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Introduction

Abstract.

Our representation of the world is built upon our sensation and our actions, two processes
which are closely related and co-evolve. Studying movement generation is a way to access this
representation and to build a model of it. In this review, we aim a describing functionally the
generation of movement and its interrelation with somatosensory information in animals, with
a special focus on humans. Doing so, we hope to get further insights on the representation of
actions in humans.

We focus particularly on the generation of discrete and rhythmic movements, as different
mathematical tools are needed to model them. We mainly question the correspondence between
discrete and rhythmic movements on one side and voluntary movement and rhythmic automatisms
n the other side. Basing ourselves on the concept of generalized motor programs, we conclude by
arguing for a classification of movements relative to the parameters needed to characterize them,
and, in particular, to timing.

In a second part, we present some interesting concepts for mathematical modeling, and mainly
dynamical systems theory and optimal control. In parallel, we recall some of the major models
present in the literature, emphasizing their pros and cons and their similarities with what has been
observed in humans.

Our aim is to develop a model of movement generation in humans and to apply it to the baby
robot iCub, in the framework of the European project RobotCub. We will focus particularly on
adaptive, visually-guided locomotion, that we see as discrete corrections, driven by sensory infor-
mation, of a basic rhythmic locomotor pattern. We strongly believe that taking inspiration from
the human system may help us in developing a highly capable robotic controller, this robot being
in turn an interesting platform for neuroscientists to test hypotheses on movement generation.

In the framework of the European project RobotCub, we aim at building a functional model of the
human motor system for applications in neuroscience and in robotics. Indeed, applying a model of
the human motor systems to robots is interesting for at least two reasons:

• Testing hypotheses on movement generation: neuroscience theories relative to movement gen-
eration can be corroborated or discarded by testing them on robots;

• Bringing new ideas to control robots: human are capable of dealing with high redundancies and
of generating complex movements in a very efficient way that no robot can challenge yet.

In order to achieve this modeling, we start by reviewing some concepts developed by neurobiol-
ogists on movement generation and then compare them to the mathematical models present in the
literature. Doing so, we hope to contribute a little in bridging the semantic gap between neuroscience
and mathematics.
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We focus mainly here on the mathematical distinction between discrete (aperiodic and finite) and
rhythmic (periodic) movements, a distinction that we think can be explained relatively to their rela-
tionship with time. Indeed, discrete movements are defined relatively to their overall duration, with
no other specific temporal structure, whereas rhythmic movements are not finite (and thus have not a
real duration) and are defined relatively to a temporal repetition of some spatial features.

This distinction seems, at first sight, to find echo in the notions of rhythmic automatisms and
voluntary movements defined by neurobiologists. Indeed, three types of movement are distinguished
relatively to the way there are produced Kandel et al. (2000):

1. Reflexes;

2. Rhythmic automatisms1;

3. Voluntary movements.

Reflexes and rhythmic automatisms are spontaneous, whereas voluntary movements are the result
of a (motor) plan. Thus, higher cortical areas are required for voluntary movements. As we will see in
the following, automatisms are mainly generated at the spinal cord and the brain stem levels whereas
the generation of voluntary movement involves areas of the cerebral cortex.

It is interesting to question if rhythmic and discrete movements as kinematic outcomes of the hu-
man motor system correspond to, respectively, rhythmic automatisms and voluntary movements as
movement generation processes. Indeed typical examples of rhythmic automatisms are breathing,
chewing and steady-state locomotion, whereas reaching is one of the key example of a simple volun-
tary movement.

How far this correspondence between rhythmic movements and rhythmic automatisms in one hand
and discrete and voluntary movements in the other holds is a fundamental question. Indeed, Grillner
(1985) pointed out that ”whether a motor act should be regarded as voluntary or automatic is not
primarily a matter of which type of movements is involved, but rather the context in which it occurs”.

This work is composed of two main parts, namely the biological principles and the mathematical
modelings. In the first part, relative to biology, we focus on rhythmic automatisms and voluntary
movements and two related concepts, central pattern generators and generalized motor programs.
In the second part, mathematical models are considered. Some leading approaches, as dynamical
systems theory and optimal control are presented and illustrated by examples from the literature.

Before starting this review, we give a brief overview of the current opinions on the movements
generation in humans as found in neurobiology textbooks. We based ourselves on the reference books
”Principles of neural science” (4th edition) by Kandel et al. (2000) and ”Motor control and learning:
a behavioral emphasis” (4th edition) by Schmidt and Lee (2005). Note that this presentation is not
meant to be exhaustive, but to give a general idea of the mechanisms involved in movement generation.

Motor structures

Movement generation is achieved through three motor structures organized hierarchically and corre-
sponding to different levels of abstraction. Namely, those structures are:

1. the cerebral cortex, which is responsible for defining the motor task;
1Rhythmic automatisms (as motor generation processes) are often referred to as rhythmic movements in the literature.

However, to avoid confusion with rhythmic movements as kinematic outcomes of the motor system, we will rather use the
term automatisms.
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Figure 1: Hierarchical organization of the three motor structures. At the highest level, the cerebral cortex
projects directly to the spinal cord and the brain stem. The spinal cord also receives input from the brain stem.
Two independent entities, the cerebellum and the basal ganglia have be proven necessary for smooth movements
and postures. They interact with both the cerebral cortex and the brain stem.

2. the brain stem, which elaborates the motor plan to execute the motor task;

3. the spinal cord, which generates the spatiotemporal sequence of muscles activation to execute
the task.

In addition, the cerebral cortex and the brain stem are influenced by the cerebellum and the basal
ganglia which can be considered as feedback circuits. All these structures are modulated by so-
matosensory information, at different levels of complexity, i.e. different levels of processing. How-
ever, experiments of deafferented patients have shown that somatosensory feedback is not needed
to perform most of the movements (which does not mean that it is not involved in the movement
generation).

Marsden et al. (1984) have introduced the term motor program, which is define as ”a set of muscle
commands which are structured before a movement begins and which can be sent to the muscle with
the correct timing so that the entire sequence is carried out in the absence of peripheral feedback.”
Motor programs are also used to explain the rapidity with which we react to stimuli and the stereo-
typy present in human movements. Indeed motor programs may be defined as sequences of simpler,
predefined movements, the motor primitives, having highly stereotyped spatial and temporal charac-
teristics. Assuming the existence of primitives has the great advantage of reducing the dimensionality
of the movement generation problem.

Figure 1 represent a schematic view of the motor structures of the central nervous system (CNS).
Note that the cerebellum and the basal ganglia act on the cerebral cortex through the thalamus, which
is not represented on the figure for clarity reasons.

Hierarchically, at the lowest level, the spinal cord contains neuronal circuits (the central pattern
generators) responsible for reflexes and rhythmic automatisms such as breathing and scratching. Note
that those circuits can be modulated by higher areas.

Then, in the middle, the brain stem receives input from the cerebral cortex and project into the
spinal cord. It contributes to the control of posture by integrating visual, vestibular, and somatosensory
information. It can also control more distal limb muscles involved in goal directed movements.

The cerebral cortex oversees the brain stem and the spinal cord; the primary motor cortex and some
other premotor areas project directly to the spinal cord (corticospinal tract) and regulate motor tract
from the brain stem.

Date: 28/09/2007
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Observations on patients with lesions in the cerebellum and basal ganglia have shown that the
cerebellum is involved in timing and coordination of movements, as well as for learning of new
motor programs, whereas basal ganglia is believed to be involved in the motivation and selection of
appropriate behavioral responses.

The somatosensory information is crucial for movements execution as it provides the represen-
tation of the space in which the task has to be performed and also of the state and posture of the body.
A constant update of this information is needed to ensure smooth movements.

The somatosensory information is also used to control the movement which is executed. This
control can be feedback or feed-forward. Feedback control is used by the spinal cord to maintain a
given position and to modulate the force needed to perform the task. A feed-forward control is used
for anticipation and is thus also based on experience; it can also modify the feedback response.

Invariants of motion

A striking features in movement generation is the invariants that have been uncovered by neuroscien-
tists during the last decades and which may reflect the features encoded by motor programs. We recall
briefly those invariants here (see Gibet et al. (2004) for details), as any sustainable model of the motor
system should reproduce them:

� Invariance of the velocity profile for reaching movement: i.e the global shape of the veloc-
ity profile is approximatively bell-shaped with an asymmetry which depends on the speed of
movement.

� Isochrony Principle and Fitts’ Law: this law reflects the invariance of the execution duration of
a movement in relation to its amplitude. In other words, our reaching movements tend to have
a duration given by:

T = a+ b log2

(
2A
W

)
or T = a+ b log2

(
A

W
+ c

)
with A the amplitude of the movement, W the width of the target, a, b constants determined in
an empirical way and c = 1 or c = 1/2 depending on the author.

� Two-Third Power Law: There is a constant relationship between the kinematics of elliptical
motion and the geometrical properties of the trajectory (shown by Viviani and Terzuolo). This
leads to the so-called Two-Third Power law:

ω(t) = kC(t)2/3

where ω is the angular velocity,C the curvature of the end effector trajectory and k is a constant.

� Smoothness of the movement: the MPG system produce the trajectory which smoothness is
maximal by minimizing the mean square of the jerk (Minimum Jerk Model).

Date: 28/09/2007
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Chapter 1

Rhythmic and discrete movements

Mathematically, defining rhythmic and discrete movements is an easy task. Rhythmic refers to pe-
riodic signals, discrete to aperiodic ones. However, when considering movements that we actually
perform, the task start being tricky, the major problem being that movements are finite in time and
that the formal, mathematical definition of periodicity is thus unusable. Moreover inner variability of
movements and modulations by the environment (contacts for instance) change the basic nature of the
performed trajectory.

In a recent paper, Hogan and Sternad (2007) have developed a taxonomy to classify discrete and
rhythmic movements. A discrete movement is defined as a movement which occurs between two
postures, where postures stand for a non zero interval of time where (almost) no movement occur.
Rhythmic movements are categorized in four subsets, namely periodic, almost periodic, transiently
periodic and recurrent. Interested readers are referred to the article for a more precise definition of
those terms.

However, as the authors point out in the article, those two definitions are not exclusive. So-called
rhythmic movements can occur in between postures, and discrete movements can be repeated so to
become periodic. Thus, they propose a measure of smoothness of the trajectory to distinguish discrete
from rhythmic movements.

This measure leads them to the conclusion that some rhythmic movements are not discrete (i.e.
are not repetition of discrete movements), a conclusion which is in agreement with the result obtained
by Schaal et al. (2004) using a human functional neuroimaging experiment. Indeed, some planning
cortical areas activated during point-to-point movements of the wrist are not activated when the same
joint executes a rhythmic movement.

