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1 Introduction

This Deliverable deals with sensorimotor integration, a fundamental process linking the
perceptual side of the brain with the motor one. Neuroscience of the last twenty years
progressively became aware of the fact that the traditional idea of a unidirectional flow of
information — from perception to action — is not true. Conversely, cortico-cortical connections
are bidirectional and several evidence shows that motor planning potently modify, and
sometimes filters, the incoming sensory information.

Some of the experiments here described have been carried out not only at UNIFE and
UNIUP (the more neuroscience-related teams of the RobotCub community) but also at EPFL,
SSSA, UGDIST, UNIHER, UNISAL, UNIZH, IST, all teams whose pedigree is essentially
robotics. This is, in our view, the best demonstration in favour of the efficacy of the
multidisciplinary nature of RobotCub Integrated Project.

1.1 The theoretical framework

Several lines of evidence point to a significant involvement of the motor system in
supporting processes traditionally considered as ‘high level' or cognitive, such as action
understanding, mental imagery of actions, objects perception and discrimination. The
“biologically compatibility” constraint guiding the RobotCub project forces us to study these
processes not only because of their scientific interest but also because our aim is to setup the
artefact in a way that will allow this bi-directional information flow.

A typical example of how sensorimotor integration is used by the brain in practical tasks
is provided by a population of neurons in the monkey ventral premotor cortex (mirror neurons)
that discharge both when the monkey performs a grasping action and when it observes the
same action performed by other individuals [Gallese et al. 1996]. Mirror neurons could provide
the neurophysiological basis for the capacity of primates to recognize different actions made by
other individuals: the same motor pattern which characterizes the observed action is evoked in
the observer and activates its own motor repertoire. This matching mechanism, which can be
framed within the motor theories of perception, offers the great advantage of using a repertoire
of coded actions in two ways at the same time: at the output side to act, and at the input side, to
analyse the visual percept. This matching system has also been demonstrated in humans.
Transcranial Magnetic Stimulation (TMS) of the motor cortex of subjects observing hand actions
made by the experimenter determined an enhancement of motor evoked potentials (MEPs) in
the same muscular groups that were used by the experimenter in executing those actions
[Fadiga et al. 1995]. This means that when we observe an action we utilize, as monkeys do, the
same repertoire of motor representations used to produce the same action.

A further example of the involvement of the motor system in cognitive functions is
given by motor imagery. Imagining a grasping action is a cognitive task that requires a
conscious, detailed representation of the movement. Several brain imaging studies have shown
that during motor imagery of grasping actions, premotor and inferior parietal areas are strongly
activated [Decety et al. 1994, Grafton et al. 1996]. Furthermore, Parsons et al. [1995]
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demonstrated by PET that implicit motor imagery (used to discriminate the orientation of
visually presented hands) activates premotor and posterior parietal cortex. Moreover, Sirigu et
al. [1996] showed that patients with lesions restricted to the posterior parietal cortex were
selectively impaired at estimating, through mental imagery, the time necessary to perform
differentiated finger movements. Taken together, all these results seem to contradict a sharp
distinction between an “acting brain' and a "knowing brain'.

Among the processes traditionally considered to be ‘high level' or cognitive, selective
attention is one of the most important. The term ‘selective attention” refers to the capability of
selecting a particular stimulus according to its physical properties, way of presentation, or
previous contingencies and instructions. After selection, the stimulus is processed and, if
convenient for the individual, acted on. A problem to solve is to understand how the sensitivity
of different sectors of space can be increased in processing visual stimuli, in order to select some
of them and discard others. The traditional view is that selective attention is controlled by a
supramodal system ‘anatomically separate from the data processing systems' ([Posner and
Petersen, 1990], p. 26). Like the sensory and motor systems, this ‘attention system' performs
operations on specific inputs. It interacts with other centers of the brain but maintains its own
identity [Posner and Petersen, 1990]. On the basis of data obtained from brain imaging
experiments [Corbetta et al. 1990, Corbetta et al. 1991, Posner et al. 1988], it has been suggested
that the attention system is not unitary but consists of at least two independent systems: a
posterior one subserving spatial attention and an anterior one devoted to attention recruitment
and control of brain areas involved in complex cognitive tasks [Posner and Dehaene 1994].

An alternative view of selective attention (that we favour) is that it derives from
mechanisms that are intrinsic to the circuits underlying perception and action. Attention is
modular, and there is no need to postulate control mechanisms anatomically separate from the
sensorimotor circuits. This account for selective attention was originally formulated for
visuospatial attention (premotor theory of attention; Rizzolatti and Camarda 1987, Rizzolatti et
al. 1987) and it is deeply rooted in the idea that space is coded in a series of parieto-frontal
circuits working in parallel and that the coordinate frame in which space is coded depends on
the motor requirements of the effectors that a given circuit controls (see Rizzolatti et al. 1994).
Given this strict link between space coding and action programming, the premotor theory of
attention postulates that spatial attention is a consequence of the activation of those same
cortical circuits and subcortical centers that are involved in the transformation of spatial
information into actions. Its main assumption is that the motor programs for acting in space,
once prepared, are not immediately executed. The condition in which action is ready but its
execution is delayed corresponds to what is introspectively called spatial attention. In this
condition, two events occur: (a) There is an increase in motor readiness to act in the direction of
the space region toward which a motor program was prepared, and (b) the processing of
stimuli coming from that same space sector is facilitated. There is no need, therefore, to
postulate an independent control system because attention derives from the same mechanisms
that generate action. Although, in principle, all the circuits responsible for spatially directed
action can influence spatial attention, there is no doubt that, in humans, the central role in
spatial attention is played by the circuits that code space for programming eye movements.
Experiments in which the relations between attention and eye movements were either indirectly
or directly tested, showed that the two mechanisms interact: Any time attention is directed to a
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target, an oculomotor program toward that target is prepared. Particularly significant in this
respect are experiments in which the relations between attention and eye movements were
directly tested [Sheliga et al. 1995a, Sheliga et al. 1995b. Sheliga and coworkers instructed
normal participants to pay attention to a given spatial location and to perform a predetermined
vertical or horizontal ocular saccade at the presentation of the imperative stimulus. The results
showed that the trajectory of ocular saccades in response to visual or acoustic imperative
stimuli deviates according to the location of attention. Moreover, the deviation increased as the
attentional task became more difficult. In a recent experiment, the role of oculomotion in
orienting of attention was investigated by dissociating perceptual from motor capabilities
[Craighero et al. 1994]. If a causal relationship links oculomotion and orienting of attention, any
constraint limiting eye movements should abolish, or at least reduce, attentional benefits in the
region of the spatial field barely reachable by the eye. On the contrary, if attention is a purely
cognitive process, then no effects are expected to arise from oculomotor constraints. Subjects
were submitted to a spatial attention orienting task, performing it in monocular vision and
having the head rotated in such a way that the eye was kept at an extreme position in the orbit.
This position limited the execution of a saccade toward the temporal hemifield, whereas it
allowed saccadic execution toward the nasal hemifield. Results showed that orienting of
attention was normal in the nasal but not in the temporal hemifield, indicating that eyes and
attention show a common limit stop.

Whereas in primates eye movements are certainly the most important mechanism for
selecting stimuli, there are also circumstances (e.g., stimuli presented very close to the face or
stimuli appearing in the visual periphery) in which eye movements are not crucial for selecting
stimuli in space. In these circumstances, spatial attention should depend on circuits other than
those related to eye movements. In the frame of premotor theory of attention, Craighero and
colleagues [2004] assumed that allocation of attention to a graspable object is a consequence of
preparing a grasping movement to that same object. The authors predicted that, when a specific
grasping movement was activated, there would be both: (i) increase in the motor readiness to
execute that movement and, (ii) facilitation in visually process graspable objects whose intrinsic
properties are congruent with the prepared grasping. In an experiment designed to investigate
this hypothesis, normal subjects were required to grasp a bar after the presentation of a visual
stimulus whose orientation was either congruent or incongruent with that of the bar. Results
supported the hypothesis. The detection of a visual object was facilitated by the preparation of a
grasping movement congruent with the object's intrinsic properties. This finding strongly
suggests that the premotor theory of attention is not limited to orienting attention to a spatial
location but can be generalized to the orienting of attention to any object that can be acted upon.

1.2 The organization of the document

In this Deliverable we describe experiments investigating the development and the
characteristics of the capability to plan, execute and recognize actions. Three are the main
experimental approaches used for this purpose: monkey electrophysiological studies based on
single neurons recordings; psychophysical studies in normals and patients (both adults and
children); brain imaging and transcranial magnetic stimulation studies in normals. The

Date: 19/10/2008

Version: No. 1.5 Page 5 of 106



D3.1 Sensorimotor Integration

Development of a cognitive humanoid cub

presentation will follow the schema originally proposed in the Technical annex revision we
presented at month 12. Thus, three main stream of research will be presented: (1) Ontogenetic
cues in sensorimotor coordination; (2) Phylogenetic cues in sensorimotor coordination and (3)
Schemas in artefacts for sensorimotor coordination. The experiments described here represent
only one part of the work in progress. The final version of this Deliverable (D3.1b, to be
presented at month 30) will give a more exhaustive description of the global picture. Some final
results coming from experiments on monkey and human electrophysiology and on brain
imaging of gaze sharing will be presented as well.

2 Experimental part

2.1 Ontogenetic cues in sensorimotor
coordination

The results of these experiments come from a strict collaboration between UNIFE and
UNIUP. Together, we have identified three main different techniques to study the development
of the motor system in children (to act and to recognize actions):

1) Mu rhythm desynchronization during action observation.
2) Near infrared spectroscopy (NIRS).
3) Gaze tracking during action observation and execution

Experiments concerning point (1) are in progress and will be presented in the final
version of this Deliverable at month 30. As far as (2) is concerned, art UNIFE we are actively
collaborating at the setup of a new NIRS machine together with the Department of Physics at
the Politecnico di Milano (Italy). The final goal of the study is to use NIRS in infants, to
investigate the neural correlates of motor development (both for action execution and
understanding). Moreover, the results of some experiments on crawling carried out jointly by
EPFL and UNIUP, together with modelling of crawling studied at EPFL will be presented at the
end of this section.

2.1.1 Mapping cerebral hemodynamics of the human motor cortex by multi-channel
time-resolved near-infrared spectroscopy (UNIFE).

Introduction

Brain imaging techniques (PET and fMRI) are not usable on infants because of their
invasiveness and because their require subjects’ immobility. In recent years NIRS has been
developed to non-invasively measure regional blood flow in infants. It allows detecting the
regional modifications of blood flow by spectroscopically measuring the absorbance of low-
power infrared light by regional hemoglobin concentration. In order to investigate the
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applicability of the NIRS technique in the study of cognitive functions and to verify which
method is the most suitable, we have conducted preliminary experiments on adults in
collaboration with a group of researchers from the Politecnico di Milano (Alessandro Torricelli,
Antonio Pifferi, Lorenzo Spinelli, Davide Contini), leaded by Rinaldo Cubeddu.

The problem of mapping functional activation in the human brain by optical radiation is
challenging. The diffusive nature of biological tissues prevents the discrimination of absorption
and scattering contributions by simple continuous wave techniques. Time domain techniques,
on the contrary, are able to discriminate between them and to derive absolute values for the
hemodynamic parameters in a real heterogeneous medium like the human head [1]. Moreover,
relevant studies have shown that in the time domain depth sensitivity can be improved by
simply exploiting the temporal information [2-4].

Here, we investigated the spatial resolution of a dual wavelength (690 and 820 nm)
multi-channel time-resolved system for functional NIRS in the study of the antero-posterior
extension of hand-related motor activation, and of the medio-lateral somatotopy of hand and
shoulder motor representations.

Methods

Two right handed normal subjects participated to the experiment. During a preliminary
mapping session, right hand and shoulder motor representations were assessed by using
transcranial magnetic stimulation (TMS) [5]. The experimental session was subdivided into two
tasks. The first task was aiming at investigating the antero-posterior extension of the right hand
motor representation as detected by NIRS. A specially designed probe (4 source fibers and 10
collecting bundles, source-collector relative distance [rho]=2.0 cm), was placed over the right
hand motor representation of the left hemisphere, perpendicularly to the central sulcus. The
protocol consisted of 20 s baseline, 20 s right hand motor activity (Luria’s finger tapping), and
40 s recovery. The protocol was repeated 10 times in order to increase the signal-to-noise ratio
by block averaging. The acquisition rate was 1 s.The second task was designed to test the
somatotopic representation of hand and shoulder motor representations by using a protocol
similar to that of the previous task. The probe was placed over the shoulder/hand motor
representations of the left hemisphere, along the central sulcus. The protocol consisted of 15 s
baseline, 15 s right hand finger tapping or right shoulder rotation (randomized and executed
according to visual instructions), and 30 s recovery. The protocol for each type of movement
was repeated 5 times. The acquisition rate was 1 s. The analysis was restricted to the superior
part of the probe (indicated by the yellow circle in the figure) since it was our region of interest.
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Results

TASK 1: Antero-posterior extension of the right hand motor representation

medial
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Figure 1. Blue asterisk indicates the right hand hot spot location (left hemisphere) as assessed by TMS in
the subject according to the method described by Fadiga et al. (1995). On the right side, schema of the
probe with the indication of the location of the hand hot spot.
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Figure 2. Deoxyhemoglobin (AHHDb) and oxyhemoglobin (AO2Hb) during single trials (i.e. no block
averaging) collected by a single couple of emitters-collectors during the finger tapping task.
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Figure 3. Spatial maps of HHb, O2Hb, THb, and SO2 concentration changes, separately presented for the
baseline (left panel) and task (right panel) experimental phases (10 times block averaging).
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Figure 4. Average (10 trials) cerebral blood oxygenation changes in each of the 16 channels during the
course of the experiment. The ordinates indicate the concentration changes of O2Hb (oxyhemoglobin, red
line, AO2Hb -1.5 / +1.5 mM), HHb (deoxyhemoglobin, blue line, AHHb -1.0 / +1.0 mM), tHb (total
hemoglobin, purple line, AtHb -2.5 / +2.5 mM), and SO2 (% of oxygen saturation, green line, ASO2 -1.5 /
+1.5 mM). Dotted lines indicate the different phases of the experiment: 20 s baseline, 20 s task, and 40 s

recovery, during time.
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TASK 2: Somatotopic representation of hand and shoulder motor representations.
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Figure 5. Blue and black asterisks indicate the right hand hot spot location (left hemisphere) and the right
shoulder hot spot location, respectively, as assessed by TMS in the subject according to the method

described by Fadiga et al. [5]. On the right side, schema of the probe with the indication of the location of
the hand and shoulder hot spot.

TASK 3: Right shoulder rotation task
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Figure 6. Spatial maps of HHb, O2Hb, THb, and SO2 concentration changes, separately presented for the
baseline (left panel) and task (right panel) experimental phases (5 times block averaging).
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anterior

medial lateral
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Figure 7. Average (5 trials) cerebral blood oxygenation changes in each of the 8 channels (superior part of
the probe) during the course of the experiment. The ordinates indicate the concentration changes of
O2Hb (oxyhemoglobin, red line, AO2Hb -1.5 / +1.5 mM), HHb (deoxyhemoglobin, blue line, AHHb -1.0 /
+1.0 mM), tHb (total hemoglobin, purple line, AtHb -2.5 / +2.5 mM), and SO2 (% of oxygen saturation,
green line, ASO2 -1.5 / +1.5 mM). Dotted lines indicate the different phases of the experiment: 15 s
baseline, 15 s task, and 30 s recovery, during time.

Right hand finger tapping task
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Figure 8. Spatial maps of HHb, O2Hb, THb, and SO2 concentration changes, separately presented for the

baseline (left panel) and task (right panel) experimental phases (5 times block averaging).
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Figure 9. Average (5 trials) cerebral blood oxygenation changes in each of the 8 channels (superior part of
the probe) during the course of the experiment. The ordinates indicate the concentration changes of
O2Hb (oxyhemoglobin, red line, AO2Hb -1.5 / +1.5 mM), HHb (deoxyhemoglobin, blue line, AHHb -1.0 /
+1.0 mM), tHb (total hemoglobin, purple line, AtHb -2.5 / +2.5 mM), and SO2 (% of oxygen saturation,
green line, ASO2 -1.5 / +1.5 mM). Dotted lines indicate the different phases of the experiment: 15 s
baseline, 15 s task, and 30 s recovery, during time.

Summary of Results

Results relative to the task aiming at investigating the antero-posterior extension of the
right hand motor representation as detected by NIRS, demonstrated a focal increase of O2Hb
and the corresponding decrease of HHb in the channels placed over the hand motor
representation hot spot, determined by TMS, during the execution of a Luria’s finger tapping
with respect to a baseline acquisition. Results relative to the task designed to test the
somatotopic representation of hand and shoulder motor representations, demonstrated a
differential activation for finger and shoulder movements as detected by NIRS, when
comparing right hand finger tapping and right shoulder rotation tasks.

Conclusions

In conclusion, a multi-channel time-resolved system for functional NIRS has been
successfully employed to study hemodynamic response following motor activity in the adult
brain. In addition, the system was able to discriminate the antero-posterior extension of hand-
related motor activation and the somatotopy of hand and shoulder motor representations.
Moreover, the system used in the present study is sensitive enough to significantly determine
cortical motor activation in single trials. All these characteristics are strongly in favor of the
possibility to use this technique in infants to study the ontogenetic development of the motor
system in infants.
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2.1.2 Gaze behaviour in normal and autistic children during observation of own and
others’ hand action (UNIFE+UNIUP).

The pattern of eye movements during action observation is the same as that recorded
during action execution. In both cases, the eyes anticipate the hand and reach the target well
before the arrival of the fingers. Thus, saccadic behaviour during action observation supports
the direct matching hypothesis for action recognition. We decided to study the development of
this predictive behaviour during action observation in developing infants (UNIUP) and in
children affected by Autism Spectrum Disorders (ASD) (both UNIUP and UNIFE).

