the distortion 
outside the center (e.g. dotted circle). (4) The center is not affected by the log polar transform neither for the 
average because the object is in the vergence region (e.g. dotted circle). 
 

 

 

 
The second configuration was the average of both images left and right (Fig. 5), with this 

operation the pixels far from the vergence point are blurred (Fig. 4b). In our experimental setup 

we fixed the center of the image also in the vergence point. For this reason the pixels in the 

center are not distorted. In the Fig. 4c we can see inverse log polar transform of the average 

image, here the center has no distortion but the pixels far from the center are blurred, thanks to 

the log polar transformation, which takes a sub group of pixels (Fig. 4d), this transformation 

decrease the number of pixels far from the center decreasing the information of the image, but 

keeping the center not distorted.  

 

We run 8 different trials for 4 different M parameters of the log polar transform in order to evaluate 

the impact of this transform on the information structure. In each trial we saved 12300 frames 

(60X60 pixels). The calculation of the entropy was done based on the probability density function 

(PDF) of the normalize colors (green, red, blue and yellow), which define the dimensions of the 

PDF. We used 8 bins for each dimension. To calculate mutual information, integration and 

complexity, we used statistical formulae (Cover et al. 1991) that allow the calculation of entropies 

from the covariance matrix, under the assumption that these covariances were generated by a 

stationary Gaussian random process. All samples were examined for Gaussian state distributions 

(by fitting state histograms) as well as stationarity (by ensuring stable means and standard 

deviations across time). 

 

In this way using an object in the 3D space in front of the robot we were able to measure how the 

pixels’ information structure changes, given different sensory morphologies that take in account 

the distribution of the receptors in the camera (log polar transform) and vergence (induced by the 

average of both images). 

 
 
 
 



 
 
 
 

 
Figure 5: Image Combination. A new image is created by averaging the left and the right image. 

 
 
 
The results of this experiment can be understood by taking into account the “sensor morphology 

transformations” (that is, the average of left and right image, the average of the inverse log-polar 

transform, and the average of the log-polar transform). On the one hand, the average is 

introducing distortions in the image proportional to how far the object is from the vergence point. 

As can be seen in the Figures 6 to 8, the pixels in the center keep its structure, but the pixels 

outside decrease its structure, and this is useful for the robot because reduce the variability in the 

structure given that what really matters is what it is happening in the vergence point. On the other 

hand the log-polar transform is helping reduce the amount of pixels that represent the image, and 

given that the bigger amount of receptors is also in the vergence point then these pixels are 

exactly selecting the pixels with more structure among them. 

 

The variance in the left and right image have a bigger dispersion compare with the average, and 
the inverse log polar, given that those images are not restricted with the morphological 
transformations, as it is present in the Fig 9. 
 
The log polar sampling in average has the biggest information structure compare with the rest of 
morphological transformations, and as well provides an important reduction in the number of 
pixels and therefore the resources needed for any possible learning    
 
All this results show how when the sensory-morphology is defined by the average of the two 
cameras, the vergence point is going to be the place with the biggest information structure, and 
given that this area is going to be small in the image, there is no need to sample with the same 
distribution all over the image. Hence it makes more sense to increase the number of samples in 
the vergence area than the rest of the image. Now, given that the log polar sampling is fixed (the 
center is always sampled more) then the agent should be able to develop the skill to actuate its 
motors to move the cameras in an appropriate way to generate more information structure. 
 
 



 
Figure 6: Mutual Information. The measure is over patches of 2X2 pixels, and the copper scale is in bits. 
(A) Left image (B) Average left and right image (C) Average inverse log polar image. M parameter 8 
 

 
Figure 7: Integration. The measure is over patches of 2X2 pixels, and the copper scale is in bits. (A) Left 
image (B) Average left and right image (C) Average inverse log polar image. M parameter 8 
 

 
Figure 8: Complexity. The measure is over patches of 2X2 pixels, and the copper scale is in bits. (A) Left 
image (B) Average left and right image (C) Average inverse log polar image. M parameter 8 
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Figure 9: Experimental Results. In the figures A to D green is the right camera, black is the left camera, 
cyan is the average of both images and blue is the Average inverse log polar transform (A) Mutual 
information (B) Entropy (C) Complexity (D) integration. 

 
 
 

 
Figure 10: Log Polar Pixels Information Structure. In the figures A to D green is the right camera, black is 
the left camera, cyan is the average of both images, blue is the Average inverse log polar transform and red 
is the average log polar transform (A) Mutual information (B) Entropy (C) Complexity (D) integration. 