Even if the measure proposed by Hogan and Sternad (2007) seems to allow to describe the relative
”rhythmicity” or ”discreteness” of movements, we would like to distinguish rhythmic and discrete
movements in a more functional way. Indeed, even if smoothness is a suitable criterion to distinguish
the kinematic outcomes, the interesting question from a control theory point of view is where this
smoothness comes from and how it can be explained relatively to the structure of the motor system.

Moreover this smoothness quantification speaks more for a continuum between rhythmic and dis-
crete movements than for a distinction. However, if this is the case, it is important for us to define
where this continuity lies relatively to the functional process of trajectory generation.

A review of the literature leads to the observation that rhythmic and discrete movements have
mainly been studied separately, although some interesting (relatively recent) articles on their combi-
nations exist. This distinction is mainly due, from our point view, to the two following, interlinked
factors:

7
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• Rhythmic and discrete movements are representative of two different levels of movement gen-
eration, i.e. automatic and voluntary levels. Indeed, locomotion is a typical example of a rhyth-
mic behavior that can be found in species with very low cognitive abilities, whereas a behavior
as reaching can only be observed in more evolved ones. This implies different investigation
techniques; most of the studies on rhythmic movements have been made on (decerebrates) ver-
tebrates and invertebrates, whereas discrete movement is usually studied using kinematic data
or brain imaging recordings of humans or primates.

• Rhythmic and discrete movements have not been studied per se in general, but mainly as out-
comes of some specific processes in the trajectory generation, namely the generation of periodic
outputs by the central pattern generators (CPGs) at the spinal level for the rhythmic movements
and the trajectory encoding process by the brain and the integration of sensory information for
discrete movements.

Those two issues make a review of rhythmic and discrete movements difficult in the sense that any
comparison between the numerous studies on the subject is almost impossible due to the fact that the
methods, the point of view and the neurophysiological level of investigation are different.

It is interesting to question whether the distinction between discrete and rhythmic movement is
an artefact due to different scientific approaches or if both movements are indeed produced indepen-
dently. In this latter case, another question that needs to be answered is whether those two kinematic
outcomes may correspond to the two inner processes of automatisms and voluntary movements.

In the next section, we briefly review some important results relative to rhythmic and discrete
movements. We start by considering both types of movements separately, or more precisely, we start
by considering rhythmic automatisms and voluntary movements, for the reasons mentioned above.
We conclude by reporting some interesting results on their combination.

1.1 Rhythmic movements and automatisms

There is strong evidence that the general pattern of the rhythmic automatisms is mainly produced
by the spinal cord in vertebrates (see Stein et al. (1997) for a review). Historically, the assumption
that rhythmic motor patterns are generated by the central nervous system has been made by Brown
almost one century ago. Since then, experiments with spinalized cats1 provided further evidences that
the main features of rhythmic movements as locomotion are produced by the spinal cord (Stein and
Smith (2001); Marder (2000)).

1.1.1 Central pattern generators

Central pattern generators (CPGs)2 are neural networks capable of producing coordinated patterns of
rhythmic activity without any rhythmic inputs from sensory feedback or from higher control centers.

1The term ”spinalized cats” refers to cats with their spinal cord transected so to isolate the segments controlling the hind
limb musculature from the rest of the CNS. In decerebrate cats the spinal cord and the lower brain stem are isolated from
the cerebral cortex. Those two preparations are used to investigate the role of the spinal cord and of the brain stem and
cerebellum respectively. To study the role of sensory input together with the sensory and reflex pathways, deafferented and
especially immobilized preparations are used. Deafferented means that the sensory innervation of the muscles is prevented
by transected the appropriate roots (and thus the appropriate axons). In immobilized preparation muscles is paralyzed using
an specific inhibitor, thus impeding any movements. Movements obtain using immobilized animals is often refer to as fictive
locomotion.

2The whole subsection is taken from Ijspeert (2007).
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As reviewed in Delcomyn (1980), they underly many rhythmic behaviors both in invertebrate and
vertebrate animals. At the beginning of last century, two different explanations were proposed for the
creation of the rhythms underlying locomotion. One explanation was that rhythms are the result of
a chain of reflexes in which sensory feedback plays an important role in triggering switches between
different parts of a locomotor cycle.The other explanation was that rhythms were generated centrally,
i.e. by neural networks that do not require input from the periphery (e.g. sensory neurons) for gener-
ating cyclic behavior. Graham Brown for instance proposed a conceptual model called the half-center
model in which two populations of neurons that are mutually coupled with inhibitory connections and
that possess a fatigue mechanism produce alternating rhythmic activity.

There is now very clear evidence that rhythms are generated centrally without requiring sensory
information. For instance, one can extract, and isolate from the body, the spinal cord of the lamprey (a
primitive fish), and it will produce patterns of activity, called fictive locomotion, that are very similar
to intact locomotion when activated by simple electrical or chemical stimulation Cohen and Wallen
(1980); Grillner (1985). Similar fictive locomotion has been reported in salamander Delvolvé et al.
(1999) and frog embryos Soffe and Roberts (1982). More generally CPGs have now been reported in
many other animals, see Stein et al. (1997) for a good review.

Similar experiments have also shown that CPGs are distributed networks made of multiple coupled
oscillatory centers. Lamprey spinal cords have approx 100 segments, and small sections of the spinal
cord (e.g. 1-2 segments) are capable of producing rhythmic activity. The same has been observed
in salamanders Delvolvé et al. (1999). This is in agreement with Grillner’s proposition that CPGs
are organized as coupled unit-burst element with at least one unit per articulation (i.e. per degree of
freedom) in the body Grillner (1985). Cheng et al. (1998) report experiments where these units can
be divided even further with independent oscillatory centers for flexor and extensor muscles.

While sensory feedback is not needed for generating the rhythms, it plays a very important role
for shaping the rhythmic patterns. This is fundamental for keeping CPGs and body movements co-
ordinated. Several experiments demonstrate the important influence of sensory feedback on CPG
activity. Mechanically moving the tail of the lamprey will for instance induce CPG activity that is
frequency-locked with the frequency of the mechanical movements, and this over a quite large fre-
quency range Viana Di Prisco et al. (1990); McClellan and Jang (1993). Similarly, a mechanically
driven treadmill can induce a normally looking walking gait in a decerebrated cat Rossignol (2000),
and even induce gait transitions to trot and gallop when the treadmill is accelerated (unpublished work
by Graham Brown, as described in Amstrong (1988)). These experiments show a tight coupling be-
tween CPG and sensory feedback. This coupling is also visible in the fact that many reflexes are
phase-dependent Pearson and Gordon (2000); Pearson (1995); Rossignol et al. (2006) (i.e. reflexes
have different effects depending on the timing within a locomotor cycle). This is due to the fact that
CPGs and reflex pathways often share interneurons Pearson (1995). See Rossignol et al. (2006) for
an in depth review of the interaction of CPGs and sensory feedback mechanisms.

Sensory feedback is also involved in the mechanisms underlying the short-term and long-term
adaptation of CPGs according to Pearson (2000). He postulates that the long-term phenomenon are
driven by the body and limbs proprioceptors together with central commands and neuromodulators.
Kawato (1996) proposed that persistent errors detected by proprioceptors are used to recalibrate the
magnitude of the feed forward command.

1.1.2 Locomotion in cats

We now take a closer look at the locomotion of the cat, as this subject has been extensively studied
for more than forty years. Experiments on locomotion of neonatally decorticated cats (with the basal
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(Motor System )
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(Motor System )
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Feedback
(Moving Limb)

Regulation of 
the stepping pattern

Figure 1.1: Schema of the cat (automatic) locomotion system (without the motor cortex). Thick lines represent
the main influence. Note that the cerebellum is essential to obtain refinement of the trajectory and coordination
of the limbs. A copy of the signals produced by the CPGs is sent to the cerebellum.

ganglia intact) have shown that they are not only able to perform natural looking locomotion, but also
that this locomotion is goal-directed: searching food and eating, taking care of their newborns for
female cats, ... However, cats with lesions at the diencephalon (i.e. the part of the brain containing
the thalamus and the hypothalamus) loose this ability and tend to move in a machine-like fashion.
Basing ourselves on Grillner (1985) we draw a schema of the functional mechanism, based on CPGs,
of locomotion generation (see fig 1.1).

Sensory information is involved in the switching from extension to flexion. Indeed, a signal is
sent when the limb attains its most posterior position. Although CPGs do not need this signal to start
the swing, it allows the cat to modulate the timing and the amplitude of the steps relatively to the
environment.

The cerebellum is also an important functional entity in the locomotion system, as cats lacking
this part of the brain move in a coarse fashion and encounter equilibrium problems. The cerebellum
receives information from the moving limbs and an efference copy (blueprint) from the CPGs. After
having processed this information, the cerebellum modulates the motoneurons to adapt the command
to the current state of the limb.

As for the brain stem, it is responsible for the onset and and the termination of the motor behavior,
as well as for the modulation of direction and speed.

Finally, the motor cortex is responsible of the adaptive control of the locomotion, i.e. it is neces-
sary for precise foot placement and visually guided locomotion for instance, which require processed
sensory information.

1.1.3 From vertebrates to humans

However, we shall ask ourselves how far the results we obtained can be extended to humans. The
existence of CPGs in the human system is well accepted nowadays, even if identification of such a
spinal network has never been possible yet, to the best of our knowledge. For instance humans with
spinal lesions are not able to walk spontaneously.

However, strong evidences is provided by studies on infants (Thelen (2000); Yang et al. (1998);
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Lamb and Yang (2000)). Indeed human infants show spontaneous stepping immediately after birth.
This phenomenon has been observed in anencephalic infants, providing evidence that circuits respon-
sible for this behavior are located at the spinal or/and at the brain stem level.

Taking inspiration from cat locomotion, the time delay for acquiring voluntary locomotion may be
due to the time needed for pathways from the brain stem to the spinal cord to mature during infancy.
In addition, complex, adapted locomotion (rather than simple alternation of flexions and extensions)
may depend on the development of the pathways between the motor cortex, the brain stem and the
cerebellum.

Studies of disabled patients have shown that in the absence of sensory information, gross move-
ment control is preserved, even if peripheral information is necessary for precise movement organi-
zation and control (for reviews, see Jeannerod (1988) or Gandevia and Burke (1992)). Thus, sensory
information seems not to be essential to produce a basic pattern of movement.