It is well known that autism spectrum disorders (ASD) are characterized by deficits in
social and communicative skills. It has been proposed that the mirror-neuron system may play
a critical role in higher order cognitive processes such as imitation, theory of mind, language,
and empathy. Strikingly, these skills are among those mostly impaired in ASD individuals.
Because of this correspondence, many have suggested that individuals with ASD may have
mirror neuron system impairments, and some experimental evidence supports this
interpretation. Therefore, we decided to investigate the gaze behavior of ASD children during
execution of their own actions and during the observation of actions performed by others. We
have tracked the gaze of 8 high-functioning autistic children while they were performing a
modification of the Flanagan and Johansson paradigm, by using a version of the TOBII system
that allows the recordings also during a real action (i.e. not presented by a video clip). Five
normal children, matching patients for age and gender, have been tested as well as controls.

During action execution the agent’s eyes never follow the acting effector, but the gaze is
projected towards the end point of the action, anticipating it. More recently, it has been shown
(Flanagan and Johansson, 2004) that this pro-active behaviour manifests itself not only during
execution but also during the observation of action performed by others. Conversely, the
presentation of moving objects, not held by hand, does not evoke the pro-active gaze behaviour.
This evidence has been assumed to be a consequence of the involvement of the mirror-neuron
system. Mirror neurons become however active only when observer and agent share a similar
motor repertoire (see Rizzolatti and Craighero, 2004). It has been suggested that a fundamental
deficit in autism could be the impairment of what has been called “the theory of mind” (i.e. the
capacity to understand the intention behind the behaviour of others) (2). A full-fledged theory
of mind is achieved, however, by children at about four years of age (3), while clinical signs of
autism appear earlier, thus indicating that a more basic deficit should underlie the development
of “theory of mind” (4). In recent years, it has been suggested that this deficit could depend on a
poor development of mirror neuron system, which would be a neural precursor necessary for
the development of the theory of mind. (5). Evidence coming form EEG , MEG, TMS and brain
imaging data provided strong evidence that the mirror neuron system could be impaired in
autistic children (6-7-8-9).

Methods

We applied four tasks to a neurologically healthy population of children, and to a group
of “high-functioning” autistic children. A child with high-functioning autism fits the definition
of autism but has much better cognitive and learning abilities. These children have initial
difficulty in acquiring language but become then able to speak at a level appropriate for their
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age. Autistic children were recruited in a centre of Paediatric Neuropsychiatry in the province
of Empoli (Italy) “ASL 11”. The diagnosis had been made by means of the Autism Diagnostic
Observation Schedule (ADOS) (Lord et al. 1989). All subjects had an intelligence quotient (IQ) >
70, as calculated with the Wechsler Intelligence Scale for Children Revised (WISC-R). A group
of 8 autistic children, 7 males and 1 female, aged 5.1 — 16.0 years (mean age: 7.1) participated to
the experiment. The mean IQ of this group was of 98.7 + 11.6 (SD). The group of neurologically
healthy children that were used as a control, had IQ > 70 (WISC-R scale). A group of five
children aging 5.2-11.9 years, (4 male and 1 females, mean age: 6.5) participated to the
experiment. Their mean IQ was of 104.7 + 7.7. All procedures were approved by the local ethical
committee and the parents of children gave informed written consent.

Tasks: The experiment consisted in 4 conditions (see below) with 13 repetitions each
(trials). Each trial started when the right hand of the participant was placed on the table in
correspondence of the starting point. The four different task were:

1) To grasp with their right hand a toy placed on the table and to put it into a container, located
on the table in front of them (active condition, EXE)

2) To observe the experimenter performing the same action with his right hand in front of them
(passive condition, Frontal Right Observation, FRO)

3) To observe the experimenter performing the same action with his left hand in front of them
(“specular” perspective-laterally reversed-) (passive condition, Frontal Left Observation, FLO)

4) To observe the experimenter performing the same action in lateral position: sideway to the
children (the participants saw the hand of the experimenter according to their “egocentric
perspective”) (passive condition, Lateral Observation, LO)

The experimenter and the subject were sitting at a table, one in front of each other. In
front of them there were a container and three objects-toys. During the “active-condition” the
subject was instructed to grasp the objects, one at time, and to place them into the container. In
the “passive-condition”, the participants were requested to observe the same sequence of
grasping-placing movements performed by the experimenter in front of them or in the lateral
position. The four conditions were repeated in a pseudo-random order. All the participants
performed a brief training session prior to recordings.

Experimental apparatus: During the experiment, the position of the subject’s gaze was
continuously recorded by using an eye-tracking device (Tobii, Sweden) and a video-camera. A
transparent table with two different levels was used to run the experiment. In the lower level
(behind the glass) we positioned the eye-tracking device, and in the upper plan we positioned a
transparent and removable grid for the calibration. After the calibration was done, we removed
the grid, so that the upper plan became the working space. Furthermore the hand/arm
kinematics of the action performed by both, the subjects and the experimenter, was recorded
during the whole experiment. This was done to measure the precise pattern and kinematics of
goal-directed hand grasping. Indeed, autistic children might be affected in their capacity to
efficiently plan goal-directed actions (see Mori et al. 2005). To this purpose, three infrared-
reflecting markers were fixed to the wrist/hand of the experimenter and three on the wrist/hand
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of the participants. Two markers (one on the tip of the index finger and one on the thumb) were
used to measure fingers aperture during grasping. A third marker was positioned on subject’s
wrist to measure the transport component of the hand-reaching movements. Data were
acquired by a high-speed optic tracking system (Qualysis, Sweden) which provided the
contemporary 3D position of each infrared reflecting marker, at the temporal resolution up to 1
KHz.

Data pre-processing: The use of the eye-tracker to record the gaze, required a stable
position of the head and a constant posture during the experimental session. We discarded part
of the data, because of the difficulty to achieve this stability with young children and,
particularly, with ASD children, typically presenting hyperactivity troubles, especially during
the EXE condition. The object was initially positioned on a limited area of the desk and the box
was not fixed on the table. Thus the trials were not performed on a standard space. In order to
overcome this problem, we standardize the recordings according to a 0-1 ideal space.

Results.

In the preliminary data we present here, we restricted our analysis to the movement
‘grasping the object-landing in the container” which is the most studied in the literature. After
data pre-processing and cleaning, 296 valid movements were selected. The spatial distribution
of wrist position in all four conditions was very similar between ASD and control subjects
(movement duration and peak velocity were not significantly different between conditions).
This let suppose that: 1) in FRO, FLO and LO conditions (observation) experimenter did
perform similar movement in the two groups; 2) Autistics and control subjects performed
similar movements (EXE condition). As a measure of pro-active gaze behaviour we determined
for each trial the ratio of looking time in the goal area relative to total looking time (goal and
trajectory areas) during object movement (GLT ratio). Goal area was defined as the space
regions within .20 unit from the landing zone; while trajectory areas was defined as the space
regions between .20 and .80 unit far from the landing zone. Therefore if subjects tracked the
moving target (and hand movement is constant), the expected proportion of GLT is
.20/(.60+.20)=.25. In other terms, more is the time the subject looks the target, more is her
predictive behaviour.
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By following this method, values of GLT exceeding significantly 25% ratio (p<0.005)
defines a pro-active gaze behaviour. while values below it, indicate reactive gaze behaviour.
Results are given in Table 2 and Figure 10.

Conditions | Normal ASD

EXE 0.49+£0.08* 0.47+0.06*
FRO 0.44+0.09* 0.34+0.06
FLO 0.3 +0.08 0.33£0.07
LO 0.33+0.08 0.43=+0.07

Table 2. Average GLT ratio + SEM. Asterisks indicate statistically significant pro-active gaze behaviour.

n.s.
p =.024

0.60 -
0.50 -
0.40 -
0.30 -

0.20 -

0.10 -

Ratio of looking time (goal) to looking time
(goal + trajectory)

EXE FRO FLO LO EXE FRO FLO LO
Normal ASD

Figure 10. Gaze performance during observation of own (EXE) and other’s (FRO, FLO, LO) actions.
Statistics (means + SEM) are based on all data points for controls (left) and ASD patients (right). Ratios of
looking time at the goal area to total looking time in both goal are shown. The horizontal line at 0.25
shows the expected ratio if subjects were tracking the moving stimuli. Pro-active behaviour (one sample
t-test for mean equal to 0.25, p<.05) is indicated with an asterisk the corresponding bars.
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In execution (EXE condition), both normal controls and ASD patients show a pro-active
gaze behaviour (f-test, p= 0.0238 and p=0.005 respectively). Conversely, during action
observation (FRO, FLO and LO conditions), different gaze behaviours have been found. In this
first phase of analysis we focus mainly on FRO condition because the higher average number of
valid trials in each subject increases the stability of the single subject measurement (more trial
we get for each subject, better estimate we get). In FRO condition, while data show a tendency
in favour of pro-active gaze behaviour for normals (p=.052), ASD patients did not behave in a
proactive way. Most importantly, while the direct comparison between EXE and FRO
conditions in normals fail in reaching significance, the same comparison for ASD patients
highlight a significant decrease in pro-active behaviour in FRO relative to EXE condition (paired
t-test, p= 0.0241). Further interesting data comes from the comparison between EXE and LO.
The statistical analysis show a tendency to the significance for normals, while ASD patient show
no difference between the proactive behaviour during execution and that during observation of
other’s actions shown in egocentric perspective (see Figure 10).

In the present experiment, we have compared gaze and hand position during both
grasping execution and grasping observation with different perspectives, in children affected or
not by ASD. Preliminary analysis indicate that normal children show the same pro-active gaze
behaviour both during execution (EXE) and during observation of grasping movement (FRO),
while ASD patient show a pro-active gaze behaviour only during execution. This evidence is in
favour of a failure of the mirror neuron system during other’s action observation in ASD
patients.
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2.1.3 Ontogeny of locomotion: measuring and modelling crawling in infants

(EPFL+UNIUP)

The neural mechanisms underlying locomotion control in humans are still not well-
known. The main brain areas involved are the spinal cord, the brainstem, the cerebellum and
the motor cortex. Recent studies show that like in other vertebrate animals, Central Pattern
Generators (CPGs) in the spinal cord play an important role in generating and modulating the
rhythmic signals underlying locomotion.

Our approach is to take inspiration from vertebrate locomotion at an abstract level and
to model CPGs as systems of coupled nonlinear oscillators. This leads to the design of systems
that can produce complex, coordinated, multidimensional rhythmic motor commands while
being initiated and modulated by simple control signals (similarly to what has been
demonstrated in decerebrated cats by Shik and colleagues in the 1960s). The CPGs produce
desired trajectories (i.e. desired angles) to the PID controllers controlling the motor torques of
the robot.

Our motivation is to take advantage of interesting properties of systems of coupled
nonlinear oscillators and their limit cycle behaviour, namely asymptotic stability (the system
returns to limit cycle after a transient perturbation), which is crucial for control the possibility to
continuously modulate the periodic patterns by a few, non rhythmic, control signals, the
produced trajectories remain smooth even if the control signals are abruptly changed, the
system supports direct integration of feedback for modulating and synchronizing the
trajectories according to sensory information (e.g. entrainment by proprioceptive signals from
the body).

This CPG-based approach should make the locomotion controller easily usable by other
control modules. Unless the crawling of the iCub requires specific limb placements, other
modules only need to tune high-level commands determining speed and direction of crawling
without having to worry about the multiple rhythmic signals that need to be sent to the
actuators.

This work has 3 parts: programmable CPG, study of infant crawling kinematics, CPG-
based crawling controller.

Programmable CPG

We developed a programmable CPG, ie. a system able to automatically
encode periodic signals into limit cycles. It allows control, modulation and robust integration of
sensory feedback during locomotion control. We applied the system for biped locomotion
control and modulation on a real robot. See our Physica D and ICRA 2006 papers, referenced
below. Note that the first and main locomotion ability of the iCub will be crawling. We studied
here biped walking because (1) we had biped walking trajectories available from Fujitsu for the
HOAP 2 robot, and (2) because the HOAP 2 robot is not well-adapted for crawling. However,
the programmable CPG offers a general method for encoding periodic trajectories into limit
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cycles and can be directly applied of the control of crawling.
Study of infant crawling kinematics

There exists very few contributions on baby crawling and most of them do only
qualitative analysis. We studied the kinematics of crawling babies, in collaboration with K.
Rosander (Uppsala University).

Subjects: Eight infants, 9 to 11 months old have been studied. They were selected as
crawlers practicing the “classic” style of locomotion using hands and knees. The parents were
asked about approximate debut for crawling. Some infants were seen twice (Table 2).

Name Birth Session1 | Body Session | Body Start of

(y/m/d) (y/m/d) mass 2(y/m/d) | mass?2 crawling

(approx.)

Emil 050611 060324 9.5kg 060509 10 kg 060309
Alva 050718 060328 7kg 060510 75kg 060228
Jonathan | 050613 060330 9kg 060130
Vilmer 050614 060331 10kg 060310
Matilda | 050612 060412 11kg 060304
Alvin 050719 060418 11kg 060516 12 kg 060328
Elin 050623 060419 10,5kg 060216
Oskar 050623 060508 10.5 kg 060208
Milton 050903 060523 10 kg 060514

Table 2. The subjects participating to the crawling experiment in Uppsala.

Procedure: When the parents came to the lab they were informed of the experiment and
signed a consensus form that included permission for video recording. The parents undressed
the infant and small markers were attached to the skin on places on or close to the joints (see
Table 3). Three markers were put on the spine (neck, thoracic and lumbar). A hat with three
markers (1 midsagittal, 2 coronal) was put on too. The complete list of the markers is the
following: Head, R ear, L ear, Neck spine, Thoracic spine, Lumbar spine, R shoulder, R elbow, R
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wrist, L shoulder, L elbow, L wrist, R hip, R knee, R ankle, L hip, L knee, L ankle. The markers
on the wrists and knees were glued to a Velcro band. This gave stability to the critical parts that
were close to the floor during locomotion. One disadvantage was that the knee markers were
just above the joint. The remaining nine markers were attached with collars used for skin
electrodes. When all 18 markers were properly attached the infant was encouraged to crawl on
a rug (polypropylene, size 230 x 170 cm, “Arden blom” from IKEA, Sweden) on the floor. The
parent and one experimenter were sitting on the floor on opposite sides of the rug using
attractive toys to catch the infant’s attention. The second experimenter handled the
measurements and was sitting close to the rug observing the infants behaviour.

Measurements: A motion capture system (Qualisys, Sweden) with passive markers (size 5
and 10 mm ) was used in an external triggering mode. Data was collected at 240 Hz for 12 s
periods. In close synchrony with the measurement sessions, a web camera monitored the infant
during the trial. Before each experiment the system was calibrated. Five cameras were used, two
were placed at a ceiling stand and three were placed on the floor so that the whole crawling
area was covered (Figure 11). When the infant showed the intention to start crawling, the
measurement was started by the second experimenter. Each trial was set to 12 seconds. Usually,
20-40 trials per infant were registered.

Data evaluation: The markers in each file (one session of 12 s) were transformed in the
software and were identified. The identification was improved by comparing the web camera
sessions with the movements of the markers. Short (<0.x s) intervals when one marker was
hidden were interpolated using the software routines.

Results: The infants were interested and cooperative. During the trials, crawling and
movements between crawling and sitting were recorded. Totally, 97 trials were selected for
further analysis.
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Figure 11. Schematic geometry of the experimental setup as seen from above.

The most common gait is a trot-like gait in terms of the temporal relations between the
limbs. However the duration of the stance phase is much longer than the duration of the swing
phase and it appears that during the swing phase of a limb, the opposite limb moves very little,
which is very different from trot gait in most mammals.

CPG-based crawling controller

We developed a CPG able to reproduce the main features of crawling babies. To do so,
we built an oscillator in which we can independently control the duration of the descending
and ascending phases (i.e. the duration of the swing and stance phases), allowing us to shape
the signal of the CPG using very simple control signals. Then we used insights from symmetric
dynamical systems theory to design the CPG. We were able to reproduce the main features of
real crawling and the CPG was used to control a physically realistic simulation of the iCub in
Webots. Smooth modulation of the speed of the robot was also achieved. See our RSS06 paper
for more details, reference below.

Note: Though we did not use the programmable CPG for crawling, the framework we developed with
these two approaches is very similar and future work will show how to incorporate the properties of the
programmable CPG into the crawling CPG.
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Demos

We created a web page describing the crawling of the iCub and the collaboration with
Uppsala (with movies), see http://birg.epfl.ch/page63115.html. See also the following page for
our work and movies on biped locomotion control: http://birg.epfl.ch/page56604.html
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2.2 Phylogenetic cues in sensorimotor coordination

In the framework of the phylogenetic cues in sensorimotor coordination, we are
following two different lines of research:

1) Behavioural study of action observation in monkeys.
2) Single neurons recording study of grasping in monkey premotor and primary motor cortex.

3) Single neurons recording in rats.

2.2.1 Action observation behaviour in Macaque monkeys (UNIFE).

Some authors have proposed that one-year-old infants represent actions by relating
relevant aspects of reality (action, goal-state and situational constraints) and assuming that
actions function to realize goal-states by the most efficient means available. A series of
experiments give support to this hypothesis. Indeed, the phylogeny of intentional action,
namely the ability of non-human primates to interpret the other's action could be based on the
attribution of a mental state, such as intention. In humans it is commonly held that the process
of acquisition of mind reading unfolds during the first year of life and ends up with the ability
of understanding false beliefs (i.e. to understand that other people can act by relying on beliefs
that do not correspond to the state of reality). Gergely (1995) has shown that the attribution of a
meaning to other people's actions can be independent from the ability to "mentalize". His
experiments did show that even 12 months-old infants are able to successfully represent actions
in connection with three aspects of reality (action, goal and obstacle). Such a teleological
perspective (teleological stance) stems from the kernel principle of maximal efficiency,
according to which actions are performed to achieve a planned final state as much effectively as
possible. Uller (2003) has investigated the emergence of a teleological stance from a
phylogenetic perspective by presenting chimpanzees with the experimental design that Gergley
adopted with pre-verbal children. The results showed that the more evolved non-human
primates are able to grasp the sense of a goal-oriented behaviour. In the present experiment we
aim at verifying whether similar results can be obtained with non-human primates (macaca
fascicularis and macaca nemestrina) at a lower level in the phylogeny scale. At difference with
the children and chimps experiment, though, we employed as stimuli real hand actions
performed by an experimenter in front of the monkey.