 
Experiment 2. Our first experiment shows that the proposed sensory morphology structures the 

information in the visual stream. However, given that the log-polar transform is a fixed 

transformation, the robot has to move the cameras in order to keep the vergence point always in 
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the center of the image. We expect that this coordinated behavior should create information 

structure among pixels and actions. This is important in the case where the robot has to learn this 

behavior, because it establishes a relation among sensor inputs and motor actions through the 

interaction that the agent carries out with the environment. The purpose of this second 

experiment is to test how these pixels are also strongly related to the actions. Here we used a 

color based tracker, where the object to track was modeled with a normalized color model 

(Breazeal et al., 1999). To follow the cup on the rotating table with both cameras and force the 

vergence behavior on the cup, the tracker controls the 3 DOF of the eyes of the robot. We 

recorded 12300 frames for each trial. Each frame had 60X60 pixels and for each morphological 

condition (the average of the left and right image, the inverse log polar of the average of the left 

and right image, the log polar of the average of the left and right image, and the left camera.) we 

run 8 trials for 4 different M parameters of the log polar transform. 

 

In this experiment we analyzed the blue color component from the images (given that this 

component was the most relevant feature for the tracker) and the three values of the encoders.  

For all the calculations we took all the 12300 frames. To estimate the probability density function, 

we used 8 bins per dimension. As in the first experiment, to calculate mutual information, 

integration and complexity, we used statistical formulae that allow the calculation of entropies 

from the covariance matrix, under the assumption that these covariances were generated by a 

stationary Gaussian random process (Cover et al., 1991). 

 

 

 
Figure 11: Results Information Structure Pixels and Encoders. In the figures A to D  cyan is the average 
of both images, blue is the Average inverse log polar transform and red is the average log polar transform 
(A) Mutual information (B) Entropy (C) Complexity (D) integration. 
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The most important result here is that the actions and the pixels also present the same 

information structure distribution. The pixels in the center are more related to the encoders, and 

they are also the pixels with the data from the vergence region and are sampled at a bigger rate 

than the rest thanks to the log-polar image (Figs. 11 and 12). 

 

 
Figure 12: Information Structure in the Image. The measure is over the one pixel and the set of encoder 
values, color scale is in bits (A) Mutual information (B) Integration (C) Complexity (D) Entropy. This result is 
with M parameter equal to 8 

 
Experiment 3. Even if there is information structure among actions and pixels and among the 

pixels themselves, it does not mean that the actions can explain how the pixels are going to 

behave, what enables the robot to learn a skill, like vergence, could be the necessity for better 

prediction. In this regard, the proposed sensory morphology is given a correct set of signals that 

are related but it is not clear if the future sensory input could be expressed in terms of the actual 

sensory input and actions. From the previous experiments we infer that the selection of the 

actions is important because the vergence point has to be synchronized with the log-polar 

transform, therefore the fixation point has to be always in the center of both cameras and all the 

3DOF that we can manipulate with the control are crucial for this task.  

 

In this experiment we measured the causal relation among sensor and motor actions in order to 

see if the control quality (behavior) can affect the causality. In this sense, the possibility to explain 

the future based in the actual data and actions, hence validating that the vergence procedure is 

an action capable of increasing the causal relations among the pixels and the actions.  We used 

the color based tracker to change the attention of the robot to 4 different objects. The tracker 

changed the color model to enable the robot to verge on the different objects in a predefined 

sequence. The objects where distributed in the field of view to force the robot to change the value 

in the 3 DOF of the cameras. In order to be able to measure the influence of vergence, we 

developed three different controllers: (1) the left camera performed random movements while the 

right one followed the sequence; (2) a controller that allowed parallel motions of the left and right 

camera; and (3) a controller that forced the vergence with both cameras to focus the object. 
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For the three controllers we tested four different log-polar transformations (M parameter equal to 

8,12,20 and 40); for each transformation we ran 8 different trials; and we recorded 12300 frames 

(60X60 pixels each) for all different kind of images (left, right, average, log polar transform and 

inverse log-polar transform). The causality was calculated using transfer entropy. We took the 

grayscale image and calculated the casualty against each DOF with lags in [-25, 25]. In the 

Figures 14 to 17, we present the average causality per pixel of the sum of all causalities per DOF. 