1.2 Discrete and voluntary movements

Discrete movements are movements which can be referred to as movements with an identifiable be-
ginning and end. Reaching is a key example of such a behavior and it has been extensively studied in
the framework of voluntary movements both in primates and humans.

Voluntary movements have several features that distinguish them from automatisms and reflexes.
First of all, center to the notion of voluntary movement, is the will to perform a given behavioral task.
Then, not only the movement is performed to achieve the task in the best possible way, but responses
to sensory stimuli are also modulated relatively to this task. Finally, they are improved by experience
and learning (Kandel et al. (2000)).

1.2.1 The cerebral motor structure

We discuss here in more details the motor structure in the cerebral cortex. As before, we base ourselves
on Kandel et al. (2000). We focus on the functional architecture of this structure, that is depicted
on figure 1.2. The motor cortex can be subdivided in two areas, the primary motor cortex and the
premotor cortex (M1), this latter being formed of the lateral (dorsal and ventral) premotor areas (PMd
and PMv) and of the supplementary motor area (SMA).

It is interesting to note, that the sensory structure, the motor cortex and the SMA are organized in
a somatotopic way, i.e. parts of the body are represented by different location in the motor areas and
that the size of the area is representative of their degree of cortical control. This map is plastic, in the
sense that it evolves with learning.

Some cortical axons connect with the spinal cord, both with motor neurons and interneurons.
Signals for premotor cortex and from the primary motor cortex seem to overlap at the spinal level.

Experiments using electric simulations have shown that one of the role of the primary motor cortex
is to switch on and off certain groups of muscles (low level control). A certain muscle can be acti-
vated by stimulating several locations, and stimulating a particular location activate several muscles.
It seems that in the monkey motor cortex, the center of the area activates distal muscles, then a sur-
rounding area allows to control together proximal and distal muscles while the more peripheral area
are related to proximal muscles only.

Moreover, the primary motor cortex is involved in the specification of the features of the move-
ments and of their modification relatively to changing conditions (high level control). An interesting
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Figure 1.2: Functional schema of the architecture of the cerebral motor structure, represented by the big box
in the middle. Main afferent and efferent connections are also shown on the graph.

feature is that single neurons seem to encode force, whereas direction is encoded by population of
neurons.

As for the premotor cortex, the SMA (and the presupplementary motor areas, not shown on the
figure) are involved in learning sequences of movement and in timing. The lateral areas contribute to
the processing of the sensorimotor information (together with areas 5 and 7 of the postparietal cortex)
and to the selection of action.

The prefrontal area 46 provides working memory, i.e. a short time memory lasting the time of
the task, for instance for location of obstacles. The sensorimotor cortex provide then the essential
proprioceptive information to the motor cortex.

Note that this ”traditional” view on the functioning of motor cortex is challenged by the works
of Graziano et al. (2002), who made experiments where regions of the brain of the monkey where
stimulated for 500 ms (the time scale of normal reaching and grasping movements), this duration
being longer than in traditional studies. They found out that those simulations were resulting in a
complex movement ending in the same location whatever the initial position of the limb was. They
conclude from this that instead of encoding regions of the body, the motor cortex was a representation
of different complex postures.

In addition, recent research on mirror neurons (Fogassi et al. (2005); Nakahara and Miyashita
(2005)) have shown that specific but different neurons are activated in the motor cortex when, for
instance, food is grasped to be eaten or to be put in a trash bin. One can thus assume that purposes of
behaviors are encoded in the motor cortex rather than trajectories. Evidences for a similar functional
coding, in the sense of a definition of the movement relatively to its goal, has been uncovered by
Bizzi’s group at the spinal level (Bizzi et al. (2002)). This lead to the model of force fields and
equilibrium point, that we discuss in the next section.
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1.2.2 Force fields in the frog and equilibrium point

Bizzi’s group provided some evidence for the concept of motor primitives. Indeed, they brought to
light that movements were generated in a modular way by the spinal cord in frogs (Tresch et al. (1999);
Bizzi et al. (2002)). More precisely, stimulating specific areas of the spinal cord, they observed that
the limb was moved in the direction of the same endpoint point (the equilibrium point), whatever
the initial position of the limb was. They called the set of the vectors corresponding to the directions
obtained by the stimulation force fields. Furthermore they found out that stimulating two areas si-
multaneously was almost equivalent to a simple linear combination of the vector of the force fields
corresponding to the stimulation.

Thus, small set of modules organized by the spinal cord have been identified; by simply combining
those modules, a wider range of movements can be produced. Moreover, experiments have shown that
such combinations techniques are used by the spinalized frog during its natural behaviors (Kargo and
Giszter (2000)).

However, the most interesting part of the concept of force fields is that movements seems to be en-
coded relatively to a particular final position, or final goal, rather than relatively to the exact trajectory.
This idea is present in the equilibrium point hypothesis (EPH)(see for instance Feldman et al. (1998)).
In short, in the EPH, only the endpoint of each muscle is defined and the typical characteristics of the
trajectories (e.g the invariants of motion we listed in the introduction) are emerging properties of the
dynamics of the body.

The EPH starting point is a modeling of muscles as springs and dampers. Indeed, movements
are produced by a contraction of an agonist muscle and the extension of the antagonist, which cor-
responds, in the spring and damper model, to a change of the respective rest position of the springs
representing the muscles, the damping term allowing to prevent oscillations. Movements arise when
the shift of the rest positions exceeds a given threshold.

However, in order to forecast movements, the threshold has to be a complex function reflecting the
history and the current state of the muscle. Thus models such as the λ model have been introduced
(Feldman et al. (1998)). In this model, the actual activation threshold λ∗ is governed by the following
equation:

λ∗ = λ+ µv + ρ+ f(t)

where λ andµ are control commands, ρ represents non central terms due to inter-muscular interactions
and f(t) reflects the history dependent change in the threshold.

Note that the EPH is a disputed model and there is still an open debate on this subject. Indeed,
on the contrary of the EPH, an alternative school of thought called the internal dynamics approach
emphasizes the role of learning, i.e. of motor program progressively acquired through experience and
optimizing some given criteria (see for instance Hinder and Milner (2003) and the answer by Feldman
and Latash (2005)). In addition, experiments on deafferented patients (Nougier et al. (1996)) seem to
provide evidence for amplitude coding rather than position coding.

1.2.3 Generalized motor programs

We now discuss an important concept in movement generation, that is motor equivalence. This term
has been introduced by Hebb in early 50s to refer to the observation than whatever the size of your
handwriting and the part of the body with which you write (dominant or nondominant hand, mouth),
it appears the same (Lashley; Bernstein (1947)). This leads to the conclusion that the brain does not
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encode muscles activation or effector trajectory but rather spatial features of it3.
Another evidence for spatial features encoding is the fact that a reaching movement will always

have approximatively the same duration for instance, whatever the distance to the target is. Moreover
the velocity and acceleration profile will be the same.

Those observations has lead to the definition of generalized motor programs (GMP)(Schmidt
and Lee (2005)). Recall that a motor program is a predefined sequence of stereotyped actions called
motor primitives. In a generalized motor pattern, the spatial features of the primitives depend on some
parameters that have to be specified to the program (i.e. the duration of the movement, the size of the
handwriting) .

This generalization is helpful to deal with two limitations of the usual motor programs, namely the
size of the storage (how many programs?) and the specification problems (how to adapt?). We have
chosen to talk about GMP in the discrete section as the specification of the parameters is a voluntary
(though not necessarily conscious) process.

A GMP can be seen as a class of action (Schmidt and Lee (2005)), stored in memory and respon-
sible for a unique pattern of activity, this pattern being formed of the characteristic features of the
activity being performed but being subject to parametrization.

The question of knowing which features the GMP encodes is not trivial. A convenient view point
is the impulse-timing hypothesis which postulates that GMP controls (indirectly) when to turn on and
off muscles and the force of the contraction of those muscles. Under this assumption, the GMP may
contain the following fixed structures, according to Schmidt and Lee (2005):

• the sequence of actions (which is independent of the muscles; it is postulated that the same
program is used to write with the right hand or the mouth for instance)

• the temporal structure or relative timing

• the force structure or relative forces

and the following parameters

• the overall duration

• the overall force

• the muscle-selection parameters.

Note that if the concept of GMPs does not exclude rhythmic movements, in the sense that patterns
normally generated automatically can be used in a GMP, however the specification of parameters is
voluntary and thus the resulting movement can no longer be considered as a pure automatism.

1.3 Combination of discrete and rhythmic movements

Most studies on the combination of rhythmic and discrete movements are built on the same scheme: a
particular joint (the finger or the elbow generally) has to be moved from an initial to a target position
(discrete movement) while oscillating (rhythmic movement). The oscillation is either physiological

3At first sight, this conclusion seem to speak for the internal dynamics model rather than for the equilibrium point
hypothesis. However, levels of abstraction should be taken in account here, in the sense that a specification of spatial,
meaningful features at the cortical level may be represented through equilibrium points specification (i.e via-points) at the
spinal level.
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(Goodman and Kelso; Adamovich et al. (1994); Michaels and Bongers; Sternad et al. (2000)) or
pathological (Wierzbicka et al.;Elble et al. (1994); Staude et al.). For a very nice review on this
subject, the reader is referred to Sternad (2007).

In all these experiments, an entrainment effect was observed, that is the discrete movement is
phase-coupled with the rhythmic movement, in the sense that the onset of the discrete movement
occurs preferably (though not always) during a specific phase window of the oscillations. Goodman
and Kelso showed that this phase window correspond to the peak of momentum of the oscillations in
the direction of the discrete movement. Interestingly, it is a well known fact that professional pistol
shooters press the trigger in phase with their involuntary tremor, while beginners try to immobilize
themselves before shooting.

In terms of EMG, the burst initiating the discrete movement occurs approximatively at the time
where the EMG activity for the rhythmic movement would have been expected without this perturba-
tion. This effect is thus refer to as ”burst synchronization” by De Rugy and Sternad (2003).

As for the effect of the discrete movement on the rhythmic one, Adamovich et al. (1994) observed
the following:

1. The oscillations rapidly attenuate during the discrete movement and resume after the peak ve-
locity of the discrete movement;

2. There is a phase resetting of the oscillations after its attenuation;

3. The frequency tend to be higher after the discrete movement.

Moreover, they found that once the discrete movement is initiated, it is performed independently
from the rhythmic one. Basing themselves on monotonic hypothesis (St-Onge et al. (1993)), i.e. an
hypothesis according to which the command of the discrete movement stops at the time of its peak
velocity, they conclude that discrete and rhythmic movements are excluding each other at the neural
level, in the sense that they cannot co-occur. However, their kinematic outcome outlast them and thus
overlap.