In order to verify the presence of action recognition in monkeys we applied a paradigm
very similar to that used in infants. Gaze position in monkeys was tracked during observation
of different types of actions performed by the experimenter in front of it. The experiment was
subdivided into two different sessions: a “familiarization” session and a “test” session. During
the familiarization session the experimenter overcame an obstacle with her arm in order to
reach and grasp an object. During the test session the experimenter performed two different
types of movements to grasp an object in the absence of the obstacle: “congruent” condition in
which the trajectory of the experimenter’s arm is a normal one, and the “incongruent” condition
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in which the trajectory of the arm simulates the presence of the obstacle.

More in detail, the experimental setting was as follows: Six macaque monkeys have been
properly trained to gaze different hand actions performed by an experimenter at about 50 cm
from the animal. The direction of the monkey's gaze was mapped by means of an eye-tracker
(Tobii, Sweden). The experimenter's actions was simultaneously videorecorded and digitized so
that it was possible to superimpose on it the monkey fixation points. Six short hand grasping
actions were performed by the experimenter in front of the monkey during an experimental and
a control session, respectively; the two sessions took place at 4 weeks interval. For each session,
a familiarization set was presented, consisting of a short sequence (repeated 10 times) in order
to refrain the animal from perceiving the sequence as a novelty event. After the familiarization
set, we presented 3 blocks of 4 action sequences each (situation test), in which the
familiarization scene was slightly modified. In the familiarization block of the experimental
session, the experimenter's hand was overstepping an obstacle when reaching a squeeking
object. During the first block of Test actions (non-congruent condition) we displayed the same
action with an identical (parabolic) trajectory, but in the absence of an obstacle. During the
second block of Test actions (congruent condition) we displayed the grasping action in the
absence of an obstacle being performed with a straight trajectory. The control actions presented
a familiarization set in which the same action of grasping was performed with a parabolic
trajectory, not required by the position of the obstacle (side-placed with respect of the
background). The Test conditions was identical to those selected for the experimental session.

Now a paper has been published and is attached to this Deliverable in the Appendixes Section
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2.2.2 Single neuron study of visual feedback during grasping, in monkey premotor and
primary motor cortex (UNIFE).

It is well known that the frontal cortex is strongly involved in action programming and
motor control. In addition to the primary motor cortex (area F1) there are three pairs of areas: F3
(caudal, SMA proper) and F6 (rostral, pre-SMA) lay on the mesial wall of the frontal lobe; F2
(caudal) and F7 (rostral) form the dorsal premotor cortex and F4 (caudal) and F5 (rostral) form
the ventral premotor cortex. Particularly interesting are the ventral premotor areas because of
the strong visual input they receive from the inferior parietal lobule. These inputs subserve a
series of visuomotor transformations for reaching (area F4, Fogassi et al., 1996) and grasping
(area F5, Rizzolatti et al, 1988; Murata et al., 1997). In addition, area F5 contains neurons
forming an observation/execution matching system, which maps observed actions on the
observer’s internal motor representations (mirror neurons). Electrical stimulation studies
revealed that area F5 contains extensively overlapping representations of hand and mouth
movements (Rizzolatti et al.,, 1988; Hepp-Reymond, et al., 1994). Single neurons studies have
shown that most F5 neurons code specific actions, rather than the single movements that form
them (Rizzolatti et al. 1988, Fadiga et al. 2000). It has been therefore proposed that, in area F5, a
vocabulary of goals more than a set of individual movements, is stored. Several F5 neurons, in
addition to their motor properties, respond also to visual stimuli. According to their visual
responses, two classes of visuomotor neurons can be distinguished within area F5: canonical
neurons and mirror neurons (Rizzolatti and Fadiga, 1998). Canonical neurons respond to visual
presentation of three-dimensional objects (Murata et al., 1997). About one quarter of F5 neurons
show object-related visual responses, which are, in the majority of cases, selective for objects of
certain size, shape and orientation and congruent with the motor specificity of these neurons.
They are thought to take part in a sensorimotor transformation process dedicated to select the
goal-directed action, which most properly fits to the particular physical characteristics of the to-
be-grasped object.

The mirror neurons form the second class of visuomotor neurons of area F5. This name
was coined because of their property to “reflect” with their visual response an action executed
by another individual, if the seen action is similar to that motorically coded by them (di
Pellegrino, et al., 1992; Gallese et al., 1996; Rizzolatti et al., 1996). In contrast to the canonical
neurons, mirror neurons do not respond to the mere presentation of objects. Thus, the vision of
a real action, performed by a biological agent (the experimenter or another monkey) is essential
for their activation. A mimed action, not interacting with an object, or an action executed by a
tool (e.g. pliers) are ineffective in triggering most of F5 mirror neurons. Almost all mirror
neurons show a certain degree of congruence between the effective observed and executed
action. This congruence is very strict in about one third of F5 mirror neurons. Very recently, it
has been reported that a fraction of mirror neurons, in addition to their visual response, become
also active when the monkey listens to an action-related sound (e.g. breaking of a peanut)
(Kohler et al., 2002). It is tempting therefore to conclude that mirror neurons may form a
multimodal representation of goal directed actions, possibly involved in action recognition.
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Aim.

The goal of monkey experiments was to investigate the nature of the visuomotor
coupling at the basis of the “mirror” response. Our hypothesis was that mirror discharge could
be initially generated by the observation of one’s own acting effector, seen from different
perspectives, performing repetitively the same action. We assumed that these different visual
information could be associated by the brain as “common signals”, having in common the same
motor goal. Following this learning phase, the system could become therefore capable to extract
motor invariance also during observation of actions made by others. Although the learning
process described above should mainly occur during development, we postulated that also in
adult animals some vestigial residuals of this visuomotor coupling could have resisted in F5
motor neurons (generally considered as devoid of any visual property). To investigate this
hypothesis, we programmed a series of single neuron recordings in monkey premotor area F5
while the animal was executing a grasping movement with normal and manipulated visual
information (e.g.: complete dark, brief flash of light during different phases of the movement).
As a control, primary motor cortex neurons (area F1) have been recorded too.

Methods.

To standardize the grasping movement, a specially designed apparatus has been used. It
consists of a box that was mounted at reaching distance (30 cm) in front of the monkey, with
little pieces of food hidden inside (Figure 12).

Figure 12. The experimental apparatus.

The box was covered by two doors. A more superficial one (see figure 12, center) whose
opening at distance by the experimenter signaled to the monkey the beginning of the trial, and a
second one (see figure 12, right), hosting a small plastic cube working as a handle. This plastic
cube was translucent and back-illuminated from inside the box by a red LED in order to allow
the monkey to fast reach it, also in the dark. The handle was buried inside a grove that forced
the monkey to open the door by grasping the handle only by using a precision grip. When both
thumb and index finger touched the handle, an electronic circuit (Schmitt’s trigger) gave to the
acquisition system the synchronization signal. Neuronal activity was recorded during the two
seconds following handle grasping, with one second of pre-trigger acquisition.
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In order to test the experimental hypothesis, recorded neurons were submitted to four
conditions:
a. grasping in full vision
b. grasping in dark with no hand visual feedback
c. grasping in dark with instantaneous visual feedback before contact
d. grasping in dark with instantaneous visual feedback at object contact

In the last two conditions a very brief (20 microseconds) xenon flash illuminated the
scene at two different phases of the grasping action: during hand approaching (as triggered by a
pyroelectric infrared sensor) (c) and at the moment of handle touch (d).

Results.

A paper has now been written describing in details the methods and the final results of this
experiment. The draft “Visual Feedback from the Own Acting Hand Modulates the Activity of
Grasping Neurons in Monkey Premotor Area F5” is attached to this deliverable.
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2.2.3 Single neuron study of rat premotor cortex: are there mirror neurons too? (UNIFE)

In the framework of WP3, at UNIFE we are exploring the possibility that a mirror-
neuron system exist not only in primates but also in simpler animals such as rats, characterized
by an intense social interaction. To this purpose, we projected and realized a multi-electrode
amplifier (32 channels) and we started experiments of intracortical microstimulation and
recording in rats, in collaboration with the University of Parma (Italy) and the University of
Odessa (Ukraine).

Several lines of evidence demonstrate the existence in the primate’s premotor cortex of a
motor resonant system, the so called ‘mirror-neuron system’, firstly described in the rostral part
of monkey ventral premotor cortex (area F5). Mirror neurons discharge both when the animal
performs goal-directed hand actions and when it observes another individual performing the
same or a similar action (Rizzolatti et al. 1999; Rizzolatti et al. 1996). More recently, in the same
area, but more ventrally, mirror neurons responding to the observation of mouth actions have
been found. Most of mouth mirror neurons become active during the execution and observation
of mouth ingestive actions such as grasping, sucking or breaking food as well as of
communicative mouth actions, such as lipsmacking (Ferrari et al. 2003). Mirror neurons are not
limited to premotor cortex but have also been found in area PF of the inferior parietal lobule,
which is bidirectionally connected with area F5 (Fogassi et al. 1998). Although at the present
there are no studies in which single neurons have been recorded from the mirror-neuron areas
in humans there is, however, a rich amount of data proving that a human mirror-neuron system
does exist. Evidence comes from neurophysiological and brain-imaging studies (Buccino et al.
2001; Fadiga et al. 2005; Avikainen et al. 2002, see Rizzolatti and Craighero 2004 for a review).
This unified representation may subserve the learning of goal-directed actions during
development and the recognition of motor acts, when visually perceived.

The existence of multiple motor and premotor cortical areas that differ in some of their
properties is well known in primates, but is less clear in small animals. In rats, intracorticali
microstimulation reveals in the frontal cortex two separated motor representations of the
anterior limb (Neafsey et al. 1986) which are located in different cytoarchitectonic areas
(Rouiller et al. 1993) and receive different cortical and thalamic inputs (Wang and Kurata 1998).
Some literature data (Neafsey et al. 1986; Rouiller et al. 1993) suggest that these areas (called M1
and NMC, respectively), might be the homologues of primate’s primary motor and premotor
cortical areas. In fact, NMC seems to participate in preparation and performance of complex
coordinated movements by participating in programming and planning of movements. In
addition, reciprocal cortico-cortical connections of the rostral forelimb area (RFA) share some
pattern with the hodology of primate’s motor areas, suggesting that rat's RFA may be
considered a far precursor of primate’s supplementary/premotor cortex (Wang and Kurata
1998). However, data about the functional characteristics of premotor cortex in rats are not
numerous and, more importantly, nothing is known about the existence of motor-resonant
systems, like primates’ mirror neurons. On the other hand, rats continuously act on objects,
interact with other individuals, clean their fur or scratch their skin and, in fact, actions represent
the only way they have to manifest their desires and goals. It is therefore plausible that,
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considering their manual dexterity and their strong social behaviour, these animals possess
some mirror-like neurons in their premotor cortex.

In recent years a new paradigm of learning in small animals was developed through
observational training, in which rats repeatedly observed companion rats performing different
spatial tasks (Leggio et al. 2003). In some of these experiments animals were actually tested in
the tasks they had previously only observed. The results obtained indicate that rats can learn
complex behavioral strategies by observing some conspecifics performing the same task.
Furthermore, acquisition of the single facets that form the behavioral repertoire can be
separately studied as well as the role of particular brain areas (Petrosini et al. 2003). It's well
known the ability of rats to manipulate food as well as their capability to retrieve food also
when is attached at the end of a long string. (Molinari et al. 1990; Zhuravin and Bures 1988).
Thus, a number of such behavioral tasks can be used to investigate electrical activity in the
premotor cortex and to elucidate the role of mirror resonant system in rats in these conditions.

Considering that the development of the motor control during ontogenesis is one the
most actual problems in the neurobiology and physiology. Despite this interest, only few data
have been obtained on functional maturation of motor areas in rat pup cortex (Golikova, 1990).
The discovery of mirror neurons in rat’s premotor cortex could fundament to study ontogenetic
peculiarities of motor resonant system formation. Although extracellular single-unit recordings
in restrained, anesthetized animals have long been used in neurophysiological investigations,
more recently, modified methods of single-unit recordings in freely behaving animals have
converted this classic approach to a powerful new tool to study motor and cognitive
behaviours. Another newly developed technique, the multi-electrode single-unit recording in
freely behaving animals, is even more powerful in neural circuit studies. With this sophisticated
approach, patterns of electrical activity of individual neurons from different areas forming a
specific neural circuit can be measured simultaneously during specific behavioural events. This
method is therefore indicated to analyse changes in the spatiotemporal patterns of neuronal
activity related to goal-directed behaviours.

Methods

Behavioural paradigm and equipment: The main goal of the experiments is to record
neuronal activity in rats during hand action execution and observation. To reach this goal, we
composed our activity from two different options. The first one was dedicated to design and
build a special cage in which rats have to perform free behaviours while the neuronal electrical
activity is recorded. This cage must contain two animals, the actor and the observer and, has
been conceived in order to allow the observer to easily see the performing rat through a
transparent wall. The second task that we carried out was related to proper signals acquisition
and analysis. The cage was built with Plexiglas. Dimensions are: length=80 cm, height=45 cm
and width=40 cm. The cage is divided into three compartiments by walls made of the same
material (Fig. 13, A). The first (equal to %2 size of the cage) is for the rat from which action
observation-related neuronal electrical activity has to be registered. Taking into account the big
mass of the wires and connectors coming from the microelectrode array connecting the array to
the preamplifier and to the amplifier, we designed a special mechanical arm which holds these
wires keeping and balances their weight. The remaining space inside the cage was then divided
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into two further sectors (see Fig.13, B).

A B

Figure 13. The cage for training and neuronal recording. A, frontal view; B, top view. The leftmost sector
shown in B contains the observing rat; the lower-right sector contains the actor rat which retrieves food

from the container visible in the separation.

The partition between these two sectors has one small window (diameter, 25 mm;
distance from the floor, 70 mm) allowing the access to a small platform attached to the
separation wall. During the experiments a piece of food is positioned on the platform, close to
the window, and the actor rat has to grasp this food with its forearm (see Fig. 14, some coloured
keys are placed on the platform to make it evident).

Figure 14. Left, the food-containing platform. Right, the cage hosting the rat #1 (left side, the ‘spectator’)
and #2 (right side, the “actor’).
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All the rats pertaining to the experimental group (Long-Evans strain) have been
previously trained to grasp the pieces of food through the window. The experiments were
performed daily from 10.00 to 12.30 a.m. after light food deprivation (food was removed from
the cage at 6.00 p.m. the day before the experiment). On average, each rat remained inside the
cage for 46+6 min and performed 94+13 grasping movements. The second rat (which also
underwent the same food deprivation) was looking at the conspecific from the left
compartment of the cage.

The second part of the work consisted in the setup of the recording apparatus. Utah
microelectrode array (3x3 mm array containing 36 microelectrodes, Cyberkinetics Inc., USA)
have been selected for the experiment (see Figure 15). The insertion of the microelectrode array

was performed in deep anaesthesia induced by i.m. ketamine by using a specially designed
pneumatic gun (Fig. 16, A) and the multipolar connector was screwed to the skull by using four
titanium screws. The operated rats were ready for the experiment after a 7 days recovery
period.

Figure 16. A, the pneumatic device used to push the microelectrode array inside the cortex minimizing

tissue damages. B, the connector screwed to the skull.
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Figure 17. The preamplifiers connected to the head of the rat during recordings. Note the spiral spring

providing the necessary rigidity to the system

Electronics: A 32-channels differential amplifier (with respect to a common reference)
was designed and built at UNIFE. The data acquisition system for recording and processing
neural signals for the 32 extracellular electrodes could be easily extended up to 128 extracellular
electrodes by additional modules. Acquisition of signals is triggered by the ‘actor’ rat by means
of a specially designed TTL-trigger (Fig. 9). The acquisition starts at the moment at which the
rat touches the food. Miniature low-noise and low input bias current preamplifiers (based on
TLC 2272) were fixed on the head of the animal before experiments and connected to the
multielectrode microarray through a ICS-32 connector (Ciberkinetics, Inc.) (Fig. 17). After the
preamplification stage, the signals reach the amplifier by a thin and flexible 36-wires flat cable.
The full amplification gain has been set to x10000. The main unit containing the last-stage
amplifiers (fully battery powered), is composed of four compact 8-channel processing boards
(Fig. 18). The front-end modules amplify the signals and transmit them to a host PC system via
a National Instruments SH100100 shielded cable. A Digital Acquisition Card (PCI-6071,
National Instruments, 16-Bit, up to 1.25 MS/s, 64 analog inputs), was used to digitize the input
signals. In our configuration, 32-channels were reserved for the acquisition of signals from
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electrodes, 1 additional channel was used for the trigger and 2 channels were used as technical
references (to control the power supply voltage and current).

Figure 18. Overview of the multichannel acquisition system for single unit recordings in small animals. Left:
the main unit, with 4 boards each hosting 8 last-stage x 10,000 amplifiers. Its rightmost compartment is
reserved for the batteries. Right, upper: the shielded cable connecting amplifiers and D/A Converter
(SH100100, National Instruments). Right, middle: Digital Acquisition Card (PCI-6071E, National
Instruments). Right, lower: preamplifiers head stage (2 boards hosting each 16 preamplifiers connected to a
miniature ICS-32 male connector).

Software: The software interface we setup at UNIFE runs on a PC (Windows XP Pro)
allowing the user to configure the data processing, to visualize and to analyze the incoming
data. The graphical interface is user-friendly and is entirely written in LabView 7.0 (National
Instruments Inc.). In order to simplify the description the software package will be called here
as ‘Neuro-RAT’. The flexible digital architecture of the Neuro-RAT program allows the user to
perform a variety of different on-line and off-line analyses, from simple data streaming and
storage, to on-line filtering and spike sorting. The program contains three main parts: a)
monitoring; b) acquisition; c) analysis.