 

 
Figure 13: Experimental Setup. The robot is looking the deferent cups in the sequence represented with 
the numbers, after 7 the robots starts again with 1. 

 
 
In this experiment happens something similar than in the previous ones, when the controller is 

doing an appropriate vergence the pixels with the highest causal relation stay also in the center of 

the image and in the vergence region, for this reason the inverse log polar transform and average 

got a similar result as it appears in Fig 14. 

 

 
Figure 14: Causality in the Vergence Experiment. In the figures A to C appears the average per pixel of 
the 3DOF causality summation, blue is the sensor to motor and red is motor to sensor (A) Left Image (B) 
Average Image (C) Average Inverse Log Polar Image with M parameter equal to 8 

 
 

 

 
Figure 15: Causality Results with Vergence in the Log Polar Transform. In the figures A to C appears 
the average per pixel of the 3DOF causality summation, blue is the sensor to motor and red is motor to 
sensor (A) M parameter equal to 40 (B) M parameter equal to 12 (C) M parameter equal to 8 



 
With the log polar transform we are sampling exactly those pixels for that reason in average we 

achieve more causality because even though when we reduce the amount of data with the 

sampling, this data has more causal relation like it is presented in the Fig 15.   

 
 

 
Figure 16: Causality Results with Different Controllers in Average Image. In the figures A to C appears 
the average per pixel of the 3DOF causality summation, blue is the sensor to motor and red is motor to 
sensor (A) Controlling all the 3 DOF (B) One camera is tracking while the second one is moving in the same 
way (C) adding noise to the motion of the camera 
 
The different controllers allow us to see how different “qualities” in the behavior could help the 

robot to model the environment. Given first the structure among pixels themselves, second the 

relation among pixels and actions and third the causal relation among pixels and actions, an 

appropriate behavior that exploits the sensory morphology is going to produce the biggest 

structure and causal relation enabling the robot model the environment, and what is more 

important the robot is able to build up this model through the development of a coordinated 

behavior in this case keep the vergence and the center of the image in the object of interest. 

 
 

 
Figure 17: Causality Results with Different Controllers in Log Polar Image M parameter equal to 8. In 
the figures A to C appears the average per pixel of the 3DOF causality summation, blue is the sensor to 
motor and red is motor to sensor (A) Controlling all the 3DOF (B) One camera is tracking while the second 
one is moving in the same way (C) adding noise to the motion of the camera 

 

 
4. Discussion 

 
With the previews experiments we can see how the average and log polar transform have to be 

coordinated in order to get a good structure in the sensory data. This coordination is developed 

with the controller, which not just develop structure among pixels and actions but in addition the 

more precise the vergence and the center of the image (log polar origin) are kept, the bigger the 

causal relation among pixels and actions. These relations can be exploited by the robot to 

develop a model of the environment, and given that the learning capability is limited by the 

predictive capacity of the sensor and action, hence the robot is limited by the “quality” of its 



control. In this sense the sensor morphology and the combination of different sensory modalities 

restrict the possible behavior in order to be able to increase the predictability of the actions of the 

robot.  

 

The vision system allows us to generate a belief of the environment beyond the simple 3D 

perception or spatial distribution. Thanks to the interaction with the world and the coupling with 

other sensory inputs, visual information permits the prediction of taste, weight, heat transfer or 

even how soft an object is. Our capacity to use our attention towards what it is needed, like a 

reflex, and the capacity of prediction of our visual system, are two features that makes our vision 

system a fascinating tool to handle the world, and it is an incredibly complex system that is not 

easy to isolate or emulate in an artificial platform.  

 

In the recent years there is a lot of work in the development and implementation of attention 

systems based in the different features extracted from our brain (Itti & Koch 2001, Dankers et al., 

2007, Ruesch et al., 2008). This bottom up approach produces a weighted average among all the 

features, called saliency map, which is used to select the next point of attention. In general this 

approach is decoupled from any possible task, and the final behavior with this kind of mechanism 

could be explained as just explorative. However, changing the gains of the weighted average 

using a top down modulation to drive the attention coupled to a given task. With this approach all 

the tasks have to be defined previously and they cannot be a result from the development of the 

artificial creature.  

 

In comparison Bruce et al. (2009) presented a new approach defining the new focus of attention 

using a measurement of information gain. Here the attention is not the result of a linear 

combination of features, but a specific region with higher information compare with its own 

neighborhood. This approach allow us to think that the attention system could be a tool that 

maximizes the information needed in a particular task, and given that tasks like grasping or 

reaching involve a great variety of different sensory systems such as vision, propioception, 

haptics, and a motor action system for such tasks, we have to take in account the information 

gain, not just in the visual field, but also in the different modalities.  