Sternad et al. (2000)performed the same experiment, although at lower frequencies (2-3Hz instead
of 5-7Hz). In their experiment, they observed a significant influence of the rhythmic movement on the
discrete movement (lower frequencies of oscillations lead to longer discrete movements), which is in
contradiction with the results obtained by Adamovich et al. (1994). Moreover the higher frequency
observed in the previous study appeared to be a transient phenomenon. Thus their hypothesis is that
both movements may co-occur, but that in this case they are inhibiting each other.

It is difficult to draw a conclusion on whether the movements occurs in sequential or superimposed
way at this stage. However, here the main task is the discrete one and it may thus be interesting to
consider a situation where the predominant task is the rhythmic one. For instance, in foot placement
during locomotion, the discrete correction of the step has to occur in a way so to perturb as little as pos-
sible the rhythmic ongoing movement. The results may thus be different and possibly complementary
to the ones reported here.

1.4 Concluding remarks on the notion of timing

We have started this chapter by questioning whether rhythmic and discrete movements were two
different, independent processes or if they were two outcomes of the same process. In a recent article,
Schaal et al. (2004) have provided evidence that rhythmic (arm) movements are not discrete, as some
cortical areas involved in discrete movements where not involved in the execution of the rhythmic
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ones. However it still may be that discrete movement is a special case of rhythmic movements, i.e.
discrete movements may be truncated rhythmic movements.

We have seen that voluntary movements and rhythmic automatisms are known to result from dif-
ferent processes (i.e. from different neural pathways). How far this distinction correspond to discrete
and rhythmic movements is a possible way of questioning their differences. Indeed, when consid-
ering ”simple” movements, answering is easy: rhythmic movements are automatisms and discrete
movements are voluntary ones.

However, let us take the simple example of visually-guided locomotion, which interest us particu-
larly in the framework of the RobotCub project (Righetti and Ijspeert (2006); Degallier et al. (2007)).
Turning left or right, avoiding obstacles some steps in advance or climbing stairs are situations where
the rhythmic movement is modified in a discrete fashion to adapt to cerebral representation of the
task. Now, the resulting kinematic outcome may be considered as (transiently) rhythmic or as discrete
(because it is not periodic in the strict sense).

We have seen that Hogan and Sternad (2007) have proposed a measure of smoothness to classify
discrete and rhythmic movements. A more functional alternative may be to use the notion of timing.
Indeed, recent studies have postulated that different timing processes could be involved depending on
the features of the task to be performed. Named automatic or cognitively controlled timing (Lewis
and Miall (2003)), or emergent and explicit timing (Spencer et al. (2005)), the two processes are
involved in the timing of respectively periodic, highly predictable movements at the spinal level and
of discontinuous and unpredictable ones at the cerebral one.

Indeed, patients suffering from a lesion at the cerebellum exhibit a timing impairment which is
observable only in the case of discontinuous movements, in the sense of non-repetitive movement
(Spencer et al. (2005)). In addition, in their study using neuroimaging of the brain, Schaal et al.
(2004) observed a much higher activity in the cerebellum (among other areas) for discrete movements
than for rhythmic ones, even when performed by the same joint, in the same range.

Thus the notion of timing may offer a functional criterion to characterize the level of rhythmicity
or discreteness of a movements, or we would rather say to the level of automatism or volition involved
for a given kinematic outcome. Indeed in the case of adaptive locomotion, climbing stairs for instance,
the timing of the discrete correction of the rhythmic one is explicit (it is defined relatively to the visual
perception of the stairs for instance) whereas the timing for the automatic part of the locomotion is
controlled at the spinal level.

Some other concepts, as the level of processing of the needed information may be relevant. Indeed,
Schneider and Shiffrin (1977) distinguish the controlled and the automatic processing of information;
the controlled process is relatively slow, volitional and attention demanding (as in obstacle avoidance,
for instance, where the visual information has to be processed), whereas the automatic one is fast,
not volitional (and often unavoidable (Underwood and Everatt (1996))) and demands no attention (as
the contact information of a foot with the ground which is fed back into the CPGs in locomotion).
This difference in information processing seems to correspond to the different types of movements:
no processing of the information for reflexes, an automatic processing for rhythmic automatisms and
finally a controlled processing for voluntary movements. It may thus also be used to classify the
movements, for instance accordingly to the brain areas involved in the elaboration of the motor plan
(or in the parametrization of the GMP).

Note that under the modularity hypothesis, and assuming that motor primitives are superimposed
(as postulated by Sternad’s group), one can argue that a kinematic outcome is composed of discrete
and rhythmic parts and thus that the question of knowing whether it is more rhythmic or more discrete
is less relevant. This hypothesis is moreover consistent with the notion of GMP and leads to the
following, three-layered architecture for a controller
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• a planning level: decision of the motor program to be executed and of the parameters of this
program;

• a motor program: the selection of the motor primitives and their relative timing;

• a trajectory generation level: the temporal sequences of the angles (or torques).

To a certain extent, this architecture represents the three structure of the general motor system we
describe at the beginning. However, we still need to define the needed motor primitives. In accordance
to the fact that rhythmic movements are not special case of discrete movements, two hypotheses are
possible:

• two different motor primitives are required for discrete and rhythmic movements or

• discrete movements are truncated rhythmic movements.

In the latter case, timing consideration are of great importance: indeed in rhythmic movement
the general duration of the movement has no influence on the timing between the muscles activation,
whereas in discrete movement the general duration of the movement modifies this relative timing.
Thus discrete and rhythmic movements may still be considered as different processes, but at the tim-
ing level rather than at the generation one.

To conclude, in this section we have tried to get further insight into the generation of rhythmic and
discrete movements. We believe that while rhythmic movements are probably grounded in automa-
tisms and discrete movements are mostly learned and thus originally voluntary, this distinction is not
clear anymore in everyday movements. Indeed, outside the laboratory, the fact of considering move-
ments such as locomotion as automatisms is obviously questionable, as well as considering reaching
(and grasping) as voluntary.

This observation reflects the interrelation between the different motor structures; each of them
correspond to a different level of representation of the task, which modulate each others. Movements
initially learned become automatic with time and automatisms modulate the learning of new tasks.

As for classification of discrete and rhythmic movements, we have suggested to characterize them
relatively to the parameters needed to define it, and in particular timing. For us, this characterization
seems coherent with the notion of motor programs encoding key features of the movements.
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Chapter 2

Mathematical models for the generation
of discrete and rhythmic movements

In this chapter, we present the some of the existing models of the combination of discrete and rhythmic
movements. Almost all of them are built using dynamical system theory (Schöner and Santos (2001);
Schaal et al. (2000); De Rugy and Sternad (2003) and Ijspeert et al. (2002)), except the approach from
Biess et al. (2006), which is based on optimal control, and the model by Staude et al. to explain the
phase entertainment effect.

We thus start with a brief tutorial on dynamical systems theory to make the understanding of those
approaches easier. We then present the different models based on this theory. Finally, after a short
introduction to optimal control, we present the work of Biess et al. (2006). We conclude by some
considerations on the possibilities of combining both approaches.

2.1 The dynamical systems approach

We present here, in brief, some concepts of dynamical systems theory. Indeed, this approach has
proven to be well suited for the control of robot in many applications (see, for instance, Schöner and
Dose (1992); Tani et al. (2004); Fukuoka et al. (2003); Ijspeert et al. (2003); Pongas et al. (2005);
Degallier et al. (2006); Righetti and Ijspeert (2006)), moreover, as we will see, dynamical systems
are particularly well-suited for the modeling of discrete and rhythmic movements, as they have two
characteristic types of solutions, namely, fixed point and limit cycles, which correspond respectively
to discrete and rhythmic signals.

In addition, dynamical systems have several interesting properties: (i) they generate trajectories
in real-time with little computation1, (ii) they can smoothly modulate the trajectories when control
parameters (e.g. parameters defining the goal posture) are changed, and (iii) they can be designed to
have useful stability properties against perturbations.

2.1.1 Short tutorial on dynamical systems

This short tutorial is meant to introduce some key features of dynamical systems that will prove to be
useful for modeling purposes. It is thus by far not exhaustive. It is based on the excellent introductory
textbook on dynamical systems of Strogatz (2001).

1Optimization techniques, for instance, lead to excellent results but the computation time needed to find a solution is
often such that those techniques are not suitable for real-time control.
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By dynamical systems, it is meant either differential equations (continuous time) or iterative maps
(discrete time). Here we focus on the continuous case for obvious reasons. Moreover, as we are
concerned with the evolution of the system with time (and not with other variables) we are only
interested in ordinary differential equations2, i.e. in systems where all the differentiations are made
relatively to the same variable, time in our case. A typical example is the equation of a damped
harmonic oscillator,

mẍ1 + bẋ1 + kx1 = 0,

where ẋ1 stands for dx1(t)
dt and ẍ1 for d2x1(t)

dt2
. Note that here the function x1 depends only on

time (t) so that the derivatives are not partial. The solution x1(t) of the system is obtained either by
analytical or by numerical integration, i.e. using iterative methods as Euler or Runge-Kutta. In any
case, the initial conditions are needed, i.e. x1(0) and ẋ1(0) have to be specified.

The order of the equation is the order of the highest derivative appearing in the equation. The
equation mentioned above is of second order for instance.

On nonlinearity

The equation of the damped harmonic oscillator we mentioned above is said to be linear, because it
can be turned into a system of linear equations by setting ẋ1 = x2, this leading to the system

ẋ1 = x2

ẋ2 = − b

m
x2 −

k

m
x1

where no nonlinear terms, as x2
2, x1x2 or sin(x1) for instance, appear. Note that this process turn an

equation of order n into n first order equations.
An example of a nonlinear system is the equation of a swinging pendulum of length L

ẍ1 +
g

L
sin(x1) = 0.

Using the same trick as before, i.e. setting x2 = ẋ1 we obtain

ẋ1 = x2

ẋ2 = − g
L
sin(x1)

which is obviously not linear, because of the sine term. Even this simple equation is difficult to solve
analytically. Indeed, contrarily to linear systems, nonlinear systems can not be decomposed relatively
to each equation because of their nonlinear interaction. However this difficulty is exactly what makes
them appropriate to model natural phenomena, where everything is interlinked.