The Monitoring part is designed for real-time observation of the activity as recorded
from all the recording microelectrodes shown by colour-coding the neural activity (Fig. 19). It is
therefore capable to detect spikes in all active electrodes and, moreover, to monitor one selected
channel with different timescale. We found colour-coding rather helpful because it allows to
quickly select and display the electrodes showing the better correlation between neuronal
discharge and animal behaviour. At the same time, it helps to determine electrodes showing
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noisy or corrupted activity. Another interface window (Fig.19, B) allows to visualize raw-signal

from 8 different electrodes user-selectable from the 64 array.

i 7

L L T

o

Figure 19. The main interface windows of the Monitoring component of Neuro-RAT. Note in A the color

coded array where each position shows the activity of the corresponding microelectrode.

A schematic view of the Acquisition and Analysis component of Neuro-RAT is shown in

Fig. 20. The Analysis part of Neuro-RAT allows to separate single units from polispike

recordings and its Interface window is shown in Fig. 21.
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Figure 20. Block-diagram of Aquisition and Analysis part of Neuro-RAT program. The main menu (1)
that is at the top level of the program, allows user to initiate new records (2) and to get fast access to any
stage of the data processing (3). All other modules of the program are loop-structured and prompt the
user to execute the procedure when necessary. Dynamic links between modules and storage of critical
parameters of during PCA (Principal Components Analysis, 4) and FCM (Fuzzy C-Mean, 5) allows the
program to solve the invariance problem during Principal Component Analysis, automatically select the
features to be used in classification, to choose the best settings for clustering (new or previously
calculated for a given recording site) and to remove the noise.
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Figure 21. Interface window for the Data acquisition component of Neuro-RAT. The architecture of the
user-interface window showing polyspikes acquired during twelve trials is shown. Raw data from the
electrode and additional hardware information (i.e. trigger signals) are extracted and visualized. The
resulting peristimulus histogram of spikes occurrence (as revealed by the spike sorting module) is shown
below the rasters.

Figure 22. Interface window for
the Data Analysis component.
Top, the interactive threshold-
ing used for the spike sorting
algorithm. Bottom, the peri-
stimulus histogram built from
the spikes selected by the
thresholding procedure. Note
that this amplitude-threshold
criterion is too permissive and
pools together spikes coming
from different neurons.

To obtain in-depth spike sor-
ting, a dedicated part of Neuro-
RAT performs Fuzzy C-Mean
Classification of Principal Com-

ponents in multi-dimensional
space.

Comements [ Ty i
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It should be stressed that, the possibilities and functions of the Neuro-RAT software are
integrated by filters, smoothing algorithms signal and other useful math tools, implemented
available when needed.

Current state of the art and perspectives:

1) Preliminary exploration and functional characterization of rat premotor cortex by
intracortical microstimulation: done.

2) Setup of the training procedure of Long-Evans rats: done.
3) Setup of surgical implant: done.

4) Readiness of preamplifiers: 100%

5) Readiness of last-stage amplifiers: 100%

6) Readiness of acquisition hard & software: 100%.

7) Readiness of analysis software: 100%.

The intracortical microstimulation mapping study, done in collaboration with
University of Parma confirms availability in the frontal cortex of two separated motor
representations of the anterior limb (M1 and RFA), which are located in different
cytoarchitectonic areas and receive different cortical and thalamic inputs. In some recent studies
it was shown that reciprocal cortico-cortical connections of the Rostral Forelimb Area (RFA)
(figure A) share some pattern with the hodology of primate’s motor areas (Nudo and Frost,
2006), suggesting that rat's RFA may be considered a far precursor of primate’s
supplementary/premotor cortex (Wang and Kurata 1998).

NG PV / Figure A. Schematic view of somatosensory and
motor areas in rodents.

On the other hand, rats continuously act on objects, interact with other individuals, clean their
fur or scratch their skin and, in fact, actions represent the only way they have to manifest their
desires and goals.

During the fourth year of the project, we optimized the setup and, as programmed, we
started neuronal recordings with good success.
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The main achieved objectives are:

a) hosting cages for ‘spectator’ (figure B, right side) and ‘actor’ (figure B, left
side) animals;

b) miniature high-impedance preamplifiers for single-unit acquisitions (32
channels) (figure C);

c) specialized acquisition and analysis software, including on-line spike sorting
module.

Figure B. The cage for training and neuronal
recording

QUTPUT QUTPUT

Figure C. New miniature low noise and low input bias current preamplifiers (based on the TLC2272
series of OPA, shown at the left side); main unit containing last-stage amplifiers (at the right)
connected by thin flexible sub-miniature cable 12xUAN3807 TNU (INDUSTRIFIL, France) & 1.52 mm
(in the center of the figure).

Our special attention was focused on the reliability of the system. For this purpose we
have developed and successfully tested our own supraosteal adapter (figure D), which was
implanted by using commercial dental implant system (MIDPLANT, HDC srl.).
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|

Miniature adapter
for chronic single unit
recordings

Figure D. Supraosteal construction for ICS-32 connector for chronic recording free behaving rats

The surgery protocol has been modified and markedly improved (see below: figure E).

Figure E. Surgical procedures. A — transdural insertion of the microarray; B - mounting of the of
assembled superosteal construction.; C — closing of ICS-32 connector and plastic adapter attached to
the skull.

Preliminary result shows excellent stability of mentioned superosteal implant over 3
month after surgery. Test acquisitions indicate good quality and noise-tolerant electrical activity
enabling an isolation of single neurons (figure F).
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Figure F. An example of recording signal (0,5s interval of channel no. 8 is visualized by using Audacity
software).

Important moditications In the custom acquisition and analysis Neuro-RA| sottware
were introduced. Namely, in addition to the previously described spike sorting procedure, the
cluster’s validation module based on ISl distribution was added (figure G).
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Figure G. The validation of the quality of the isolation of single units based on ISI interval distribution.

New on-line Fuzzy C-Mean spikes classification procedure in the Principal Components
feature space was implemented in the Neuro-RAT software and successfully tested with
simulated datasets (figure H).
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20 40 00 19 20 30
Ture

Figure H. DEMO version of ‘Server’ (VI 1) and ‘Client” (VI 2) modules of the on-line FCM-classifier
(downloadable from http://neurolab.unife.it/andrey/programs.htm)

The project is proceeding as expected. The extensive recordings of at least four animals
in paradigm condition will be completed by the end of the last year.
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2.3 Schemas for artefacts

2.3.1 Cortico-spinal (CS) excitability during interception with precision grip (UNIFE)

Interception in humans is a complex visuo-motor task that requires in few hundreds of
milliseconds to detect and process visual motion information, to estimate future position of
objects in space and time, to transform visual information into an appropriate motor action and
to trigger this action in advance, to compensate for physiological and biomechanical delays.

Despite this complexity, humans demonstrate rather good performance in interceptive
actions, especially in high-speed ball games (®~2tsma & van Wieringen, 1990; McLeod, 1987)
but also in laboratory environment (Day & Lyon, 2000; Soechting & Lacquaniti, 1983). One of
the critical point is to be able to estimate the time remaining before contact (or time to contact,
TTC) in order to trigger the action at the right time. Thirty years of research in this field has led
to the proposal that humans use anticipatory mechanisms based on on-line visual information
(Lee, 1976) that can be combined with a priori implicit knowledge of the rules of physics for the
target motion (Lacquaniti, Carrozzo & Borghese, 1993; McIntyre, Zago, Berthoz & Lacquaniti,
2001). By this mean, an estimate of TTC can be updated and improved on line from object
appearance until the time at which the action must be triggered.

If the psychophysics of this mechanism is well documented, our knowledges in the
physiology of interception are rather poor. However, recent experiment in monkeys ((Merchant,
Battaglia-Mayer & Georgopoulos, 2004; Port, Kruse, Lee & Georgopoulos, 2001)) have shown
that the activity of neurons in the primary motor cortex (M1) during interception is modulated
by the stimulus parameters and especially by an estimate of TTC. At UNIFE we began a series
of experiments in order to investigate the excitability of the cortico-spinal (CS) system in
humans during the interception of a falling object and its relationship to the target parameters.
The hypothesis is that CS excitability should increase as the estimate of TTC is updated until it
reach the threshold value at which the muscular activity is triggered.

It is known that action, observation of action and internal simulation of action share
some common neural mechanisms and substrate in humans (Decety, 1996; Fadiga, Fogassi,
Pavesi & Rizzolatti, 1995; Rizzolatti & Craighero, 2004). Moreover, it has been shown that the
timing of simulated actions is similar to the timing of real actions (Decety, Jeannerod &
Prablanc, 1989) and that the temporal parameter of actions are coded in motor cortex during
action observation (Gangitano, Mottaghy & Pascual-Leone, 2001). Thus, a second aspect of the
project was then to determine if similar modulations of the CS excitability could be seen during
execution, observation and simulation of an interceptive action.

Methods
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We used transcranial magnetic stimulation (TMS), as this technique has already shown
to be relevant for testing CS excitability modulation in all these tasks (Fadiga et al., 1995; Fadiga
et al.,, 1999).

Figure 23. The experimental setup

To this purpose, single pulse TMS applied at different timings during the fall of the
target was used to assess the time-course of CS excitability through the amplitude of moto
evoked potentials (MEP). MEPs were recorded from the right first dorsal interosseus (FDI)
muscle while the subject try to intercept with a precision grip a bar sliding down along a
vertical bar (see Figure 23). In a first experiment, single pulse were delivered at -200 ms, 0 ms,
+100 ms and +200 ms relative to the release of the target bar. CS excitability was computed as
MEP area and compared to a baseline level recorded while subject was at rest. Four
experimental conditions have been studied: Execution, No-Go (subjects were instructed to
refrain from grasping), Simulation (motor imagery of the grasping movement triggered at the
instant of object’s fall), and Observation of others (while performing the same grasping
movement).
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Results

The results (see Fig. 24) showed clear modulation of CS excitability during Execution and
No-go but no significant modulation were found in other conditions. CS excitability started to
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Figure 24. From left to right, Z-score of MEP area in the Execution, No-go, Observation and
Simulation conditions. Asterisks signal significant (p<0.05) difference relative to baseline.

increase before target release and then slightly decrease at release to increase again until 200 ms.
However, despite we found a significant effect of ST ( one way ANOVA, F(4,52)=4.57; p<.05) on
MEP area, a Newman-Keuls post-hoc analysis demonstrated that only MEP evoked when TMS
pulse was delivered at 200 ms were significantly larger than those evoked at rest and at all other
latencies except than at time of release. In summary, CS excitability increases above baseline
between 100 and 200 ms after ball release.

During the No-go condition, we observed a general decrease of the CS excitability
relative to the Rest condition. The one way ANOVA revealed a significant effect of ST (F(4,52) =
5.8, p < 0.05) and Newman-Keuls post-hoc analysis demonstrated that MEPs evoked when
stimulation occurred at 100 and 200 ms after release were significantly smaller than the ones
evoked at other latencies and during Rest (p < 0.05) but not significantly different from each
other.

In summary of the first experiment, we found a facilitation of cortico-spinal excitability
200 ms after target release in the Execution condition whereas a global inhibition was seen
during the No-go condition, being significant from 100 ms after release. During Observation,
despite no significant modulation of MEP area relative to the Rest condition, we observe a
specific inhibition of CS system at 200 ms, that is when CS excitability increase significantly in
the Execution condition. During action simulation, no significant difference was found relative
to Rest but slight increases of CS excitability were observed at ST 0 and 200 ms relative to target
release.

The increase of CS excitability in time during the Execution condition reflects the
characteristics of interceptive task in which, in contrary to reaction time tasks, the action must
be triggered in response to an internal signal (TTC threshold) and not an external one
(stimulus). This internal signal should reach its threshold value at about 250 ms as EMG activity
began at 280 ms in average. It can be assumed that the CS excitability is rising whereas the TTC
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estimate is updated in order to be closer from motor threshold at the triggering time. On the
other hand, the decreasing CS excitability during the No-go condition is likely reflecting a
mechanism dedicated to lower the sensitivity of motor cortex to neural command triggered by
the stimulus.

Previous (submitted) data in MEG shown remarkably similar activations during
catching and a No-go condition along the dorsal visuo-motor pathways suggesting a stimulus-
rather than a task-driven processing. The absence of significant modulation in the Observation
condition could be expected as TMS pulses were applied before the action begins to be in line
with the stimulation time in the Execution condition. A second experiment with different time
of stimulation has been performed and results are under process. Finally, the absence of
modulation in the simulation condition is difficult to explain. Contribution of M1 to motor
imagery is demonstrated by some studies and not by others (see (Lotze et al., 2006)). The
observation of M1 activation during motor imagery seems to depend on methodological
considerations and our lack of results could be attributed to the difficulty to simulate the task.
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2.3.2 Robotic implementation of models of sensory-motor coordination for reaching,
grasping and tracking tasks. (SSSA, UNIZH, UNISAL)
The availability of robotic platforms with adequate levels of anthropomorphism, in the
sensory systems and in the kinematic structure, allows an experimental investigation of the
models of sensory-motor coordination in reaching and grasping.

2.3.2.1 The SSSA humanoid robot.

The SSSA humanoid robot mimics human mechanisms of perception and action, and can
implement neurophysiological models of sensory-motor coordination, for experimental
validation. The system is composed of sensors and actuators replicating some level of
anthropomorphism, in the physical structure and/or in the functionality. It is worth noting that
their specifications were defined together by roboticists and neuroscientists (Dario et al., 2005).
The platform is constituted by a 1-link trunk which supports one arm/hand system and a
neck/head system (see Fig.1). The 2-dof trunk is part of the arm (Dexter arm, by S.M. Scienzia
Machinale srl, Pisa, Italy) which has in total 8 dofs, and integrates the 4 motors of the three-
fingered hand on the forearm. The arm structure is anthropomorphic in reproducing a 2-dof
shoulder, a 1-dof elbow and a 3-dof wrist (Zollo et al., 2003). The mechanical transmission
system is realized through steel cables, which allow the 6 distal motors to be located on the first
link, which represents the trunk, by achieving low weight and low inertia for the distal joints.
The proprioceptive information for the arm 8 joints are given by a measure of the power
consumption of each joint as well as joint positions provided by incremental encoders located
on each motor. The hand is has anthropomorphic dimensions and weight (Roccella et al., 2004).
Each finger consists of 3 underactuated dofs driven by a single cable allowing flexion/extension.
A 2-dofs trapezo-metacarpal joint at the base of the palm allows thumb opposition movement
(adduction/abduction). In total the hand has 10 dofs, 6 of which are underactuated. The
perception system of the hand includes proprioceptive and exteroceptive sensory systems, and
in particular: 9 position Hall-effect sensors, 3 for each finger, one per phalanx; 4 motor encoders;
3 3D force sensor, one for each finger, embedded in the fingertips providing the three force
components of the contact; 9 ON/OFF contact sensors, 3 for each finger, one per phalanx. The
anthropomorphic robotic head has been designed on the basis of the physical structure and
performance of the human head in terms of dofs, ranges of motion, speeds and accelerations
(Dario et al., 2005). The head has a total of 7 dofs equipped with incremental encoders for
measuring the positions of all the joints as proprioceptive information: 4 dofs on the neck (1
yaw, 2 pitches at different heights, 1 roll), 1 dof for a common eye tilt movement and 2 dofs for
independent eye pan movements. The 4 dofs on the neck allow the head to perform
dorsal/ventral and right/left neck flexion movements as well as neck rotation. The 2 dofs
performing pan movement of the eye permit vergence of the two eyes, thus allowing foveation
of targets. The performance of the head allows performing human eye movements such as
smooth pursuit and saccades. The head is equipped with 2 cameras providing retina-like
images, i.e. space variant image whose resolution is higher in the centre (fovea) and degrades
towards periphery, as an imitation of images generated onto the human retina (Sandini &
Metta, 2003).
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Functional biologically-plausible models of sensory-motor mapping and of learning of
sensory-motor coordination have been implemented on different parts of the ARTS humanoid
platform. Such models have been adapted from the DIRECT (Direction to Rotation Effector
Control Transform), proposed in (Bullock et al., 1993). The implementation of these sensory-
motor coordination models on the ARTS humanoid is based on self-organizing neural networks
that learn how to coordinate motor actions with sensory feedbacks.

Figure 25. The ARTS humanoid robotic platform.

The model builds a mapping between the positions of the robot in the external space
(Cartesian space), as given by the sensory systems, and in the internal space (joint space), as
given by the proprioceptive systems. The neural networks start with few information about the
robot kinematics, like the number of DOFs and the maximum ranges of motion. During an
initial learning phase, associations are created between spatial directions of movements and
joint rotations, through random endogenous movements whose effects are detected by vision or
touch (similarly to human infants). After learning, the built associations are used to set the
proper joint rotation in order to reach a target position. This model has been implemented with
Grossberg’s outstar cells and Growing Neural Gas (GNG) Networks, as proposed by Bernd
Fritzke (Fritzke, 1994). Differently from other techniques, these networks do not have
predefined dimension nor topology and can grow, reduce, and re-configure in order to better
solve the problem they are designed and trained for. Based on this model, we developed and
experimentally validated a neurocontroller for positioning and orienting the robot hand in the
3-dimensional Cartesian space (Asuni et al., 2006; Asuni et al., 2005(b)) and a neurocontroller for
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gazing a point in the three-dimensional space, with the robot head, by controlling the neck and
eye movements (Asuni et al., 2005(a)). An adaptation of the model includes predictive control of
grasping and has been implemented on the ARTS humanoid to obtain ‘adaptable grasping’,
that is the robot was capable of looking at an object, determining the position of the hand for
grasping, and accomplish the grasping action by using the tactile perception with an expected
perception control loop (Laschi et al., 2006). An alternative biological model (Goossens & Van
Opstal, 1997) has been implemented for the coordination of the ARTS humanoid neck and eye
movements (Maini et al., 2006).

During the fourth year of the project, SSSA developed two main interacting modules: A
vision module (that provides objects visual information), and a reaching module (that learns
how to move, based on the information provided by vision).

The vision Module

The vision module receives the images from the two cameras mounted on the iCub
head. It is responsible of processing these images in order to obtain the relevant information
about the object to be grasped. These are: shape, dimension, orientation, and position within the
3D surrounding environment (this is accomplished by triangulating the information received
from the binocular vision and the head and neck encoders). In our particular case we made our
experiments by using a ball of different colors as the object of interest.