 

Early behaviors developed by human infants like vergence, therefore, could be explained as the 

result of such mechanism that is combining the propioceptive system and the vision in order to 

provide better information about the world, helping to develop superior models of the world. 

 

Storck et. al, 1995 has shown how the information gain could be used as a measure of curiosity, 

and how this helps an artificial agent to develop a better model of the world. The disadvantage of 

this approach is the huge amount of data required to build the probability density functions (PDF) 

needed to calculate the information gain in this specific problem, given that the pixels are the 

variables used to calculate the PDF. Nonetheless, this is not the unique way to determine the 

artificial curiosity, and if the attention is driven for this mechanism, then in order to be able to use 

the attention system to perform a task such as grasping or reaching, it would be natural to think 

that the agent has to incorporate not just the pixels but also the other sensors involved in the task 

(haptic system, propioceptive system). 

 

Curiosity in this approach is a tool that helps the agent to build a model of the world. The agent 

gains experience from the interaction, with the experience it delimits the possible actions or series 

of actions that compounds a skill. The attention system is a skill that the agent is able to develop 

and it is in charge of providing better information of the surroundings. In these terms this system 



looks for increasing the prediction level of the agent in terms of the relations with other sensors 

and its own actions. Assuming this, the control is defined then in terms of this goal of 

understanding better the world, and since all the actions of the control are defined in this 

framework, then a simple action as vergence could be analyzed in this way. Having this in mind 

we develop these experiments to show how the morphology of the sensory input push the agent 

to execute an specific behavior in order to achieve an information structure that enable the robot 

its own development.  

 

In our first experiment we show how the log-polar transform and the average of the two images 

are beneficiated when the robot focuses to a specific object, and the vergence is in the center of 

the image, where the log polar transform has the biggest amount of receptors. These 

characteristics increase the information structured among the pixels. This means that when the 

agent with such sensors is using vergence is able to find relations that help to understand the 

environment. For this reason the agent has to develop this skill in order to have better information 

structure, which also enable the agent to model the sensory input better and therefore allows it to 

identify predicted errors. 

 

In the second experiment, we present the relation between the sensory input and the actions, 

which are highly coupled as is also showed in Lungarella et al. ( 2006). This is important because 

the log polar transformation is fixed, all the time the center of the image has a bigger number of 

receptors, which should also be the vergence point, and in order to perceive better the 

surrounding world the robot does not have another choice than move its cameras. The 

information measures show that the actions are strongly coupled to the visual information.  

 

However the agent should be able to explore the environment and through this exploration it has 

to find the appropriate actions to be able to model the world, reducing the possible space of 

actions towards those actions that give it a better explanation of the input. The viability of this task 

lies in the necessity of causal relations among the actions and sensors. We followed this thought 

in the third experiment. Here we show how different kind of movements can increase or decrease 

the causal relation among the set of variables. An important result here is that the vergence plays 

a fundamental role because, as appears in Fig 15 and 16. The causal relation is increased 

meaning that the future sensory input is better explained, enabling the agent to model better the 

world.  

 

5. Future Work 
 

In all the experiments we can see that the log polar transform samples the right pixels, those with 

higher information structured and causality. These pixel are fewer than the pixels in the raw 

image therefore the log polar sensor reduces the computational load, additionally improves the 

learning because those are the pixels with the higher structure even when the amount of inputs 

are reduced to 17%. With a normal Cartesian pixel array the rest of the pixels in the learning 

process are just noise, due to the lack of structure, and in this sense the perception of the agent 

is decreased. This bring the opportunity to apply directly all the possible artificial curiosity 

algorithms to handle directly the data. 

 

This approach allows us to think in new models of attention that takes into account different 

sensory modalities in order to find behaviors that allow the agent develop models of the 

environment and with them beliefs built from the experience because the nature of the sensory 

input determines the possible set of actions and behaviors for the agent.  



 

In the perspective of human infants our results show that the behavior is a result of better 

information structure, actions like vergence allow us to predict better to understand better the 

environment, and the integration of several sensory modalities can generate therefore more 

complex final behaviors in order to achieve structure in several sensory systems, this should be 

the approach to analyze the constitutive principles of the relation of the vision and hand in a task 

such as grasping.   
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