2In opposition with partial differential equations, which are equations involving partial derivation of functions of several
variables. A typical example is the wave equation derived by d’Alembert

∂2u(x, t)

∂t2
− c2 ∂

2u(x, t)

∂u2
= 0,

where c is a constant corresponding to the propagation speed of the wave.
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Types of solutions

Dynamical systems have to major types of stable solutions: fixed points and and limit cycles. Those
types of solution are a nice representation of discrete and rhythmic movements respectively. We
will thus discuss in more details those two types of solutions that we illustrate with two well-known
examples of systems exhibiting such solutions, namely Matsuoka oscillators and the VITE model.
We have chosen those two systems in particular because they are inspired from biological observations
and are widely used in the literature.

Fixed-point systems

A system of differential equations ~̇x = ~f(~x) is said to have a fixed point solution ~x∗ if ~f( ~x∗) = 0.
Thereafter, arrows on vectors are omitted.

Different types of stability for fixed points x∗ are usually distinguished, namely

1. locally attracting fixed points, that is points to which any trajectory starting sufficiently close
will eventually converge, i.e. x∗ is attracting if ∃δ > 0 such that if ||x(0) − x∗|| < δ, then
limx→∞ x(t) = x∗;

2. globally attracting fixed points, that is points to which any trajectory will eventually converge,
i.e. x∗ is attracting if ∀x(0), limx→∞ x(t) = x∗;

3. Liapunov stable fixed points, that is points such than any trajectory starting sufficiently close
to them will remain close to them, i.e. x∗ is Liapunov stable if ∀ε > 0, ∃δ > 0 such that if
||x(0)− x∗|| < δ, then ||x(t)− x∗|| < ε, ∀t ≥ 0.

4. asymptotically stable fixed points, which are points that are both Liapunov stable and attract-
ing.

Note that a solution which is Liapunov stable but not attracting is sometimes called neutrally stable.
To illustrate the notion of fixed point, we present in the following the VITE model, which is a

bio-inspired model as we will see. This model is frequently used to generate discrete movements in
the literature.

The VITE Model:
A Neural Command Circuit for Generating Arm and Articulator Trajectories

Daniel Bullock and Stephen Grossberg,
in Dynamic Patterns in Complex Systems, 1988.

The VITE (Vector Integration To Endpoint) model has been developed by Bullock and Grossberg
to simulate planned and passive arm movements and has later been extended to speech articulator
movements. In this model, the final length of the muscles is specified (the Target Position Command
(TPC)) - and thus this model is closed to the Equilibrium Point Hypothesis - together with the overall
speed of the movement (the GO command). These quantities are converted into trajectories through
automatic processes modeled as the following set of differential equations for each of the degrees of
freedom (dofs) involved in the generation of the movement:{

v̇ = α(T − p− v)
ṗ = g[v]+
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VITE
T

β(t)
GO command

TP command p(t)

Figure 2.1: Schema of the architecture of the VITE model

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

Trajectory
Velocity Profile

0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2.2: Left: A typical trajectory obtained using the VITE model (position is plotted relatively to time).
Here α = 100 and γ = 0.5. The trajectory asymptotically converges to the target T = 3. The bell-shaped
velocity profile is also shown on the graph. Right: Illustration of the notion of an asymptotically stable fixed
point. Whatever the initial condition is (p(0) =0, 2, 3.5 or 4 here), the trajectory eventually converges to the
target T = 3, in the same amount of time.

where [v]+ = max(0, v)3, α is a constant and T is the target of the movement (given by the TPC).
p represents the current position of the dof (and thus p(t) represents the trajectory of the dof) and

gv is the rate of change of this position (and thus g(t)v(t) is the speed of the movement).
This system has a global, asymptotically stable fixed point in p = T . The variable v is used to

update the present position p with respect to the remaining distance to the target (T − p) so that it
converges to T at a rate controlled by g(t). g(t) is a time-varying function corresponding to the GO
command, as controlling the rate of convergence allows for synchronization of the multiple muscles
involved in a given movement, even if the amount of contraction differs from one to another.

Figure 2.2 illustrates the output of such a system. More precisely we have considered the equivalent
system4: {

v̇ = α(α/4(T − p)− v)
ṗ = (eγt − 1)2v

where the GO command g(t) = (eγt − 1)2 is chosen so to ensure that the velocity profile is bell-
shaped.

Thus this systems allows for a very easy synchronized control of the all dofs which trajectory is
ensure to eventually converge to the specified target. However, as the duration of the movement is
constant whatever the displacement is, attention must be paid to the velocity which is not bounded in

3As v represents the activity of hypothetical neurons controlling the difference between the target position and the present
position (the difference vector), it can only be positive or null.

4The restriction to the positive part of v is omitted for simplicity reason.
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Figure 2.3: Left: The output trajectory of an Hopf oscillator is a sine. Right: When plotting y against x, the
limit cycle appears clearly. The space (x, y) is called the phase plan.

this system.

Limit cycle systems

The second type of solutions we are particularly interested in are limit cycle, i.e. asymptotically stable
periodic solutions. Systems exhibiting such solutions are often called oscillators. For a more detailed
description of oscillators, the reader is referred to Buchli et al. (2006).

To illustrate this type of solution and the notion of couplings and synchronization, we start by
considering an Hopf oscillator, which is governed by the following set of equations{

ẋ = (µ− r2)x+ ωy
ẏ = (µ− r2)y − ωx

The limit cycle of such an oscillator for µ > 0 is a sine of frequency ω and of amplitude
√
µ, as

illustrated on figure 2.3. For µ < 0, the system has a stable fixed point in x = 05. This system can be
easily coupled to another oscillator with variables x̄ and ȳ6, in the following way:{

ẋ = (µ− r2)x+ ωy + c(cos(θ)x̄− sin(θ)ȳ)
ẏ = (µ− r2)y − ωx+ c(sin(θ)x̄+ cos(θ)ȳ)

where the c is the gain of the coupling and θ is the phase offset between both signals. Illustration of
this phenomenon are given on the left of figure 2.4.

Under some stability constraints, such couplings will induce a stable phase-locked behavior be-
tween the two oscillators, i.e. a synchronized behavior, which is a nice property to have in many
applications, where one needs coordinated movements (e.g. in locomotion). Synchronization is a
very important feature of coupled dynamical systems and itis interesting to take advantage of it when
designing models for coordinated movement controllers. We refer the reader to the book of Pikovsky
et al. (2001) for basic introduction to synchronization concepts.

5This qualitative change of the solution (i.e. between a limit cycle and a fixed point here), is called a bifurcation, and
more precisely an Hopf bifurcation in this case.

6To avoid high modifications of the amplitude of the movement due to the couplings, the vector (x̄, ȳ) is often normal-
ized.
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Figure 2.4: Left: Two oscillators with the same initial conditions (in dash-dot line and in dot line) are coupled
with a reference oscillator (plain line) with a phase offset of π and 0 respectively. The synchronization occurs
after an initial transient phase. Right: Discrete movements can be modeled by truncated rhythmic movements.

Recent advances in dynamical system theory are worth mentioning in this context since they pro-
vide tools for the design of synchronized coupled dynamical systems. It is worth noticing here the
fundamental work of Golubitsky and Stewart on the generic existence of symmetric periodic solu-
tions in networks of coupled dynamical systems. The interest of the approach is that by looking at
the structure of the coupling between each dynamical system and more specifically by looking at the
symmetries of the system, they are able to prove the existence of periodic solutions having the desired
phase locked relations, in a manner that is independent of the internal dynamics of the each dynamical
system (Golubitsky et al. (1999);Golubitsky and Stewart (2002);Golubitsky et al. (2005)). A com-
plementary approach from Pham and Slotine (2007) also introduces simple sufficient conditions for
asymptotically stable synchronization using nonlinear contraction theory.

Note that is is also possible to generate a discrete movement by taking a well chosen part of the
periodic signal, see 2.4 on the right. This may be a way of modulating both types of movement through
the same generator if the hypothesis that discrete movements are truncated rhythmic movements is
made. We will present such a model, by Schöner and Santos (2001), later in this section.

Sustained Oscillations Generated by Mutually Inhibiting Neurons with Adaptation
Kiyotoshi Matsuoka,

in Biol. Cybern, 1985.

In this article, Matsuoka presents a oscillator modeling mutually inhibiting neurons. This model is
widely used in the literature and is referred to as the Matsuoka oscillator. It is based on the concepts
of membrane potential and firing rate. It also takes in account the phenomenon of adaptation, also
referred as fatigue or self-inhibition, which account for the gradual decrease of the output of a firing
neuron after the initial, rapid increase of the signal.

We present here the model for two mutually inhibiting and self-inhibiting neurons, which can be
used to represent two neurons controlling two antagonist muscles, a model which is depicted of figure
2.5. The set of equations modeling the activity of a neuron inhibited by an other neuron, which output
is denoted by x̄, are the following:{

τ1ẋ = −x− βy + S − ω[x̄]+

τ2ẏ = −y + [x]+
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x, y

S

x, y
[x]+

[x]+ - [x]+

y y
[x]+

Figure 2.5: Schema of the Matsuoka’s model of two inhibiting neurons with self-inhibition. Empty arrows
denotes inhibitive couplings.
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Figure 2.6: Left: Trajectories generated by a couple of inhibiting and self-inhibiting Matsuoka oscillators. In
plain the difference between the two oscillators is represented, whereas in dot and in dash are the outputs of both
oscillators. Right: Illustration of the limit cycle of a neuron in the Matsuoka oscillator. Whatever the initial
condition is ((x0, y0) ∈ {(0.1, 0.1), (0.1, 0.3), (0.3, 0.1), (0.3, 0.3)} here), the trajectory eventually converges
to the limit cycle (in plain).

where the dynamics of the other neuron are governed by the same set of equations, i.e.{
τ1 ˙̄x = −x̄− βȳ + S − ω[x]+

τ2 ˙̄y = −ȳ + [x̄]+

where [x]+ and [x̄]+ are the output of both neurons (i.e. the firing rate of the neurons), x and x̄
represent the membrane potential7 and y (ȳ) controls the self-inhibition of the neuron. S is the tonic
input, β and ω are the coupling weights of the self-inhibition and of the inhibition by the other neuron
respectively and τ1 and τ2 are time constants. The general output χ of the system is given by χ =
[x]+ − [x̄]+.