In order to detect the ball, and all its features, we implemented a simple but efficient
image processing algorithm. We detect the ball by means of a color filter. The pixels of the ball
are detected by setting color thresholds for the pixels belonging to the ball. We implemented a
technique that creates a database for all the possible colors. Each color (detected with an image
of interest) is represented with the HSV representation by its histogram evaluated within the
image it owns to. Then, our application for the iCub loads the correspondent color
representation from this database at runtime. Once the ball pixels are identified, the image is
converted into a binary image with ball pixels set to '1". The binary image contains not only the
blob relative to the ball, but also other smaller blobs caused by color variation in the image. For
the identification of the blob corresponding to the ball, we use a connected components
algorithm. We assume the largest blob is the ball, so we look for the blob with the largest area.
Subsequently we proceeded by applying the algorithm by Maini [8], to the found blob, in order
to detect all the parameters of the curve that describes the boundary of the blob. This is a new
interesting LS technique, the Enhanced Least-Square Fitting of Ellipses (EDFE), that has been
developed recently, and it was proposed in [8]. It is a LS procedure that improves the work
described in [9]. In this work, Fitzgibbon et al. developed a direct computational method (i.e.
B2AC) based on the algebraic distance with a quadratic constrain. This new approach
overcomes the state of the art by solving the problems of numerical instability that can produce
completely wrong results, such as infinite or complex solutions, not reported in the original
work [9].

We tested our algorithms by using the icub simulator. We used the iCub ODE simulator
present in the iCub repository. Moreover, we slightly modified the simulator in order to create
different scenarios for our experiments (such as by changing the color of the ball, by removing
the table, etc.). In Fig. 6a and 6b an example of the ball detection algorithm output is shown. In
Fig. 6a the input to the left camera is presented, i.e. the experimental scenario, while in Fig. 6b
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output of the algorithm is presented, These images are the input image as seen by the robot
with the egocentric view (6a) and the same image with the superimposition of an ellipse, drawn
by using the characteristic parameters obtained by computing the EDFE.

a b

Figure 26. The input image, as seen by the robot with the egocentric view (2a) and the same image with

the superimposition of an ellipse, drawn by using the characteristic parameters obtained by computing
the EDFE.

In addition, we implemented a tracking algorithm that directly commands the head of
the robot, in order to be able to reconstruct the target object position (in terms of its centroid) by
triangulating the information of the neck and head encoders (see Fig. 27).

Co To MNext Page

Figure 27. An example of triangulation of an object. Once the object has been detected by the cameras and
tracked, it is possible to evaluate its 3D position in the surrounding space geometrically, by knowing the
encoders position of the head and the neck of the robotic platform (in this case we refer to a humanoid
robot).
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This will be fundamental for computing the Sensory-Motor maps, as will be explained in
the next section In Fig. 8 a print screen is depicted, that shows an operative situation in which
the simulator tracked the ball. The iCub program we implemented the position of the ball
(which is the target to be grasped in this case), in terms of Cartesian position. We adopted the
same system reference as the simulator, in order to be fully compatible with the measures and
the signs adopted in the virtual environment'. This allowed us not only an easier
implementation of the software, but also to test easily our tracking algorithm by simulating
different scenarios, i.e. by putting the ball in different positions (under the table, as in Fig. 26 or
on the floor, as in Fig. 28).

e oo om e

R e (o | eosrutind solfee

Fig. 28. A screenshot depicting the moment in which the simulated robot tracked the position of the ball
in the 3D surrounding environment. Therefore, our program uses the encoders information to triangulate
the position of the centroid of the object within the simulated space.

Again, this is a test for using this software for testing our algorithms for the sensory-motor
maps generation. In fact, with the simulator it is possible to test our neural networks that
generate the internal models for the sensory-motor maps without having the hardware iCub
platform in the laboratory. Clearly, the simulator information is not exhaustive, but it is a good
approximation for the software debug before using it on the rear robot, which can be extremely
dangerous in case of wrong movements, due to the elevate torque of its motors.

! The reference system is centered on the floor plane, at the center of the pole that sustains the robot. The x axis
evolves along the front of the robot, the y axis runs along the left of the robot, and the z axis evolves along its height.
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The reaching module

The development of sensory motor coordination maps have been explored through the creation
of forward models. The forward model created relates the relations that could exist between the
vision system and the robot joints. We are concerned in solving the reaching problem for the
iCub, so the forward model uses the information of the two robot cameras and the joint
positions of one of the manipulator arms. The construction of the forward model starts with a
babbling motor phase, in this phase the robot as a new born start exploring its environment
through a series of goal directed movements within its workspace. The data obtained in this
exploratory phase come from the vision system and the encoder readings of the joints. The
vision system uses a color based algorithm to detect the position of the end-effector in the
image. Once the data has been obtained and stored is used to generate a forward model using
an ANFIS (Adaptive Neuro Fuzzy Inference System) neural network. The neural network
trained with the storage data encodes the relation that exists between the joint angular positions

and the end effector position in the vision System. Figures 29 and 30 show the babbling motor
phase of a robotic manipulator simulated in Matlab.
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Fig. 29. The left éubplot shows the position of the
robot after the second babbling stage (joint 0 is
initialized to 20 degrees). The top and bottom

LS. =

Fig. 30. The left subplot shows the position of the
robot at the end of the babbling. The right top and
right bottom subplots are the end effector

subplots show the imaged end-effector points at ~ accumulated positions of the end effector in the right
each babbling step. and left camera.

The forward model is used for the reaching controller. The reaching controller identifies an end
position where the robot should arrive. Once the final position has been identified by the vision
system; the image based visual servoing controller uses for initializing the image Jacobian the
forward model of the robot. The visual servoing algorithm drives the robot from and initial
position to its final position. Figure 31 shows the general reaching architecture.
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Fig. 31. General Architecture for a reaching task using a forward model

The reaching architecture has been tried first in matlab, and after it has been used the
iCub simulator constructed in ODE to implement the described architecture. Final tests and
experiments with the robot are on going. Figures 32 and 33 are snapshots of some of the
experiments developed in the iCub ODE simulator for the reaching.

Il Simulation test environment ¥0.02 o ] 54

File Simulation  Help

Fig. 32. ICub ODE simulator
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Fig. 33. Left hand of the iCub taken from the left camera.
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2.3.2.2 The UNIZH approach to grasping.

At UNIZH, we investigated how the shape adaptation can be taken over by
morphological computation performed by the morphology of the hand, the elasticity of the
tendons, and the deformability of the material covering the finger tips, as the hand interacts
with the shape of an object. When the hand is closed, the fingers will, because of its
anthropomorphic morphology, automatically come together. For grasping an object, a simple
control scheme, a "close" is applied. Because of the morphology of the hand, the elastic tendons,
and the deformable finger tips, the hand will automatically self-adapt to the object it is
grasping. Thus, there is no need for the agent to "know" beforehand what the shape of the to-be-
grasped object will be. The shape adaptation is taken over by morphological computation
performed by the morphology of the hand, the elasticity of the tendons, and the deformability
of the finger tips, as the hand interacts with the shape of the object. Because of this
morphological computation, control of grasping is very simple, or in other words, very little
brain power is required for grasping. (Pfeifer et al., 2006; Pfeifer et al., in press). We also
implemented a learning mechanism in order that the robotic hand can learn to grasp objects by
itself as described in WP2 Cognitive development (Gomez et al, 2005 and Gomez et al, 2006).

If the robotic hand actively manipulates an object, there are likely to be correlations in
the sensorimotor space. This "good" sensory-motor data can be exploited for perceptual
categorization, adaptation, and learning. In a previous series of studies, we have investigated
how the usage of correlation, entropy, and mutual information can be employed (a) to segment
an observed behaviour into distinct behavioural units, (b) to analyze the informational
relationship between the different components of the sensory-motor apparatus, and (c) to
identify patterns (or fingerprints) in the sensorimotor interaction between the agent and its local
environment. These methods were applied to real robots (Lungarella and Pfeifer, 2001;
teBoekhorst et al., 2003) and simulated robotic agents (Lungarella et al., 2005; Gomez et al., 2005;
Tarapore et al., 2006) and we are using them now in experiments where the robotic hand is
involved in grasping tasks (Lungarella and Gomez, in preparation).

2.3.2.3 The UNIZH approach to Tracking.

In order to detect objects moving in the environment we have implemented 2 different
systems:

The first one is based on elementary motion detectors (EMDs) based on the well-known
elementary motion detector of the spatio-temporal correlation type (Marr, 1982), a description
of the model implemented, can be found in (Ilida, 2003), that successfully implemented a
biologically inspired model of the bee’s visual “odeometer” based on EMDs. The model was
used to estimate the distance traveled based on the accumulated amount of optical flow
measured by EMDs. Fig. 1c and 1d show the EMDs responding to motion.

The second one is based on the optic flow extraction. We used the generalized gradient
method based on Spatio-Temporal Filtering (Sobey and Srinivasan, 1991; Nagai et al., 1999). A
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detailed explanation can be found in Fig. 35 and for an example of the performance see Fig 34b.

Figure 34. Active vision system. (a) Hardware implementation (b) the lower part consists on the left and
right images captured by the cameras, the upper part are the corresponding optical flow. The red dots are
the centroid of the motion (i.e., where the robot should gaze). (c-d) EMDs reacting to motion towards the
right side of the image (green dots) and to motion to the left direction (red dots).
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Figure 35. Optical flow extraction.
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2.3.2.4 The contribution of UNISAL to track the acting hand (UNISAL, UNIUP,
UNIFE).

At UNISAL, the efforts concerning WP3 have been directed towards:

i) Development of a input tracker glove in conjunction with UNIUP looking at the
development of technology to accurately track hand actions in infants up to 24
months. This work has produced a new miniaturised wireless sensory glove able to
track the motions of the all finger and the thumb. The current work is developing the
software interface and refining the glove design for ease of use and acceptance by
the child. These refinements have been based on initial trials with children. It is
expected that a new version with testing will be completed within the next recording
period permitting the collection of real data.

ii) To permit a greater more accurate analysis than is currently available from glove
systems a new high resolution finger tracking systems has been designed and is
undergoing testing. This system has been developed based on input from UNIFE. At
this time the system has been design and tested with operational software showing
accurate 6 dof tracking (accuracy better than 0.1 mm at finger tip). With further
development this will be integrated with the work at UNIFE and UNIUP.

!

x W oy

Figure 36. The two hand tracking systems developed at UNISAL with UNIUP (left) and UNIFE (right).
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This second tracker, in particular, associates high precision to small dimensions. The signal relative to
fingertips positions can be remotely transmitted via WiFi of Bluetooth protocols.

iif) At the same time, UNISAL is continuing its work on the development of an
understanding of the sensory systems for legs, hips, feet and the sensory
requirements of the iCUB. The data relative to this approach will be
presented in the final version of this Deliverable 3.1 (month 30).

2.3.2.5 The contribution of EPFL-A and UNIFE to a computational model for
reaching.

Although point-to-point reaching motions have received a lot of attention, the way these
movements are controlled remains incompletely resolved. Different controllers seem to be
recruited depending on the task. Unconstrained reaching movements in space are strongly
curved, in opposition to the widely accepted view of quasi-straightness. We argue that the
curvature of the movement is due to environmental constraints that affect directly the planning
of the movement. We propose a mathematical model whereby movements are planned through
the combination of two concurrent controllers for the wrist and elbow in space. Coherence
constraints are enforced between the two systems to simulate biomechanical constraints at the
wrist, elbow and shoulder levels. External constraints, such as the presence of obstacles, are
encapsulated in a virtual force which affects the planning of the movement.

The predictions of the model are validated against kinematic data from human reaching
motions. Four types were contrasted: intransitive versus transitive reaching motions and
natural versus un-natural motions. In the un-natural case, subjects were requested to
exaggeratedly elevate the elbow during the movement. In all four movements types, the
movements are highly curved. The model renders with high accuracy the kinematics of the
movements and accounts for the curvature as an effect of the virtual force.

A joint paper is now under submission and the draft “Point-to-Point Unconstrained
Gestures: Modeling Wrist and Elbow Trajectories” is attached to this deliverable
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2.3.3 Sensorimotor Integration of gravity models. (UGDIST)

The work for WP3 at UGDIST has proceeded along two main lines of research. We
investigated the acquisition and construction of internal models both in humans and in robots.
In particular, as a starting point, we concentrated on the acquisition of models of the gravity
load during point-to-point movements: i.e. reaching. In the following we illustrate these two
aspects.

2.3.3.1 Gravity models in humans

Introduction

Many are the circumstances in which action—perception dissociations have been
observed (e.g. [1], [2]). Among the best known cases there are the pictorial illusions which
induce errors in perception but cannot deceive a motor act. It is not yet clear however in which
other conditions this separation could be noticed [3]. Following the work of Dubrowski [4] and
Zago [5] we wanted to investigate whether action-perception dissociations affect also
prediction. We performed an experiment to evaluate whether prediction is differently realized
when it’s aimed at driving a motor act and when instead its purpose is “perceptual-only”. In
particular we focused on how dynamical information of target motion is used depending on
prediction goal. In a previous experiment (an interception task) we observed that predictive
performances where significantly better when the target maintained unvaried its dynamic
features (i.e. the force field that drove its motion). Furthermore, when the target was driven by a
force field similar to gravity interception resulted easier. We wanted to check if the same results
could be found in a predictive task in which no motion was involved.

IS the ba" arrived Fixed force field case (downward oriented) Variable force field case
- — — -
over or under ) e ']
2
the horizontal bar? 'i s 5
- -_— ._
> — - - ="
3 Fheed force fiedd: ball dynamics
Possibl s constant across al 13k -
' the ball is moved by a constant force field
Of t Two subgroups according to the direction
of the force field acting on the bal
and Downward oniented force fisld
' Vanable force fiedd: ball dynamics
vaned from tnal to tnal - in each
' trial the force field acting on the ball

changed, both in modulus and direction
[upward - downward]

Figure 2-1: The experimental setup and stimuli used for the two experiments described below.

Methods

37 subjects participated in the experiment. They sat in front of a monitor (BARCO
Calibrator system) at a distance of 57 cm and kept in their hand a small push-button panel (CB6
Response Box, Cambridge Research Systems). The stimulus, realized with a ViSaGe stimulus
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generator (C.R.S.), was a ball, which crossed the screen following a parabolic path and
disappeared behind an occlusion. Subjects were instructed to press a button, as soon as the ball
disappeared, to select whether the ball would have arrived over or under an horizontal line.
The line was placed at the right extremity of the scene, at a fixed distance from the real ball
arrival point (see Fig.2-1). After subjects had made their choice the ball arrival point was shown
and a further key press was awaited, to start another trial. In each experiment subjects were
presented with 14 possible distances between the ball arrival point and the horizontal line and
each distance was presented in 10 different trials. Moreover before the real experiment all
subjects were trained with 70 straight trajectories (10 trials x 7 distances), to let them familiarize
with the setup and to assess subjects baseline ability in the task. To analyze the results the
psychometric curve for each subject was obtained by fitting with a cumulative Gaussian the
probability of answering “ball under line” as a function of the real ball-line distance. From each
curve two parameters were extracted: the PSE (point of subjective equality), a measure of the
minimum distance perceivable by the subject, and the slope of the curve, an indicator of the
perceived task difficulty. Subjects were divided into different groups: some of them had to
predict the ending positions of balls driven by a constant force field, while others had to deal
with balls that changed their dynamical features from trial to trial (red panel in Fig.2-2).
Furthermore we considered two different kinds of fixed force fields: both were vertical, one was
downward oriented, similar to gravity (blue panel in Fig.2-2) and one was instead characterized
by upward orientation (green panel in Fig.2-2). In all cases trajectories were always parabolic
and each trial differed from the previous one, since ball initial position and speed changed. The
main difference among conditions was therefore given by the constancy or variability of the
force field acting on the ball and by force field orientation.
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Figure 2-2: Results showing no significant difference between conditions when the task is purely perceptual.

Results and discussion

We ran a single factor ANOVA and a Tukey — Kramer multiple comparison test to
evaluate if the different conditions (fixed or variable force fields, and gravitational or anti-
gravitational oriented force fields) were characterized by different perceived difficulty. If
prediction was based on a unifying model of ball dynamics features, as we have previously
observed in an interception task, the condition in which ball dynamics changed each time
would have been perceived as significantly more difficult. Furthermore we could estimate
whether a gravitational like environment allowed for better prediction even when no motor act
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was involved. The analyzed indicators (PSEs and slopes) result to be not significantly different
between the condition in which the force field is kept constant and those in which the force field
changes from trial to trial. Also “gravitational” and “anti-gravitational” conditions are
perceived as equally easy in prediction. Results show therefore that, in contrast to what we
observed in an interceptive task, ball dynamics stability doesn’t affect perceptual prediction.
The dynamic visual information seems to be processed differently when its purpose is a motor
act versus a perceptual one.

References (for this section only)

[1] Aglioti, S. et al., Current Biology, 1995, 5: 679-685

[2] Brenner, E. et al., Experimental Brain Research, 1996, 111: 473-476
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2.3.3.2 Gravity models in robots

During the execution of (even simple) arm movements, the effects of gravity need to be
taken into account in order to avoid undesired. Therefore, the issue of gravity compensation has
always been crucial in the field of robotics [Murray et a. 1994]. Different gravity compensation
techniques have been proposed in literature. Among these various techniques, we here focus on
model based gravity compensation, limiting our attention on arm point-to-point movements.
The main section is divided into three subsections. First, we describe a dynamical model of the
arm dynamics. Then, we show how the model can be written in a parametric way. Finally, in
the last subsection, we show some experimental results on the how to compensate gravity on a
real robot.

Model of the arm. We model the dynamics of the arm as a fully actuated kinematic chain
with n degrees of freedom corresponding to n revolute joints. It is well known in literature that
such model can be expressed as follows:

M(g)d+C(g,9)q+g(q)=u

where q are the generalized coordinates which describe the pose of the kinematic chain, u are
the control variables (nominally the torques applied at the joints) and the quantities M, C and g
are the inertia, Coriolis and gravitational components.