This system is oscillatory under the following conditions (Arsenio (2000))

β > ω − 1, ω > 1 +
τ1

τ2
.

and its amplitude depends linearly on the tonic input S and its frequency is proportional to 1√
τ1τ2

.
The resulting limit cycle can be shaped using parameters τ1, τ2, S, β and ω. An illustration of such a

7Note that neurons have a threshold value (θ) below which they do not fire, thus the variable x has to be understood has
the difference between the actual membrane potential (xmp) and the threshold, i.e. x = xmp − θ.
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limit cycle and the corresponding trajectories are given in figure 2.6, where we coupled to inhibiting
oscillators, which are given by the set of equations:{

ẋ = −x− 3y + S − 3.5[x̄]+

0.5ẏ = −y + [x]+

and {
˙̄x = −x̄− 3ȳ + S − 3.5[x]+

0.5 ˙̄y = −ȳ + [x̄]+

and the general output is given by χ = [x]+ − [x̄]+.

Some considerations on central pattern generators

As was said before, CPGs are organized as a network of coupled oscillatory centers. The dynamics
of this network is mainly embedded in the topology of the network, i.e. in the links between the
centers, rather than in the local mechanisms underlying the rhythm generation. This feature is present
in the dynamical system theory and most of the CPGs models used in robotics involve networks of
coupled differential equations. Such models include connectionist models, vector maps and systems
of coupled oscillators (see Ijspeert (2007) for details).

CPGs for modeling locomotion have been widely used in the literature. For a nice example, we
refer the reader to the model developed by Righetti and Ijspeert (2006) for baby crawling.

The main disadvantage of the approach is that dynamical systems are difficult to design, due to
the fact that the system itself does not encode only one trajectory, but a whole space of trajectories
corresponding to the different possible states of the system. Indeed, there is no clear methodology on
how to design a system of differential equations whose solution is a given, arbitrary trajectory. Some
researches in this direction have been taken on and have lead to promising results, see for instance
Golubitsky et al. (2005), Ermentrout and Kopell (1994)), Slotine et al. (2004) and Righetti et al.
(2006).

However, under the assumption that the movement is generated in a modular way, design difficul-
ties is not a drawback, in the sense that, in this case, the complexity of the trajectory emerges from
the combination of the modules rather than from the modules themselves, which encodes simple,
stereotypical trajectories. Moreover, this facilitates the required stability analysis of the dynamical
systems.

We now present some interesting approaches on dynamical systems through some chosen articles.
It is aimed to underline some interesting properties of such modelings rather than to be a complete
summary of the articles.
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2.1.2 Modeling discrete and rhythmic motor primitives

We present here some existing models for the generation of rhythmic and discrete movements. In the
first model, discrete movement can be seen as a special case of rhythmic movement, whereas in the
second one, two separate motor primitives exist.

Control of movement time and sequential action through attractor dynamics:
A simulation study demonstrating object interception and coordination

Gregor Schöner and Cristina Santos,
in the proc. of the 9th Intelligent Symposium on Intelligent Robotic Systems, 2001.

We present here the model developed by Schöner and Santos. This model is built to generate
discrete movements, but is based on limit cycles, which makes it easily extendable for the generation
of rhythmic movements.

In this model, discrete and rhythmic movements are both modeled using limit cycles, i.e. discrete
movements are interrupted rhythmic movements, which implies that timing is crucial. Thus they de-
velop a two-layered system, i.e. a layer able to generate both oscillations and stationary states (”timing
layer”) and another layer controlling the switching between those two states (”neural dynamics con-
trol”). Note that the timing of the movement has to be very precise in this model, which may be a
drawback when implemented on robots.

neuronal
dynamics

layer
timing layer

bi ui

x

x

Figure 2.7: Schema of the control architecture of the model of Schöner and Santos.

Mathematically, the equations of the timing layer are given by:{
ẋ = −a|uinit|(x− xinit) + |uhopf|(b(1− r

2)x− ωy)− a|ufinal|(x− xfinal) + gwn
ẏ = a|uinit|y + |uhopf|(b(1− r

2)y − ωx)− a|ufinal|y + gwn

where a and b are constant controlling the speed of convergence of the system and ”gwn” stands for
gaussian white noise. In this system, |ui| (i=initial, hopf, final) represents neurons which are never
active (i.e. equal to one) at the same time. The timing of activation of the three ”neurons” is controlled
by the neuronal dynamics which are given by the following equations:

αu̇init = µinituinit − |µinit|u
3
init − c(u

2
hopf + u2

final)uinit + gwn

αu̇hopf = µhopfuhopf − |µhopf|u
3
hopf − c(u

2
init + u2

final)uhopf + gwn

αu̇final = µfinalufinal − |µfinal|u
3
final − c(u

2
init + u2

hopf)ufinal + gwn

Each equation correspond to the normal form of a degenerate pitchfork bifurcation controlled by
parameters µi8 with an extra term to ensure that only one neuron is active, i.e any solution with more
than one neuron active is destabilized.

8That is the system has one stable solution (u = 0) when µi is negative and two stable ones (ui = 1 and ui = −1)
when µi is positive.
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The neuronal dynamics allow to decompose the movement in three phases by only changing the
parameters µi (i=initial, hopf, final):

• Initiation phase (µinit is dominant); the right part of the equation correspond to a stable station-
ary solution at x = xinit, i.e. the system stays in its initial position (initial postural state).

• Movement phase (µhopf is dominant); the right part of the equation corresponds to an Hopf
oscillator of amplitude equals to 1 and frequency equals to ω. The referential of the system is
chosen so that xinit = 0 and xfinal = 1, so that the amplitude of the limit cycle corresponds to
the length of the movement. Timing is done such that the system follows approximatively half
of the limit cycle and thus reaches the target.

• Termination phase (µfinal is dominant); the right part of the equation correspond to a stable
stationary solution at x = xfinal, i.e. the system reaches and stabilizes at its target position
(target postural state).

The switching between the different phases is achieved using the parameter µi; the neuron with
the larger µi will take the advantage on the others. We can rewrite µi under the form µi = m + nβi,
where βi ∈ [0, 1] and m,n are constant depending on the system. With this notation, in the absence
of movement, binit = 1 and bhopf = 0 = bfinal. Initiation of the movement is triggered by setting
binit = 0 and bhopf = σ(x − xcri) where σ is a sigmoid function which tends to 0 when x tends to
xcri = 0.7xfinal(= 0.7). Finally, bfinal = 1− bhopf.

Note that α is set too a much higher values than a, b so that the two systems have two different
time scales. In this way, x can be considered as a parameter at the neuronal level, whereas transient
states of the neurons (ui) can be neglected at the timing level.

We think that the two-layered architecture of this system is interesting because it induces dynamics
for both the generation of the trajectories and the specification of the parameters of those trajectories.
This approach is consistent with the different levels of movement generation in humans, where the
cerebral cortex provides the relevant parameters to the brain stem and the spinal cord which gener-
ates the joint trajectories accordingly. Moreover, the mutual influence of those dynamics reflect the
interrelation between the different entities of the human motor system.

Nonlinear dynamical systems as movement primitives
Stefan Schaal, Shinya Kotosaka and Dagmar Sternad,

in the proc. of the IEEE International conference on Humanoid Robotics, 2000

Schaal, Kotosaka and Sternad have developed a model based on a programmable pattern genera-
tors (PPGs), which is an extension of the concept of motor pattern generators (or generalized motor
programs). Indeed, PPGs are seen as generators of trajectories with some predefined characteristics
but also with some open, task-specific parameters that need to be specified.

In this model, movements are generated through three layers, as illustrated on figure 2.8: the com-
mand signal which is triggered by the difference between the actual position and the desired target
position or amplitude for discrete or rhythmic movement respectively. Then, a generator for discrete
movements and a couple of inhibiting Matsuoka oscillators for rhythmic movements are used to gen-
erate a desired velocity signal. Finally, this velocity is integrated to obtain a desired displacement (in
terms of position).

In this model the movement is triggered by the distance the dof has to cover (through the difference
vector), this distance being used to determine the speed of movement (a larger distance involving a
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larger speed). This modeling is consistent with the observation that reaching movements have always
the same duration, whatever the distance is.

Target position
Target amplitude Difference vector Desired velocity Trajectory

Figure 2.8: Schema of the three steps architecture of the model developed by Schaal et al. The architecture,
although not the equations, are the same for discrete and rhythmic movements.

In addition, the discrete system is modeled by a fixed-point system, where the target value is called
the rest position θ0. A point to point movement is thus seen has a modification of the rest position of
the arm, a approach which is close to the EPH. Note that the new rest position can be specified either
directly in the joint space, or firstly in the cartesian space and then in the joint space through inverse
kinematics transformations. This latter approach is more convenient as most discrete task are defined
relatively to the cartesian space rather than relatively to the joint space.

The fixed-point system for one dof is given by the following set of (weakly) nonlinear differential
equations 

∆vi = [Ti − θo,i]+
v̇i = av(−vi + ∆vi)
ẋi = −axxi + (vi − xi)co
ẏi = −ayyi + (xi − yi)co
ṙi = ar(−ri + (1− ri)bvi)
żi = −azzi + (yi − zi)(1− ri)co
θ̇o,i = ap([zi]+ − [zj ]+)co

where i ∈ {1, 2} and j ∈ {2, 1} and are representative of the agonist and antagonist muscles and of
their reciprocal influence. In the two first equations (similar to the VITE model), a difference vector
∆vi, which represents the difference between the target and the actual position, is passed through a
differential equation to simulate the activation pattern of the muscles which depends on this difference
vector. Then, the second couple of equations smoothes the signal, with yi representing the velocity
of the signal. The variable c0 can be tuned to modify the speed of the movements. As the velocity yi
is (strongly) asymmetric in this model (whereas it is approximately bell-shaped in reality) a variable
r is added to correct this asymmetry. Finally zi is the desired, unscaled velocity signal that is finally
turned into a angle displacement by integration of the last equation.

As for the rhythmic movement, it is modeled as oscillations around the rest position defined by the
discrete system. The limit cycle system used is given by the following set of equations:

∆ωi = [A− θr,j ]+
ξ̇i = aξ(−ξi + ∆ωi)
ψ̇i = −aψψi + (ξi + ψi + βζi + w[ψj ]+ +Kα

i )cr
ζ̇i = −aψ

5 ζi + ([ψi]+ − ζi) cr5
θ̇r,i = ψi
θr = cr([θr,1]+ − [θr,2]+)

In this system, the two first equations are equivalent to the difference vector of the first equation,
except that this time it correspond to the difference between the desired amplitude and the actual
position. Then, a couple of inhibitory Matsuoka oscillators are used to generate a velocity signal
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(whereas in the original model, it was used to generate a position signal). In this model, the two
oscillators correspond to two antagonist muscles. Finally, the difference between the two oscillators
is integrated to obtain the desired trajectory.

To control precisely the offset between each oscillator, they are all coupled to a reference oscillator
α of parameters θα1 and θα2 . The coupling terms Kα

i (i ∈ {1, 2}) of the previous system are then given
by:

Kα
1 = −Aα(wα11[θαr,1]+ + wα21[θα2 ]+)

Kα
2 = −Aα(wα12[θαr,1]+ + wα22[θα2 ]+)

where the weight matrix Wα(γ) is given by

Wα(γ) =
(

γ 1− γ
1− γ γ

)
with γ ∈ [0, 1]. Setting γ to 0 will result in in-phase oscillations and setting it to 1 in an offset of π.
Intermediate values of γ correspond to intermediate offsets. Aα controls the coupling weight to the
reference oscillator.

This model achieves to reproduce movements containing many human-like features, as coordina-
tion of movements or the bell-shaped velocity profile for instance. Its particularly interesting because
it provides a robust mathematical way of modeling the concept of generalized motor programs and
the concept of motor primitives.

We have chosen to present here those two approaches because they do not only take advantages
of the numerous nice properties of dynamical systems, but they also provide a nice modeling of some
important features in human movement generation. Indeed, the model developed by Schöner and
Santos interlinks the dynamics of the movement itself and those of the parameters of the movement,
which reflects the interrelation between the different levels of representation of a motor plan observed
in humans. As for the model presented by Schaal, Kotosaka and Sternad, it is close to the model of
generalized motor programs in biology and provides an promising way of tackling the complexity and
the adaptiveness of human movements.

2.1.3 The phase entrainment effect: dynamical systems and classic approaches

In the previous chapter (i.e. in section 1.3), we have mentioned the phase entertainment effect, i.e.
the fact that, during a rhythmic movement, the onset of a discrete movement is phase-coupled to the
rhythmic movement. More precisely, the EMG burst corresponding to the discrete movement occurs
approximatively at the same time as the rhythmic EMG burst would have been expected without this
initiation (De Rugy and Sternad (2003)). Kinematically, this onset seems to likely take benefit from
the rhythmic movement, i.e. to occur as a continuation of the rhythmic movement, rather than acting
against it.

We present here two different models which explain the phase entrainment effect differently. In
the model proposed by De Rugy and Sternad (2003), the mechanism underlying the coupling between
the onset of the discrete movement and the rhythmic movement is due to synchronization tendencies,
whereas in the model proposed by Staude et al. this phase-locked behavior is due to threshold phe-
nomena. This latter model does not use dynamical systems, but is presented here as an alternative
approach.
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The discontinuous nature of motor execution II.
Merging discrete and rhythmic movements in a single-joint system

- the phase entrainment effect
Gerhard Staude, Reinhard Dengler and Werner Wolf,

in Biol. Cybern., 2002

Staude et al.’s have built a model on the assumption that superimposition of discrete and rhyth-
mic movements ”involves a threshold-linear mechanism at the level of motor execution: the dynamic
properties of the muscles and its reflex connections may cause nonlinear interactions between simulta-
neously executed motor task, thus restraining a general linear superimposition of kinematic patterns”.
Mathematically, the summation of the command signal for discrete and rhythmic movements is fil-
tered through a limiter function which restrains the output of the sum to positive values smaller than
a given upper bound.

More precisely, this model, illustrated on figure 2.10, is built on the assumption that the level of
muscle activation Σ+ is given by a threshold function of the type:

Σ+(t) = [φ(t) + cd(t) + cr(t)]
γ
0

where cd(t) and cr(t) represent the control commands for discrete and rhythmic movements respec-
tively, φ(t) is a positional and velocity-dependant sensory feedback and

[x]γ0 =


0 if x ≤ 0
γ if x ≥ γ
x otherwise

is the limiter function introducing the nonlinearities.

Σd
Discrete

Σr
Rhythmic

+

[ . ]0γ

Threshold

Muscle activation

Figure 2.9: Schema of the phase entertainment model developed by Staude et al. The entertainment effect is
due to nonlinearities introduced by a threshold function.

For discrete movement, the initiation of the signal is modeled as a rapid shift of the control signal
cd(t), i.e.

cd(t) =
{
cin, if t < tgo
cin + ω(t− tgo, if t ≥ tgo

where tgo denotes the onset time of the shift of cd(t), cin is a negative constant and ω is the rate of
change corresponding to neural dynamics limitations. As the point of focus here is the initiation of the
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movement, no bound for ωt need to be specified and the feedback can be considered to be constant
(i.e.φ(t) = φin) and thus the system can be turned into

Σd(t) =
{

Σin, if t < tgo
Σin + ω(t− tgo), if t ≥ tgo

where Σin = cin + φin.
A periodic pattern of activation is assumed to be responsible for the generation of rhythmic move-

ment, i.e., as a first approximation,

cr(t) = Ar cos
(

2π
T
t+ ψr

)
.

For purely rhythmic movements,
Σr(t) = φr(t) + cr(t)

where
φr(t) = βpx(t) + βvẋ(t),

i.e the feedback is composed of a term proportional to the position x(t) with a gain of βp and a term
proportional to the velocity ẋt with a gain of βv. Since x(t) represents a rhythmic activation of the
muscle it can be modeled, as an approximation, as a cosine and thus ẋ(t) is a sine. All the terms of
Σr(t) are thus sine or cosine of same frequency, and they can thus be rewritten under the form

Σr(t) = A cos
(

2π
T
t+ ψ0

)
.

To simplify analysis, the control commands are normalized to the amplitude A and expressed rela-
tively to the phase of the rhythmic signal rather than relatively to time, i.e. using φ = 2π

T t + φ0, it is
obtained:

Σr(t) = cos(ψ)

and

Σd(t) =
{
k1, if ψ < ζ
k1 + k2(ψ − ζ), if ψ ≥ ζ

where k1 =
Σin
A , k2 = Tω

2πA and ζ = 2π
T tgo + φ0.

The role of the limiter is thus twofold: firstly, both signals have to be simultaneously increasing
to ensure that their sum is positive, leading to a coordination of the movements in terms of direction,
and secondly the upper limit bounds the signal due to the discrete movement.

This model not only succeed in reproducing the observed activation patterns in human, but also in
forecasting the observed probability of onset relatively to the phase time of the oscillations.
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Interaction between discrete and rhythmic movements:
reaction time and phase of discrete movement initiation during oscillatory movements

Aymar de Rugy and Dagmar Sternad,
in Brain Research, 2003

In this model, a couple of inhibiting Matsuoka oscillators is used to generate both discrete and
rhythmic movements by modifying the tonic input of the system. Thus discrete movements are a
special case of rhythmic movement. The architecture of this model is depicted on figure 2.10. The
entertainment effect ”comes for free” due to synchronization effects between the two Matsuoka oscil-
lators (i.e. the discrete movement occurs as a continuation of the rhythmic movement).

SD

SR

+

Matsuoka 
osc.

Matsuoka 
osc.

Movement 
of the joint

Muscle activation

Figure 2.10: Schema of the phase entertainment model developed by De Rugy et al. In this model, the
entertainment effect is due to synchronization effects .

Indeed, recall that this oscillator is governed by the following equations (for one neuron):{
τ1ẋ = −x− βy + S − ω[x̄]+

τ2ẏ = −y + [x]+

where S is the tonic input, which is fixed for rhythmic movement (S = SR =cste). The movement of
the joint is then derived using the equation

Iθ̈ + γθ̇ − T = 0

where T = hT ([x]+ − [x̄]+), I being the moment of inertia and γ a damping term. For discrete
movement, the tonic input SD is modeled as a pulse followed by an exponential decay:

τ3ṠD = −SD + pD

where pD is the peak value of the pulse and τ3 a time constant. This signal results in a damped os-
cillation which, with well-tuned parameters (i.e. for a critical damping), generates a typical discrete
movement. To generate discrete and rhythmic movement simultaneously, the tonic input are simply
summed together, i.e S = SD + SR. The output of this signal is synchronized through the dynamics
of the Matsuoka oscillators.

Both approaches achieve to explain successfully the phase entertainment effect. In the model of de
Rugy and Sternad, the synchronization is due to the fact that both trajectories are generated through
the same (dynamical) system, whereas in the model of Staude et al., both commands are generated
separately and the observed synchronization is caused by a nonlinear combination of the signals.
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2.1.4 Learning with dynamical systems

Learning and imitation is a very important feature in movement generation. We thus conclude this
section on dynamical systems by a model which allow imitation using dynamical systems.

Movement Imitation with Nonlinear Dynamical Systems in Human Robots
Auke Ijspeert, Jun Nakanishi and Stefan Schaal,

in the proc. of the IEEE International Conference on Robotics and Automation, 2002.

In this article, Ijspeert, Nakanishi and Schaal introduced a approach to imitation learning that
combines dynamical systems and local weight regression techniques. We present here the model for
discrete movement, but the general idea of the method can be extended to rhythmic movement. Please
refer to Ijspeert et al. (2003) for such an approach.

If we consider a reaching movement for instance, the idea in this model is to use a known stable
dynamical system to obtain a trajectory that converges to the desired target, and then to modulate
the dynamics of this trajectory to obtain a trajectory which is as close as possible to a given, desired
trajectory. This latter is achieved by minimizing the difference between the desired and the actual
trajectory through a weight regression on a linear combination of Gaussian kernel functions.

More precisley, the discrete motor pattern generator9 is given by{
ż = αz(βz(g − y)− z)
ẏ = z +

∑N
i=1 Φi(x)ωi∑N
i=1 Φi(x)

v

where ωi are weights (for the regression) and v and x are auxiliary variable given by the system{
v̇ = αv(βv(g − x)− v)
ẋ = v

and

Φi = exp

(
− 1

2σ2
i

(x̃− ci)2

)
where x̃ = (x − x0)/(g − x0). Time constants are scaled so to correspond to the duration of the
movement to be reproduced. The variable v controls the amplitude of the Gaussian kernel functions;
in particular, v is null at the beginning and at the end of the trajectory to ensure that it starts at the
right position and converges at the end. Said differently, the variable v ensures that the modification
of the trajectory by the Gaussian functions is transient. Note that the kernel functions depend on x
which is introduced as a measure of the position in the trajectory, so that they can be adapted to the
desired trajectory throughout the trajectory.