Parametric model of the arm. In this section, we describe the above dynamic equation in a
parametric way. The considered parameters are the masses, the inertias and the center of mass
positions for each of the n links which compose the controlled arm. The vector with components
represented by these parameters will be denoted p and is composed by the link masses (mo, m,
...), the link center of mass positions (cox, Coy, Coz, Cix, Cly, Ciz, ...), the link lengths (lo, 11, ...), and the
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link inertia tensors (IOxx, IOxy, IOXZ, IOyy, IOyZ, IOZZ, lex, ley, lez, Ilyy, Ilyz, Ilzz,. ) ObViously, the matrices
M, C and g depend on the given vector of parameters, i.e.:

M(a, p)d+C(a,6, p)d+9,(q, p)=u

Interestingly, it can be proven that the above parametric dynamics can be rewritten as
(see [1] for details):

M (g, p)d+C(a,4, p)d+9,(a, p) = Z‘Pj(p)Y 1(d,9,9)

for suitably chosen functions Yi and Wi. As a special case we have that the gravity term g can be
written as:

9@ P =2 ¥, (Y 00.0) = a0 (@)

where a=Wi(q).Therefore, the effects of gravity on a robotic arm can always be expressed as the
linear superposition of terms gi(q) which do not depend on the dynamical properties of the
system. Interestingly enough, this observation has strong connections with the “spinal filed”
theory (see [Mussa-Ivaldi et al. 2000] and [Nori et al. 2006] for details) but these connections will
not be discussed here being out of our main focus. What is worth saying is that the gravitational
properties of the controlled system are represented by mixing coefficients a.

Experiments. We designed a set of experiments in order to test if the model:
J .
9(0.p) =2 ;9’ ()
=1

agrees with the experimental data taken from the arm of our robot, James (see Figure 30). This
test is necessary since the above model is based on a set of assumptions which cannot be
completely fulfilled by a real manipulator. In this specific example the arm is four degrees of
freedom (three degrees of freedom in the shoulder and one degrees of freedom in the arm) and
given the kinematics of the arm we have J=7 and :

J g(q)

1 -cos(q1)

2 sin(q1)cos(q2)

3 -sin(q1)sin(q2)

4 sin(q1)cos(q2)cos(g3)-cos(ql)sin(g3)
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5 -sin(q1l)cos(q2)sin(q3)-cos(ql)cos(q3)
6 [sin(q1)cos(q2)cos(q3)-cos(ql)sin(q3)]cos(q4)-sin(ql)sin(q2)sin(q4)
7 [-sin(q1)cos(q2)cos(q3)+cos(ql)sin(q3)]sin(q4)-sin(ql)sin(q2)cos(q4)

Practically, we can measure the value of g(q,p) at different configurations of the arm by
measuring the torques u which has to be applied at the joints in order to keep the system in the
specific configuration with zero velocity. We have:

9(q', p)=u'

where q!, ¢% ..., @V is a set of configurations and u' are the torques necessary to counterbalance
gravity in order to maintain the configuration . To verify the validity of our model we have to
check whether there exists a set of mixing coefficients a1, a,...,az that satisfy the following

equations:
u'=> a;9'@@)
j=1

Obviously, given a sufficient number of measurements (u!, q') the above equations
cannot be exactly fulfilled by real data, which are always affected by noise. Therefore, the
adopted solution was to estimate the parameters with a least squares procedure:

2
K

a =argmainz

k=1

23

2. 2;9'(q) -’

=L

and to verify the validity of the estimated parameters on new data samples. Results are shown
in Figure 39. Training the model with two hundred measurements (u!, q') ... (U?*®, q*®) was
sufficient to obtain good predictive capabilities thus showing that the model is in good
agreement with the real system.

Non-parametric approximation. The same data were also processed by a non-parametric
method which is based on Gaussian processes for regression, a kernel method based on
Bayesian inference. The specific algorithm is incremental and sparsifies the solution; it also
estimates the hyper-parameters of the algorithm by optimizing a specific quantity (called
marginal likelihood). We leave any further detail of the method to the reference in [Csato’ et al.
2002] and only show here the result of the approximation of the gravity data from James. The
results in the following figures Figure 40 and Figure 41 show that non-parametric estimation is
efficient and it can be a good alternative to internal model acquisition. We will explore both
possibilities in the future with extensions to the full dynamical model of the robot and its links
to other sensing modalities: i.e. vision, vestibular, etc.
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Figure 39. Test of the predictive capabilities of the parametric
model. On the horizontal axis, a total of 75 different postures !,
g% ..., q”° have been considered for testing. For each of these
postures we considered the torques necessary to keep the arm at
rest (vertical axis). The blue line corresponds to the estimated
compensation; the red line instead is the measured
compensation.

Figure 38. The picture shows our
robotic platform, James.
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Figure 40. Prediction for joint 1, on a random subset of the available data.
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Figure 41. Plot of the predicted function; the shading represents the standard deviation of the prediction.
Note how uncertainty grows toward the borders of the region where training points are not available.

2.3.3.3 Acquisition of a kinematic internal model

We discuss the implementation of a precise reaching controller on a humanoid robot
upper torso. The proposed solution is based on a learning strategy which does not rely on a
priori models of the arm and head kinematics. The only major simplification is represented by
the assumption that a visual model of the hand is available (i.e. the robot can visually localize
the hand). In fact, from a practical point of view, the problem of creating a visual model of the
hand is a stand alone problem which falls outside the scope of this project. Future experiments
will be based on a self-acquired model of the hand.

Figure 2-3: the upper torso humanoid robot used in these experiments.
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System description

The reaching controller has been implemented on our humanoid robot James (see
Figure). James consists of 22 DOFs, actuated by a total of 23 motors, whose torque is transmitted
to the joints by belts and stainless-steel tendons. The head is equipped with two eyes, which can
pan and tilt independently (4 DOFs), and is mounted on a 3-DOF neck, which allows the
movement of the head as needed in the 3D rotational space. The arm has 7 DOFs: three of them
are located in the shoulder, one in the elbow and three in the wrist. The hand has five fingers
and is under-actuated with a total of 20 degrees of freedom controlled by 8 motors.

The next section (inserted) is about the learning of the arm kinematics. The next step, described
later, is then to learn also the robot arm dynamics.
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0.1 Head and eyes actuation structure

Figure 1: The left picture shows the tendon driven eye. The two tendons
are actuated by two motors. The first motor moves the vertical tendon (tilt
motion). The second motor moves the horizontal tendon (pan motion). The
right figure sketches the actuation scheme.

The head structure has a total of 7 degrees of freedom, actuated by 8
motors. Four of these motors are used to independently actuate the pan and
tilt movements of the left and right eyes (see Figure 1 for a scheme of the
tendon actuation). The following notation will be used from now on:

ay : right eye tilt a, : right eye pan

v
ol : left eye tilt aé . left eye pan

Even though the eyes can be moved independently, our strategy was to couple
their movements so as to achieve a more human-like motion. In particular,
instead of controlling af, a”, al, a!, (see Figure 2) we decided to use common

al, o
Pt p
tilt af, differential tilt o, vergence a? and version o (see Figure 3) defined

as follows:

a’ —al al + al
ol = 2P p of — P p
v 2 ? v 2 ?
r_ Al T l
d_ %% e At
Qy = , = ——

2 2

In practice, the differential tilt angle is not used. The underlying as-
sumption is the perfect orthogonality between the camera axis and the pan
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Figure 2: The left picture shows a top view of the eyeball and indicates the
pan angle. The right picture instead shows the lateral view with the tilt
angle.
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Figure 3: The left picture shows a top view of the eyeball and indicates
the version (top) and the vergence (down) angles. The right picture instead
shows the lateral view with the common (top) and differential tilt (down)
angles.



axis of rotation’. Practically, the eyes configuration will be denoted qeyes =
[ag o ozf]T € R3.

The neck actuation is also non conventional. One motor directly actuates
the head yaw, denoted 6,. The remaining three motors actuate the two
additional rotations of the head: head pitch 6, and head roll 6,. These
two rotations are achieved with an unconventional actuation structure (see
Figure 5). Each motor pulls a tendon; the tension of the three tendons
determines the equilibrium configuration of the spring on which the head is
mounted. The structure has an implicit compliance but it can become fairly
stiff when needed by pulling the three tendons simultaneously. The overall

neck configuration will be denoted qect = [Qy o, QT]T € R3.

!Suppose that our task consists in fixating a given target, i.e. putting the target
projections in the center of the left and right image planes. Since the target moves in a
three dimensional space, in principle we only need three control variables to actually fixate
the target in every possible configuration. It can be shown that these three variables can
be al, a¢ and af (while keeping af = 0) if the system mechanics and optics are perfectly
aligned. In particular, the assumptions are the following:

1. the cameras behave as a perfect pin-hole camera model,
2. the cameras optical axes are orthogonal to the corresponding pan axes of rotation,

3. the pan axes of rotation are orthogonal when af = 0.
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Figure 4: The pictures show two views of the neck actuation structure. The
two equilateral triangles represent the basis and the top of the neck (on which
the head is mounted). The thick line represents the spring (a sort of neck
bone). The three thin lines (segments E; Py, Fy P and E3P3) are the tendons
used to move the neck in different configurations. Finally, the dark cube is
a sensor, the use of which will be descibed in Section 1.

Figure 5: The pictures describes the neck actuation. The head is mounted
on a spring. The spring is moved by shortening and lengthening the three
tendons by the use of conventional DC motors.



1 Control of the neck

The neck is characterized by a peculiar structure and has required the design
of an original control technique. The final design is based on the use of
a set of gyroscopes, which have been positioned on top of the robot head.
The sensors measure the (absolute) pitch and roll rotations® of the head
with respect to an inertial reference frame. Using the information from this
sensor we developed a closed loop controller to orient the head in any desired
configuration.

1.1 Neck control in details

As already pointed out, the neck structure is characterized by three degrees of
freedom: pitch 6,, roll 6, and yaw 6,. The yaw movement, is directly actuated
by a single dc motor; its control is based on a standard PID controller. The
control strategy for the remaining two movements will be instead described
in details in this section.

The design of the pitch and roll control loops has required the develop-
ment of a MATLAB model of the neck structure. The model is based on
the assumption that the spring has a constant length®. When the spring is
bent, the assumption is that its curvature is constant along the entire spring
length. Using this model we were able to compute the ideal tendons lengths
given the pose of the neck, or equivalently the ideal tendons lengths (11, [o,
l3) given the inertia sensor measurement (6,, 6,). Practically, the model of
the system is a function f : R? — R? such that:

l

a| = 10,8 1)

The final control loop for positioning the neck in the desired configuration

2The rotation is expressed by three angles which will be denoted roll (6,.), pitch (6,)
and yaw (6,). The three motors of the neck influence the first two angles (6,), pitch
(6p). The remaining degree of rotation (f,) is directly influenced by the head pan which
is moved by a specific motor.

3Practically, when the spring bends on a side, it maintains its length on that side while
stretching on the opposite side. This kinematic can be easily modeled with MATLAB.



(04, 09) is the following:

dly
Cﬁg 00, 00y ‘9p _ Qp ;

where [3—9{ a%} is the Jacobian of the function f with respect to 0,, 0,

computed at the current configuration 0,, 0,.

The above model (1) is ideal and assumes that the three tendons are
always subject to a minimum tension. Due to the imperfections in the model,
the tendons may loose tension if the control strategy (2) is applied. Given
a long enough time window th controller might drift. A corrective term is
therefore required. The solution is:

dly I

0, — 02
Fl=—-0=-7) [gﬂr 57];] {Hp _ gd} =\ | = f(Or.0,) ], (3)
p l3
dt

-

where v is an arbitrary constant in the range [0,1]. The second term of
the controller (the one multiplied by 7) guarantees that the the length of the
cables remains similar to the length of the model. This strategy is sufficient to
guarantee that the tendons maintain a tension which is more or less constant

across different configurations of the structure. In this final configuration the

jacobian [aa_efr g—gﬂ can be substituted with a constant jacobian computed

at the reference configuration 0, =6,=0.
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Figure 6: Two typical images taken from the two cameras mounted on the
eyes of the robot. The attention system gives us the target position on the
two image planes (in this case the center of the blue ball). The coordinates
of the target on the right image plane will be denoted u,, v,, while on the
left image will be denoted wu;, v;. The tracker controller task consists in
moving the eyes and the neck in order to keep the target point at the center
of the two image planes, i.e. u, = v, = u; = v; = 0.

2 Tracker controller

One of the main modules in the reaching controller is represented by the
tracker controller. The control objective of this specific module consists
in directing gaze toward a given target. The input of this module is repre-
sented by the target location in the image planes of the right and left eyes;
this information is received by the target locator module whose task is to
find the target in the right and left image planes. The output instead consists
in the head motor commands necessary to direct gaze toward the target.

2.1 Implementation

In this section we describe how the tracker has been implemented on James.
The crucial aspect concerns the redundancy of the control problem as it has
been stated above. In order to state this more clearly, we need to be more
rigorous in defining the control task previously described as “directing gaze
toward a given target”. Specifically, let u, and v, be the coordinates of the
target on the right image plane. Similarly, let uw; and v; be the coordinates
of the target on the left image plane (see Figure 6). The values of u,, v,
uy, v; are the output of another module, the target locator. Therefore,
directing gaze toward the target consists in moving the neck and the eyes
so as to obtain u, = 0, v, = 0, u; = 0, v; = 0. Let us define the vector



Wiarget = [u,_ vy Y vl]T € R* corresponding to the target location in
the image planes. Assuming that the target is stationary with respect to
the robot, we have that U4 can be expressed as a function of the head

. T
configuration queqq = [quyeS Qneew] € RE:

l~]-target = fhead(qhead)a

where the function fhead : RS — R* depends on the head kinematics. Un-
der suitable assumptions*, we do not need to impose simultaneously the four
conditions u, = 0, v, = 0, u; = 0, v; = 0 since one of them will be automati-
cally satisfied given that the other three conditions are satisfied®. Under this
simplification we have that our control task can be redefined as the problem
of controlling Wygrger = [ur Uy vl}T € R3 to zero. The kinematic function
will be in this case:

Uiarget = fhead(qhead)7 fhead : R6 B— Rg'

Clearly, the task specification does not constrain all the head degrees of
freedom. Roughly speaking®, we are imposing m = 3 constraints but we have
n = 6 free variables available so that we remain with n —m = 3 additional
degrees of freedom. Practically, we can have different configuration of the
head (Qnead,1 # Qnead,2) both keeping the same target in fixation (Wgrger1 =
Utgrget2 = 0). This redundancy issue has to be addressed carefully given the
kinematic and dynamic properties of the head. Specifically, a trivial solution
(such as constraining/blocking three degrees of freedom out of six) is not to
be recommended since a good tracking behavior should involve all the head

4The hypothesis is that we do not move the differential tilt, i.e. af = 0 and that the
camera optical axes are somehow aligned with the pan rotation axes. See also Section 0.1
for further details.

5In practice we have that if u; = 0, v; = 0 and w, = 0 then v, = 0. Alternatively, if
u; =0, ur, = 0 and v,, = 0 then v; = 0. This fact follows trivially considering that the
target moves in a three dimensional space.

6More formally, let Qreqd = [qeyes qmck} be a fixating position, i.e. fheqd(Qhead) = 0.
Moreover, let’s assume that the given head configuration is non-singular, i.e. the Jacobian

matrix:
8fhead

aqhead

has full row rank. Then, by the implicit function theorem there exists a function Queck () :
R3 — R? (locally defined around Qeyes) such that fread(Qeyes: Aneck (eyes)) = 0 for all
the configuration geyes belonging to the neighborhood of geyes-

(qhead)v

8



degrees of freedom. Therefore, a good tracker should take advantage of the
eyes reduced inertia to perform fast movements; at the same time the eyes
limited range of movements should be overcome by moving the neck which
is instead capable of wider movements.

With these ideas in mind the strategy we have chosen consists in using
the eyes version and common tilt to perform a sort of saccadic movement on
the desired target and then to follow the movement of the eyes with the neck
yaw and pitch, respectively. This choice is a consequence of the fact that the
eyes can make fast movements because of their low inertia. However, their
range of movement is small if compared to the neck which has a wider range
even if with a larger inertia. This strategy allows us to keep the target at
the center of the image while allowing fast and large movements of the target
itself. Mathematically the above strategy can be implemented as follows:

d%t” = K,(w+u,)
&~ oo (@)
dff; = Kif(u+uv)’
0 c
d—tp = K, of

where af and «f are the eyes version and common tilt and where ¢, and
0, are the yaw and pitch movement of the neck. In the proposed control
scheme, the vergence degree of freedom a?, which somehow corresponds to
the distance of the target does not influence the neck position and is therefore

controlled separately from the neck:

dad
dt

= Kyl —u). (5)

Finally, the neck roll degree of freedom 6, is maintained fixed, i.e. ¢ = 0.
The proposed control strategy allows us to asymptotically fixate the tar-
get (u; — 0, v; — 0, u,, — 0 which implies v, — 0) while also also guarantee-
ing an asymptotically straight gaze (o — 0, af — 0). Moreover, by choosing
a suitable value for the gains K,, K,, K; and K, it is possible to achieve an
asymptotic behavior with the eyes moving rapidly on the target and the neck



following the eye movement with a slower movement” (see Figure 7).

"Choosing suitable values for the gains K, K,,, K; and K, is not an easy task. Practi-
cally, this is due to the fact that the controlled system is nonlinear. Therefore, the system
time response (settling time, overshoot, step time) may vary considerably depending on
the system initial configuration. The large overshoot observed in Figure 7 is a consequence
of this non-linearity.

10



target [pixel]
a1
Q S

|
62
o

~100

angles [degree]
|
angles [degree]

0 5 i ngeo[sl 15 20 0 5 ti n;éo[s] 15 20

Figure 7: The top picture shows the time response of target position (u;:
solid, v;: dashed, w,: dotted) during a fixation movement. It can be seen
that the target is effectively driven to the image center (to an accuracy up
to one pixel). The bottom left picture shows the time response of the eyes
position (a?: solid, a¢: dashed, a¢: dotted); notice that the eyes effectively
reach a straight gaze configuration (a$ — 0, af — 0) and the target distance
is encoded in the vergence al whose steady state value is different from
zero. Finally, the right bottom picture shows the neck movement (6,: solid,

6,: dashed). The pan and tilt steady state values converge to the target
direction.