More precisely, if ydes is the desired trajectory, i.e. the trajectory to be imitated, a weighted

regression, with v as input and udes = ẏ − z
(

=
∑N
i=1 Φiωi∑N
i=1 Φi

v
)

as an output, is performed at discrete

time steps to minimize the error (i.e. to minimize Ji =
∑

t(u
t
des − u

t
i)

2 for each local model uti =
ωiv

t).
Once the trajectory has been learned, it can be easily modulated by modifying the parameters

of dynamical systems. For instance, if a particular trajectory is learned for a particular location of
9For clarity reasons, we present here the open loop system. However, in the article, a feedback loop is introduced to deal

with external perturbations.
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the object, an object at any reachable location can be reached through a trajectory which have the
same features as the original one by simply adapting the parameters relatively to the new location.
Moreover, in the article a feedback loop on the position error is introduced to deal with external per-
turbations. Thus, this method allows learning in a sense close to the learning of the a motor program,
in the sense that the typical features of the trajectories are learned rather than the exact trajectories.

In conclusion, dynamical systems are a very powerful tool to model human movements, as they
combine robustness and adaptability. Indeed, online generation of the trajectories ease their mod-
ulation relatively to unpredicted variations, allowing for adaptive movement generation. Moreover,
stable, asymptotically attracting solutions of such systems provides robustness against perturbations.

In addition, they are very convenient to model rhythmic and discrete movement as both types
of solutions exist naturally in such system. The concept of synchronization is also topical when
considering the issue of coordination of movements in single and multi joint systems.

2.2 Optimal control

As we have seen in the introduction, many invariants have been observed in human movements,
invariants which are often explained as the result of an optimization process (e.g. minimization of the
jerk or of the energy). Thus methods for optimizing trajectories relatively to a given cost function are
very interesting for us. We thus introduce here the optimal control approach, that we illustrate with a
very interesting approach for simulating discrete and rhythmic movements developed by Biess et al.
(2006).

Optimal control is based on the calculus of variations, i.e. problems consisting in choosing a
function ~x(t), continuously differentiable on [x0, x1], so to

minimize: J =
∫ t1

t0

l(t, ~x(t), ~̇x(t))dt

subject to: ~x(t0) = ~x0,

By rewriting this problem under the form of finding a function ~u(t) to

minimize:
∫ t1

t0

l(t, ~x(t), ~u(t))dt

subject to: ~̇x(t) = ~u(t); ~x(t0) = ~x0,

we obtain an optimal control problem. More precisely, in optimal control, a control function ~u(t)
governs the states of the system (~x(t)) through a set of differential equations. The problem to solve is
to find the control function which minimizes a cost function J which may depend both on the state
and the control function, i.e. J (x(t), u(t)). Thus this method is, in its statement, particularly relevant
for robotic controllers using dynamical systems.

Some constraints may be added on the terminal states (i.e. constraints of the form ~x(t0) = ~x0)
or the trajectory may be bounded (i.e xL ≤ ~x(t0) ≤ xU ), for instance. The major limitation of this
approach is that if the dimension of the problem is too high, the existing algorithms fail to converge
in most of the cases. Moreover, the existence of an optimal solution can not be ensured in most of the
cases.

A method often used to ease the solving of this kind of problem is to discretize the control function,
i.e to turn the control variables (and sometimes also the states variable) into functions defined by a
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finite number of parameters. For instance, the interval of time can be divided in subintervals on which
u(t) is defined as linear or a constant functions (f(x) = ax + b or f(x) = c). Thus, instead of
optimizing the function u(t), only one or two parameters (a and b or c) need to be optimized. The
smaller the time intervals are, the closer the piecewise linear function so obtained will be to the optimal
solution.

Another way of proceeding to discretize the problem is to define the function u(t) as a sum of
functions on the entire interval. For instance, if the control signal is assumed to be periodic, it can be
written as a finite Fourier series. Then, the only parameters to be determined will be the coefficients
of the series.

Simulating discrete and rhythmic multi-joint human arm movements
by optimization of nonlinear performance indices

Armin Biess, Mark Nagurka and Tamar Flash,
in Biol Cybern, 2006

This approach is interesting for mainly two reasons to our point of view:

1. it involves an optimality criterion, i.e. a cost function

2. the difference between discrete and rhythmic movement lies in the constraints on the move-
ments, i.e. in the parametrization of the movement.

The general problem to be solved is expressed in the form

J =
∫ T

0
F
(
t, ~q(t), ~̇q(t), . . . , ~q(m)(t)

)
dt

subject to:
∂F

∂qi
− d

dt

∂F

∂q̇i
+ . . .+ (−1)m

dm

dtm
∂F

∂q
(m)
i

= 0

for i = 1, . . . , n, where ~q denotes the generalized coordinates of the n dofs of the system. This
constraint correspond to the Euler-Lagrange equations which are a necessary condition for the solution
to be a extremum of the cost function J . Note that here, q(t) corresponds to the states function (x(t)
above), whereas the first and higher derivatives of q(t) are the control variables (~u(t)).

Some extra boundary conditions are added to specify a discrete or a rhythmic movement. For
discrete movement, they are given by

q(0) = q0 q(T ) = qf
q̇(0) = q0 q̇(T ) = qf
...

...
q(m−1)(0) = q0 q(m−1)(T ) = qf

and T is the duration of the movement (i.e. the initial and final position is set), whereas for a rhythmic
movement they are given by 

q(0) = q0 q(T ) = qf
q̇(0) = q̇(T )
...
q(m−1)(0) = q(m−1)(T )

Date: 28/09/2007
Version: No 1.0

Page 35



Development of a Cognitive Humanoid Cub

D 3.3 A Review on the Generation of
Rhythmic and Discrete Movements

and T is period of the movement (i.e. after a period of time T the system has to return to its initial
conditions, at least for the first derivatives and higher). Note that q(0) = q(T ) can also be imposed if
needed.

As we mentioned before, a very convenient way to obtain an approximation of the optimal solu-
tion is to discretize the control function (which correspond to the states function here). For discrete
movement the generalized coordinates are expanded as

q1,N (τ) =
2m−1∑
k=0

pikτ
k +

N∑
k=0

cikφ
(m)
k (τ), i = 1, . . . , n

where τ is the normalized time τ = t/T . The first terms of the sum correspond to the number of
free parameters per dof and the second term is a series of basic functions expressed in terms of Jacobi
polynomials, chosen so that the basis is orthogonal.

As for rhythmic movements, as all the derivatives are periodic, it is assumed that the first derivative
can be rewritten in terms of a Fourier series, i.e.

q̇i,N =
a0i

2T
+

1
T

N∑
k=1

[
aik cos

(
2πkt
T

)
+ bik sin

(
2πkt
T

)]

and thus, by integration,

qi,N = Ci +
a0it

2T
+

1
T

N∑
k=1

[
aik
2πk

sin
(

2πkt
T

)
− bik

2πk
sin
(

2πkt
T

)]
.

Using the constraint mentioned before, one gets Ci = qi0 and a0i = 2(qif − qi0). If the constraint
q(0) = q(T ) holds, all the generalized coordinates (including qi,N ) can be written as a Fourier series.

Both series are optimized relatively to the cost function J . This solution, which may not be
optimal, is then used as a starting guess to refine the solution by a multiple shooting algorithm10.

To our opinion, this method of solving an optimal control problem by modeling the control function
as a sum of well known functions which parameters are open is a very nice approach. Indeed, this
approach is very close to the assumption concerning the modularity of the movement and may be
used to reflect the stereotypy in movements. Indeed, the functions in the expansion of the generalized
coordinates can be considered as motor primitives.

Furthermore, a possible way of extending this approach to dynamical systems may be to expand
the control function in terms of output of dynamical systems. However, a deep study on the stability
of such linear combination should be performed first.

In this chapter we have focused on two methods which are particularly relevant for modeling dis-
crete and rhythmic movements, namely dynamical systems and optimal control. Rather than present-
ing an exhaustive list of the existing models, we have chosen to present some articles representative
of the interesting properties of those methods.

10In this method, known criteria of optimality are solved to find the optimal solution. The answer is more precise, but the
algorithm often diverges if the initial guess is too far from the solution.
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Conclusion

In this review, we have tried to give further insights for the modeling of the human motor system.
However, bridging the gap between neurophysiological concepts and mathematical tools is not an easy
task. However, it is necessary for neurophysiologists and mathematicians to take the time to overcome
differences in approaches and in semantics. Indeed, the motor system is still, to some extent, a black
box for us and modeling it requires assumptions to be made and to be expressed explicitly.

We have focused on the question of the generation of discrete and rhythmic movements, as this
distinction is mathematically convenient for modeling. Finding the same correspondence in the human
motor system turned out to be a difficult task. Indeed, even if the neurophysiological distinction
between rhythmic automatisms and voluntary movements seem, at first sight, to be a nice echo of the
mathematical distinction, it fails to recreate the diversity observed in human movements.

Furthermore, as experienced by Hogan and Sternad (2007), even classifying human movements
into discrete or rhythmic is a challenging task. For us, this difficulty lies in motor variability and in
the notion of rhythmicity. Indeed, the key notion in a rhythmic behavior is the repetition, neither of
an exact trajectory nor at an exact frequency, but of a specific, recognizable spatial features. What
is understood as rhythmic for a human movement is closer to the rhythmicity found in music than in
mathematics. In music, the tempo does not lie in every movement, but in the general coherence of
the music and of the instrument; analogously, in human behaviors, the rhythmicity lies in the general
patterns of the body rather than in the specific trajectories of each joints.

However, this does not mean that modeling human movements by discrete and rhythmic motor
primitives is a nonsense. Indeed, combination of both primitives, in the sense of a superimposition -
in opposition to a sequencing - opens the possibility of tackling the complexity of human behavior.
Via-points rhythmic movements can indeed be seen as discrete - voluntary - corrections of a basic -
automatic - rhythmic pattern.

We have presented two mathematical concepts that we think are topical for human movement gen-
eration: dynamical systems and optimal control. Indeed dynamical systems are a very powerful tool
for modeling adaptive behavior and, moreover, they are particularly well-suited for modeling discrete
and rhythmic signals. As for optimal control, we think it is crucial to take in account optimization
criteria to model movement behavior, notably because it is a mathematical simple way of reproducing
complex behaviors.

In conclusion, modeling the human motor system through the superimposition of discrete and
rhythmic motor primitives seems to be a promising approach. We are currently developing a closed-
loop model based on dynamical systems for visually-guided crawling (Righetti and Ijspeert (2006);
Degallier et al. (2007)) and we plan to combine it with optimal control. We think that concepts as
generalized motor programs, central patterns generators or force fields in humans are also topical for
any bio-inspired modeling and we are going to further investigate them.
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