11



3 Reaching

In this section, we describe the two approaches we followed to solve the
reaching task on our robot.The first method uses the forward mapping be-
tween the arm joint space and the three dimensional position of the hand
represented in the head reference frame. The second method uses a visual
servoing technique to control the speed of the arm to minimize the position
of the hand in the image plane with respect to a desired target (usually the
fixated object).

3.1 Open Loop Reaching

Suppose the robot is tracking a target using the control strategy described
in Section 2. In the assumption of perfect tracking (the visual error is
zero), the three dimensional spatial position of the target with respect to

the robot, denoted Xigrget € R3, is a function of the head configuration

Qhead = [Qy 0, 0, ol af OzﬂT € R®. However, the representation of

the target position, X;qrg4et, in terms of the full head configuration, queqq, is
clearly redundant. Specifically, the same target position can be represented
by different head configurations. To obtain a one to one mapping between the
target position and the head configuration we have to analyze the tracker
controller. The latter maintains 6, stationary (¢ = 0) and poses addi-
tional constraints on the head joints. In particular we know from section
2 that the controller minimizes «f and af (see equation (4)) so that they
asymptotically converge to zero (af — 0 and af — 0). Ideally, after fixation
is achieved, we have:

Qe = [0y 0, 0 ol 0 0] €R" (6)
Since there exists a one to one mapping between the three dimensional po-
sition of the target X;qr¢e¢ and the three non-zero variables 0,, 8, and ag, we
can define:

Xtarget = [Qy Qp OZZ]T S R3. (7)

This new variable X;grger € R? uniquely codes the spatial position of the
target in a way that resembles a three dimensional polar representation. In
particular 6, and 0, code respectively azimuth and elevation, while distance
is substituted with «, (the vergence angle).

12



If the robot tracks the hand, the same subset of the head joint space can
be used to code the spatial location of the hand:

Xhand = [Hy 9p Oéd]T e R3.

v

Under these assumptions, the forward mapping fam : R* — R3 relates the

arm configuration qg,,, with the position of the hand xj,4,q4:

Xhand = farm(qarm)> farm : R4 B ]R3' (8)

In the next section we show how we trained a neural network to approximate
the arm forward mapping (Eq. 8):

Xhand = farm(‘]arm); farm : Rg B ]R4' (9)

Suppose now that the robot is fixating a target and that we want to control
the robot to reach for it. Formally the problem can be formulated as deter-
mining the value of qu,,, which solves the following optimization problem:

min () = min [[Xnana = Xrargerl|” (10)
where X;q,ge¢ is measured from the encoders of the head, while xj,4p,4 is com-
puted from qg, through Eq. (9). Given the redundancy of the arm kinemat-
ics the minimization (10) has infinite solutions. We constrained the problem
by forcing one of the joints, for example joint number 2, to remain as close
as possible to a predefined value ¢o:

(r]nin (']c) = (r]nm [Hxhand - XtargetH2 + (Qarm,Z - Q20)2} . (11)

The optimization of (11) can be performed numerically using various

algorithms. Discussing the different properties of these numerical solutions

falls outside the scope of this paper. In our implementation, we used the
downhill simplex method [1] as implemented in [2].

3.2 Learning the open loop reaching

To learn the forward map of Eq. (8) we programmed the robot to perform
random movements with the arm (chosen to uniformly sample a predefined
region in the robot workspace). During this “exploratory” phase the robot
tracked the hand, and collected samples of the form:

13
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A neural network was then trained to learn the relation:

Xhand = farm (qarm) s (12)

which approximates Eq. (8).

In the experiment reported in this paper we collected a data set of about
2890 samples that we divided in a training set (Ny.q; = 2168 samples) and
a test set (Vs = 725 samples). The neural network we employed was the
Receptive Field Weighted Regression model proposed by [3]. This network
implements an online learning method, meaning that a learning step is per-
formed every time a new sample is presented to the network. All samples in
the training set were shown to the network in a random order. After each
training step the performance of the network was validated on the whole test
set, by computing the Mean Squared Error (MSE) between each sample in
the test set, x§_ ,, and the corresponding network output, X

1 Ntestfl
MSE = Ny Z [Xhand _fihandHZ (13)
et =0

The plot in figure 8 shows the trend of the error on the test set during
learning. At the end of the training the network reached the performance of
MSE = 5.7 (with STD = 10.4).

In the experiment reported in this paper the network was trained offline.
This was to simplify the analysis of the results and perform cross-validation
on a predefined test set. However, the learning algorithm we used was purely
incremental (each sample was shown to the network only once and imme-
diately discarded), so in this regard it would be straightforward to have an
online implementation of the same mechanism.

3.3 Closed Loop Reaching

If the robot can visually measure the distance between the hand and the
target, reaching can also be solved visually, by implementing a closed loop
control. The underlying idea consists in performing a preliminary (open loop)
reaching movement and then refining the action by visually correcting any
residual error.

14
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Figure 8: Learning of the arm forward function. The plot reports the MSFE
on the test set during learning (see the text for details).

We know that the Jacobian matrix relates arm velocities g, With hand
velocities in the image plane 0unq = [ Uy U Uy }T

l.lhanal =J (qarm7 qhead) Qarma (14)

where J € R¥** depends on both the configuration of the arm and the head.

Practically, assuming sufficiently small arm movements Aqu.,,, We can use
the following approximation:

Auhand =J (qarm7 qhead) Aqarm7 (15)

where Aupang = [Au,, Auy, Avy]" is the image plane displacement resulting
from the arm movement Aqg.,. Due to the additional constraints posed by
the head tracker, we showed that only a subset of Qpeqd, Xtarget, is sufficient

to uniquely identify the position of the head, so we can rewrite equation (15)
as:

Auhand =J (qarm7 Xtarget) Aqarma j € R3X4' (16)

Moreover, after the preliminary open loop reaching movement, we know

15
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that Xarget = f(darm) so that Eq. (16) can be further simplified to:
Auhanal =J (qarm) Aqarma J € R3X4 (17)

in which J depend only on the arm joint configuration qg,.

Suppose now the robot has to reach for an object, whose visual position is
represented by U4t To solve this problem the controller of the arm needs
to compute the arm command which minimizes the error:

€= Huhand - utarget||2 . (18)

When the head tracker has achieved convergence on the object, Uigrger = 0
and e & |[Upangl|>. Due to the redundancy of the arm, the minimization
of e can have infinite solutions. Among them, the minimum norm solution
corresponds to the one which produces the minimum joint speeds, that is:

éIarm = —k- J#uhamyb J# € R4X37 (19)

where J# is the pseudo-inverse of J.

3.4 Learning the Arm Jacobian

In the previous section we used the Jacobian of the manipulator J (actually
its pseudo-inverse J#) to control the arm to reach for a visually identified
object. In this section we describe a procedure by which the robot can
autonomously acquire J and J#.

As described in Section 3.2, the robot moves the arm randomly, while
maintaining gaze on the hand. At the end of each movement j the arm is
in a configuration g’ . while the eyes are fixating the hand (upgng = 0)
with a straight gaze (the head tracker has reached convergence). Each arm
configuration corresponds to a different value of J; = J(q’,.,). Now the
robot inhibits the head tracker and performs a sequence m of small arm
movements AqF, which perturb upg,q of small amounts Auf, :

k k
( Auhanquarm )kzo,l...,m

All m perturbations Auf, , and Aq¥, . are linearly related through J; as
described in Eq. (16). From these m observations we can derive a least
squares estimation of J; from which, in turn, we can compute the Moore-
Penrose pseudo-inverse Jf

Re-iterating this procedure leads to the collection of a series of examples:

16
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Figure 9: Learning the arm jacobian. The plot represents the MSE on the
test set during learning. See text.
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An approximation J# of J# is finally obtained by training a neural network:
g (qarm) ) g: R4 - RIQ? (20)

whose output components are the coefficients of J# e RV,

We report here the result of a learning session. The robot explored 210
different arm positions q’ . randomly distributed within a region of the
workspace. In each of these positions the robot executed m = 10 perturba-
tions Aq¥ . and estimated an example Jf for the neural network. Overall we
collected 210 samples for J#. We trained the neural network on a subset of
Nirain = 158 elements (training set); each sample was shown to the network
only once and then discarded. Following each training step, we evaluated the
performance of the network by computing MSE on the remaining Ny = 52
elements (test set). At the end of the training the error on the test set was
MSE =2 (STD = 7.1). Figure 9 reports the plot of the error during learning.
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4 Results

In this section we describe the reaching performance obtained with the reach-
ing controller described in the previous section. Within this context, it is
important to note that a formal definition of the performance index is a
nontrivial task.

If we were to consider a robot which operates in an highly structured
environment, the definition of the performance index would have been much
easier. Specifically, for an industrial robot, the reaching task can be identified
with the problem of positioning the hand accurately with respect to a world
reference frame®. In this case, the reaching precision can be measured in
terms of the distance between the desired and actual position of the hand in
the world reference frame.

In our case, a similar performance index definition cannot be applied.
James has not been designed to operate in an industrial scenario. Moreover,
in our context, the definition of a reference frame fixed with respect to the
external world does not play the same crucial role played in the industrial
framework. In our mind, it is more important to precisely locate the hand
with respect to the object than to precisely locate the hand in the external
world frame. Therefore, our reaching performance index should measure the
Cartesian distance between the object to be grasped and the final position
of the hand. However, measuring this distance is not an easy task. In
this section we approximate the real distance with the (stereo) image plane
distance. Practically speaking, suppose the robot sees a target uq,4er to be
grasped. Following our strategy, in order to reach the target we need to fixate
it, i.e. Uyrger = 0. Using the available sensor (i.e. vision) the best we can
do to precisely reach the target is moving the hand to the fixation point, i.e.
Upang — 0. Clearly, the image plane distance ||[Upang — Wrarget|| can be used
as a rough estimate of the reaching precision, i.e. of the Cartesian distance
between the target to be reached and the position of the hand. Specifically,
assuming infinite resolution of the camera sensor, if ||Upana — Wtarget]] = 0
then the hand has exactly reached the target. In a more realistic case, when
the image plane distance is null, we can only guarantee that the Cartesian
target-hand distance is upper bounded by a quantity which depends only on

8Typical industrial robots do not use vision. Their grasping movement is the result
of 3-D positioning the gripper exactly in the position where they know the object to be
grasped will be positioned. The problem of positioning the object is then left to the user.
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the camera intrinsic parameters®.

4.1 Open Loop

The first attempt to reach the target consists in using (11) to choose the arm
configuration qg;,, which brings the hand to the center of the image planes.
Clearly, if the forward kinematic function (8) were perfectly represented and
if the target were reachable, we would have Xpgng = Xtarger, Which implies
that the target-hand Cartesian distance is null (see Section 3 for details).
Therefore, in this ideal case, the open loop strategy already results in ||upanq—
Utarget|| = 0. In practice, the model (8) cannot exactly represent the system
kinematic'®. Therefore, even tough we can find qurm such that Xpang =
farm(Qarm) it is not guaranteed that after the movement execution ||upang —
Utgrget|| = 0. Figure 10 shows the image plane errors after the execution of
the open loop movement. The plot has been obtained by fixating a target
and performing a series of open loop movements. Each open loop movement
was different because (11) was solved by choosing a different value go. Let
us denote the open loop movements q.,,., ..., g%, such that:

2

~ 2
farm(qarm) - Xtarget + <Qarm,2 - q]2€0) . (21)

q* ., = argmin [

Qarm

The above minimization is such that fum(q%.,.) = Xtarger- Ideally, in
absence of modeling errors we would have Xpand = Xiarger SINCE Xpgng =
farm(db.). In practice we have Xpang =~ farm(Qarm) S0 that we can only
achieve an approximate reaching Xpena =~ Xtarger Which reflects into small

image plane errors ||Upgnd — Urarget|| = 0. Different choices of the free variables
Ggs - - -5 o lead to different image plane errors as shown in Figure 10.

4.2 Closed Loop

As we described in Section 3.3 the residual image plane errors due to imper-
fections in the forward kinematic model can be reduced by a visual closed

9Computing this upper bound is out of the scope of this paper.

10Part of the representational errors are related to the way we have chosen the represent
the kinematic function, in this case the so called Receptive Field Weighted Regression
model. Part are due to the mechanical plays of the kinematic structure.
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Figure 10: The figure shows the open loop image plane errors upg,q for
different choices of the redundant variable goy. For both pictures, on the
horizontal axis we have u, and u; while on the vertical axis we have v, and
vy (always in pixels). In this specific case the target is in the middle of
the two image planes [ur,targebvr,target] = [07 0] and [ul,targeta Ul,target] = [0, O]
The hand position in the image plane is instead represented by the small
circles. Each circle corresponds to the hand position after a different open
loop movement, i.e. a different value of go.

loop control strategy. This control strategy moves the arm so as to progres-
sively drive the hand position in the image planes (upqnq) to zero. Of course
this is guaranteed only if the Jacobian matrix has been learned in a sufficient
accuracy. Figures 11, 12, 14 and 13 show how the hand is actually driven to
the exact image center in both the image planes. Moreover, it is important
to notice the approximative linearity of the path followed by the hand. This
linearity denotes a good accuracy of the learned Jacobian.
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4.3 Superimposed Open and Closed Loop

Finally, we tested an alternative control strategy based on activating the
closed loop phase immediately after the hand becomes visible on both image
planes. This second strategy is such that the open a closed loop strategies
will be active at the same time for a certain period. The structure is based
on a classical control scheme, which can be represented as follows:

Feedforward Control

’— Feedback Control & Plant —‘

Practically, the feedforward control corresponds to the open loop part
of the reaching movement. It is activated exactly as described in Section
3.1 and therefore it does not require the hand to be visible in the image
plane. The feedback control instead corresponds to the closed loop part of
the movement and can be activated when the hand has been localized in
both the image planes. Practically, the final solution can be described by the
following scheme:

——
Xtarget

Open Loop

|» Closed Loop (—| —}%— “ Plant Cameras| yy,,q Locutor_‘

Clearly, when both the open and closed loop controllers are active, the
system receives position and velocity control simultaneously!®.

A position command qupm,q is always translated into a trajectory following command
by moving the hand along a trajectory Qurm(t), t € [0,T] such that: T is the execution
time, qqrm (0) is the arm position when the command is received, qarm (1) = Qarm,q is the
desired final position. If a velocity command gy, q is received while executing a position
command qgm (t), the original velocity command is transformed into a different one which
takes into account the position command. In particular, the resulting commanded velocity
is élarm = Qarm (t) + Qarm,d-
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A comparison between this control strategy and the one proposed in Sec-
tion 4.2 is given in Figure 15 and 16. Performances are clearly improved.
First the image plane movement (Figure 15) is much more regular result-
ing in a unique linear movement instead of begin divided into two segments.
Secondly, the execution time is clearly reduced as it can be noted in Figure
16.

60 60

40 40

20 20

0 0

-20 -20

%0 a0 20 0 20 e T — 0 20
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Figure 11: The picture shows different closed loop control actions. Each
trace correspond to a different Cartesian position of the target to be reached
(which is always at the center of the image planes). The traces start exactly
after the execution of the open loop movement, so that the initial position
corresponds to the initial open loop error. Notice that all the traces end up
in the image center (both left and right image planes) thus indicating that
the visual errors are completely eliminated by the closed loop controller.
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Figure 12: The picture shows the time response of the closed loop controller.
The solid lines corresponds to the hand horizontal position in the left (u;)
and right (u,) image planes. The dashed lines correspond to the vertical
position, v; and v,. Clearly, the hand is driven to the image center with a
null steady state error. Even if velocity was not our primarily concern, the
time response is reasonably fast (an error of thirty pixels is eliminated in
about three seconds).

100 . . i 100

50 i 50

=50

“1000 ‘ 1 -100
-100 0 100 -100 0 100

Left eye Right eye

Figure 13: The figure shows the movement of the hand on the image planes
during the execution of different reaching actions. For both pictures, on the
horizontal axis we have u, and u; while on the vertical axis we have v, and
v, (always in pixels). The traces correspond to the hand position during
the movement. The solid line is the hand movement during the closed loop
phase. The dashed trace is instead the hand movement during the open loop
phase. Clearly the open loop movement drives the hand to the target (the
image centers) with a relatively small error. The closed loop phase reduces
this error to zero.
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Figure 14: The picture shows the time response of the closed loop and open
loop strategy. The solid lines correspond to the hand horizontal position in
the left (u;) and right (u,.) image planes. The dashed lines correspond to the
vertical position, v; and v,. Remarkably, the open loop phase is faster but
does not drive the hand exactly on the target. The closed loop is slower but
more accurate.

—— OpenLoop + ClosedLoop — OpenLoop + ClosedLoop

100 - - - OpenLoop —> ClosedLoop 100 - - - OpenLoop -> ClosedLoop
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Figure 15: The figure shows the movement of the hand on the image planes
during the execution of a single reaching movement. For both pictures, on
the horizontal axis we have u, and w; while on the vertical axis we have v,
and v; (always in pixels). The traces correspond to the hand position during
the movement. The dashed line is the hand movement during an open loop
movement followed by a closed loop phase. The solid trace is instead the
hand movement during the superposition of open and closed loop strategies.
Clearly this second control architecture is more effective in terms of driving
the hand directly to the target in spite of waiting the end of open loop
movement.
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Figure 16: The pictures show the time response of u; (left picture) and v,
(right picture). The dashed line is the hand movement during an open loop
movement followed by a closed loop phase. The solid trace is instead the
hand movement during the superposition of open and closed loop strategies.
Remarkably, this second control architecture results in a faster response be-
cause when the hand becomes visible it is directly driven to the target without
waiting for the open loop phase end.
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Figure 17: The figure shows image plane movements during a three phase
movement. First the open loop movement, then the closed loop movement
and finally a movement in the null space of the given task (keeping the hand
in fixations). Remarkably, there’s a minor image plane movement (less then
ten pixels) during the null space movement, thus indicating a very good
jacobian estimation.
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Figure 18: The picture shows the arm movement corresponding to the image
plane movements shown in Figure 17. Remarkably, the null space movement
is characterized by large joint movements which are however not visible in
the image plane due to the jacobian based compensation.
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D3.1 Sensorimotor Integration

Development of a cognitive humanoid cub

2.3.3.4 Acquisition of dynamic internal model

In the present section we describe a procedure for estimating the internal dynamic
model of a robotic arm. This model will also be used to estimate torques at the joint,
information which is usually very helpful when performing highly dynamical tasks (e.g.
trowing a ball). All the described procedures will be based on a force/torque sensor positioned
at the the root of the kinematic chain describing the arm structure (see the following Figures).

Yaw first axis [l
of rotation

Pitch rotation

Roll rotation

SE/T SENSOR fut

2.3.3.4.1 Force-torque sensing and dynamical models

The essential dynamic equations for describing the force/torque sensor measurement are
essentially two: one describing the dynamic equation of motion and one describing the
force/torque dynamic equation at the F/T sensor reference frame. Since our setup presents a
force/torque sensor at the beginning of the kinematic chain, its measurements will not be the
only external forces acting on the end effector of the robot, as in usual manipulators. This means
that, depending on the configuration and on the trajectory followed by the manipulator,
inertial, centrifugal and Coriolis, and gravitational forces and moment are measured.

This measurement can be modelled with the following dynamic equations:

00 (000 0 ]

where the variable g represents the generalized coordinates describing the arm configuration.
Since we have a dynamical model of the sensor’s measurements, which contains dynamical
terms, our first goal is the calibration of the model. We want to find out which are the
dynamical parameters involved. To do this, an identification algorithm has to be used. It is
based on the following equation:

Der (0,6,6) Xy ={TF}

D¢ (9,6,6)

where is a nonlinear matrix which depends only on trigonometric functions and

D (0.8.) 4y

equation above. The estimation procedure is done using for example an LQ method, using F/T

FT is a constant vector of possible, which depend linearly with respect to

measurements as input.
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In order to estimate joint torques, a different formulation has to be used. Considering an
augmented system, composed of both joint d.o.f. and six sensor’s d.o.f., the motion equations
are:

|:M11 Mlz}{ant }+[C11 Clz}{ant }+{Gl}:{ T }
M:ITZ M22 qsens CJTZ C:22 QSens GZ FT

With this equation, a relationship between the F/T sensor measurements and the joint
torques can be found as follows:

Mirz.q.jnt + Mzzqsens + CZlant + szqsens + G2 =FT —> Mzzqsens =FT- M:I.Tijnt _C21ant _szqsens _GZ =0

The equation is equal to zero because the sensor is linked to the arm, so there cannot be
relative acceleration with the frame of reference behind. Setting also the velocities and the
position equal to zero, and substituting the Joint torque equation into the F/T one, one obtains:

FT =M, (Ml_ll(r_cllant _Gl))+clijnt +G,

And inverting with respect to 7, the torques at each joint can be found:

- t . .
T= Mlll((MIz) (FT _C12antG2))+Cllant +G;
. M,.C,.,G . 1 . Lo
Matrices 12’ 721" =2 are still not known. Considering the equation of motion in the
form:

M (q)6+C(9,4)q+G(q)=7
And proceeding as for the F/T identification algorithm, a linear dependency of the

dynamical parameters involved with respect to trigonometric functions can be found, so that
this system of equations can be written as:

D,(9,6,6)X, =7

Notice that the vector of parameters of the F/T equations Xer is not the same X, .

Vector X, can be identified through a relationship with Xer . In our case, this relation is
linear, if some kinematic parameters are set to be known (for example the length of the links
from the base frame to the F/T sensor frame), but a more accurate analysis of that has to be
done. This relation is:

XFT :A'Xr

where Ais a mxn linear matrix, identified offline with an LQ method. Once the parameters are
estimated, it is possible to determine the torques acting on each joint, using the equations above.

T
This equation is invertible if matrix My, is invertible. The invertibility of this matrix is still an
open issue of this project, but we have seen that it loses rank when the Jacobian matrix is
singular.
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It is then important to notice that in the best case, in which one can identify the complete

vector X, , these correspond to the real torques. In fact, depending on where the sensor is
positioned, there would be some parameters of the motion equation that cannot be identified in
this way.

Experimental results:

The experimental results, at the moment, only concern with the validation of the
dynamical model of the arm of the robot, and with the identification algorithm for forces and
moments sensor equations parameters. The picture below shows that the algorithm is able to
find best parameters then the one given by the CAD. Here are shown the forces and moment
acquired by the sensor (red line), the one, due to the same movement, using the CAD
parameters (green line), and the estimation of forces and moments using the parameter
estimation algorithm to find the parameters.

Forces and Moments at the F/T sensor

Estimated
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In any case, these parameters are not reliable. The reason of this unreliability is due to
the high condition number of the matrix:

D(,4,6) =(D'(9,6,6)*D(a,4.6))*D(a.4,6)

A=D'(q,6,4)*D(q.q,4)
and the condition number of A needs to be minimized. That has to be used in the pseudo-
inverse algorithm, in order to estimate the parameters of the robot arm. Since the matrix D only

depend on the kinematic variables 909 an optimal joint trajectory has to be found. We have
decided to find a minimum jerk trajectory in the joint space, since it is already implemented on
the control boards. This trajectory will minimize the condition number of matrix A and finding
reliable parameters to describe the robot dynamical model.
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2.3.4 Sensorimotor Integration and cortical sensorimotor maps. (UNIHER)

The work at Hertfordshire has addressed the fundamental question: How can raw,
uninterpreted information from unknown sensors come to be used by a developing embodied
agent with no prior knowledge of its motor capabilities? The approach to answer this in
RobotCub is to pursue the development of artificial cortex using information theory as a means
for self-organizing sensorimotor structures grounded in experience.

In nature, cognitive structures appear to be organized in the course of evolution and also in
the course of development so as to reflect information-theoretic relations arising in the
interaction of sensors, actuators, and the environment (including the social environment).
Information distance (rather than mutual information or other measures such as Hamming
distance) appears to lead to the best structured cortex-like maps of sensorimotor variables [see
the paper below]. (For two jointly distributed random variables (e.g. two sensors), information
distance is defined as the sum of their conditional entropies d(X,Y)=H(XIY)+H(Y|X). This
satisfies the mathematical axioms for a metric, inducing a geometric structure on the agent's set
of sensorimotor variables.) Sensory fields may be constructed on the basis of information
methods [Olsson et al. 2004] and then used to autonomously discover sensorimotor laws, e.g.
optical or tactile flow and visually guided movement [Olsson et al. 2006]. The particular
environment experienced and changes in it can shape the sensorimotor maps and their
unfolding in ontogeny [Olsson et al. 2006]. Details were reported in D3.2 "Initial results of
experiments on the functional organization of the somatotopic maps and on the cortical
representation of movements (report)", and also published as [Olsson et al. 2006a].

More recent work on the informational relationships between the agent, its actions, and the
environment [see the paper below] considers a number of statistical measures to compute the
informational distance between sensors including the information metric, correlation
coefficient, Hellinger distance, Kullback-Leibler, and Jensen-Shannon divergence. The methods
are compared using the sensory reconstruction method to fund spatial positions of visual
sensors of different modalities in a sensor integration task. The results show how the
information metric together with adaptive entropy maximization captures relations not found
by the other measures for the construction of somatosensoritopic maps and the development of
cross-modal sensory integration. Moreover, these methods are extended to temporally extended
experience in WP6, where they are applied to interaction (see the attached paper “Measuring
informational distances between sensors and sensor integration”)
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2.3.5 Work done by IST on sensorimotor maps. (IST)

The IST group has been addressing the problem of learning sensory-motor maps of high
dimension robotic systems. Sensory-motor maps are the mathematical relationships between
the information coming from the sensors and the actuators of the robotic system. For instance,
one map may determine how visual perception of the robots' hand (image coordinates and
velocities) relates to robots' arm motor actions (angular positions and velocities of arm joints).

One of the biggest challenges in the analysis of high dimension systems arises from the
existence of redundancies in the motor space, e.g. several arm configurations result in the same
hand position. This is advantageous in many situations because we can use the redundant (free)
degrees of freedom to avoid obstacles, minimize energy consumption, achieve more
comfortable postures, and many others. However, conventional learning mechanisms
associating sensory to motor information may not work under these circumstances because the
sensory motor maps are no longer unambiguous. In the context of redundant systems we have
worked in the above mentioned problems. In particular we are interested in learning the
sensory-motor maps, but, at the same time, to use the redundancy to achieve secondary tasks,
such as obstacle avoidance and energy minimization. We present three approaches to deal with
this problem.

Another problem addressed in this report is related to the learning the sensory motor
maps in a way the fully the constraints existing in the joint sensory-motor data. Most existing
works to date try to learn either forward (motor-to-sensory) or inverse (sensory-to-motor)
maps, which mask some of the underlying structure in the data, mainly when there are
redundant degrees of freedom or perceptual aliasing. We propose a manifold learning method,
and associated data query and retrieve algorithms, that have the potential ability to address
these problems. We present some encouraging results on its application to simulated kinematics
and, in future work, will perform tests on real robotics platforms.

2.3.5.1 Minimum Order Sensory Motor Maps

A “Minimum Order Sensory Motor Map (SMM)” is a map that takes the desired image
configuration and the Degrees Of Redundancy (DOR) as input variables, while the non-
redundant Degrees of Freedom are viewed as outputs. Since the DORs are not frozen in this
process, they can be used to solve additional tasks or criteria. This method provides a global
solution for positioning a robot in the workspace, without the need to move in an incremental
way. We provide examples where these tasks correspond to optimization criteria that can be
solved online. We show how to learn the “Minimum Order SMM” using a local statistical
learning method. Extensive experimental results with a humanoid robot are discussed to
validate the approach, showing how to learn the Minimum Order SMM of a redundant system
and using the redundancy to accomplish auxiliary tasks.
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Mathematical Formulation

In this section we show how to define a Sensory-Motor Map that explicitly takes the DOR into
consideration, thus allowing the completion of several simultaneous tasks.

Let us define a SMM that maps a vector of control variables (n,7) to a vector of image
point features I, where n is a minimum set of degrees of freedom that spans the full output
space and r is a set of redundant degrees of freedom. Note that there are several partitions of
the input space, into redundant versus non-redundant degrees of freedom that can give this
same property. This forward model can thus be written as:

I=f(n,r)

and allows predicting the image configuration of the robot given a set of motor commands. In
many cases, we are more interested in the inverse map, i.e. computing the motor commands
that drive the robot to a desired image configuration, I. If there were an inverse
mapping (n,r) = f (1), this problem could be solved in a straight forward manner. However,
as the dimension of the input space is larger than that of the output space, there are many input
combinations that generate the same image point features. In other words, because of the DOR,
f(n, r) is not bijective and, therefore, not invertible.

We built a cost function, K, with two terms: one weighting the error in the position of the
end effector (data fitness) and another one corresponding to the weights on the control
(regularization term).

K(1",n,r) =ﬂ,||l - I*”2 +c(n,r)

This cost function expresses that we are willing to accept some error in the position if
another task can be solved at the same time, in this case control costs. Examples of control cost
criteria ¢ can be “"Comfort" (e.g. distance to joint limits), Energy minimization (e.g. the position
with lower momentum) or Minimum motion (i.e. minimize total motion from current to desired
position), posture control, amongst others.

Finding the Solution
The regularized solution can be found by minimizing the defined cost as follows:

(A, F) =arg min(/1||l - I"||2 +c(n,r))

where I can be computed with the forward model. This formula integrates two terms: one
describing the task part and another related to posture control.

There are two important observations to this formulation. Firstly, the optimization is
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done with respect to all control variables, which translates into a significant computational cost.
Secondly, the DORs are not treated as such, since they undergo exactly the same process as the
non-redundant DOFs.

The consequence of this approach is that the extra degrees of freedom are frozen from
the beginning and can no longer be used for a different purpose during execution. In a way,
redundancy is lost. Instead, in our approach, we would like to keep the redundant degrees of
freedom free for solving additional tasks online. In essence, we split the problem in two steps.
Firstly, we define a *"Minimal Order Sensory Motor Map", n = g(l,r). By taking the DORs as
input (independent variables) instead of output signals, the problem of computing the non-
redundant DOFs becomes well posed. The DORs, r, are left unconstrained and can be fixed
during runtime, when a secondary task or optimization criterion is specified.

The definition of the “"Minimum Order SMM" allows us to use the redundancy to meet
additional criteria or task-constraints, that can be changed online. The DORs can be determined
as the solution of a new optimization problem, with cost function L:

f =argmin(L(17,r))

Note that, in contrast with the previous case, this optimization is done with respect to
the redundant degrees of freedom, only. The optimization complexity is thus substantially
lower and lends itself to be used as an online process. In general, the solutions in the two cases
are not the same, because different local minima could be reached and the criteria are slightly
different.

Our approach guarantees zero prediction error, because the Minimum Order SMM
allows us to determine the values of n corresponding to the exact image position, for the
selected redundant degrees of freedom. This solution is similar to the first (regularized)
problem when A becomes large. If the Minimum Order SMM is not exact, then it will introduce
some error in the final image configuration.

Results

The following figure shows the minimization in energy obtained when holding the robot hand
in a pre-defined position.
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Figure 2-4 Minimization in energy obtained when holding the robot hand in a pre-defined position (left).
Motion of the joints to achieve the result.

2.3.5.2 Visual Controlled Uncalibrated Redundancy Control

Visual servoing methods provide very efficient and robust solutions to control robot motions.
They provide high accuracy for the final pose and good robustness to camera calibration and
other settings. The redundancy formulation presented in the previous section can be extended
to the Visual Servoing framework, to compute a control law that realizes a main task, while
simultaneously taking supplementary constraints into account. It can be used when the main
task does not constrain all the robot degrees of freedom (DOF). A secondary task can then be
added to meet a second objective without disturbing higher priority tasks.

The control law for the second task is computed in the within the set of motions that do
not change the primary task. This is achieved by projecting motion hypotheses into the set of
motions constituting the null space of the first task, thus leaving the first tasks unmodified. The
computation of the projection operator is based on the jacobian of the first task. This approach
involves the computation of the task jacobian, linking the evolution of the visual features to the
robot articular motion. It thus requires knowledge about the camera world and world-actuator
transformations that influence the interaction matrix (relating image and camera velocities) and
the robot jacobian (relating end-effector and joint velocities). Such transformations are usually
obtained during an offline calibration phase.

However, full system calibration (and even a coarse one) is not always possible and/or
desirable. Some robots may lack proprioceptive sensors to provide the necessary information
and some parameters may vary over time, due to malfunction, changes in mechanical parts or
modification in the camera lenses. Even when calibration information is available, the analytic
computation of the interaction matrix often requires an estimate of the depth of the tracked
features. For all these reasons, a perfect computation of the task jacobian can be very difficult or
even impossible in practice.
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Redundancy formulation for two tasks.

Let q be the articular vector of the robot. Let e1and ez be two tasks,

J: = fﬁ; (i=1.2)

Their jacobian is defined by:

'()ei
e = —q = Jiq
i 'dqq id

Since the robot is controlled using its articulation velocity ¢, the jacobian has to be (pseudo-)
inverted. The general solution (withi=1) is:

qz‘]fél‘*'Plz

where P1 is the orthogonal projection operator on the null space of Ji and J, is the pseudo-

inverse of J1. Vector z can be used to apply a secondary command, that will not disturb e1. Here,
z is used to carry out at best a task e2. With further algebraic manipulations we have:

é,=J,J¢+J,Pz

By inverting this last equation, and introducing the computed z, we finally get:

q= ‘]fél + F’l(J2P1)+(éz - ‘]2‘]1+e'1)
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Results

We have tested several estimation methods for ] and the results are the following
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Figure 2-5. Results of task sequencing. The vertical line shows the time instant when the second task was
activated.

From the results show in Figure 2 we can see that when a second task is activated there is a
small perturbation on the first task that is rapidly reduced to zero.

2.3.5.3 Joint representation of sensory-motor relations

Learning a structure jointly representing both sensory and motor information can provide
significant advantages, if such knowledge can later be used to recover any (partial) map
between perception and action. In this section we present a new approach to work with
unknown redundant systems. For this we have developed:

- An online algorithm that learns the input-output constraints of a generic smooth map
(manifold);

- A method that, given a partial set of input-output variables, provides an estimate of the
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remaining ones, using the learned constraints.

Referring to our problem, the manifold estimate can be used to obtain the direct and
inverse robot kinematics, i.e., to provide an estimate of the observed variables given an
actuation value, or, inversely, obtain the actuators position that leads to a desired observation.
This constitutes a new approach to learn forward-backward models, allowing to easily
recovering the relationship among any set of variables. The key point of our approach is to
consider the problem from an unsupervised learning point of view, where data points consist of
vectors containing both input and output variables. These vectors define a surface that can be
seen as the graphic of a function.

Consider D. to be the number of controlled — or independent — variables and D, the
number of observed variables. A point x belonging to the manifold in a D = D+ D, dimensional
space will lie in a sub-space of dimension D.. This manifold can be represented by the implicit
function

H(x)=0

where H(x) imposes the D — D. restrictions arising from kinematics considerations. Note that the
dimension of the manifold is D. because this corresponds to the number of independent
variables. The observed variables are generic smooth, frequently non-injective functions of the
independent variables. In almost all cases these manifolds are highly nonlinear, hard to
parameterize without any a priori knowledge.

However, they are smooth and so can be approximated by local linear parameterizations
estimated from sample data. Unsupervised learning of a D.-dimensional manifold in a D-
dimensional space can be interpreted as a probability density estimation problem: given a set of
(possibly corrupted with noise) sample points xi belonging to the manifold, i=1...N, estimate
the probability of a point x belonging

to the manifold, i.e.,
pHMX)=0 1| x1, x2, ..., xn)

After estimating the manifold, and given a partial set of input-output variables, we can
query for an estimate of the remaining ones. Suppose data points x are divided into a query
component and an answer component, x = [x7; xT]T , such that Dy + D = D, where D; is the query
dimension and D. is the answer dimension, not necessarily equal to D. and D.. The answer
component is the set x. of elements of x to be estimated given a specific value of the remaining
elements x;. For instance, for a forward kinematics problem x; corresponds to the actuation
variables, while for an inverse kinematics problem x; matches the observed variables. Note that
if the dimension of the query exceeds D., the manifold dimension, the estimation problem is
over-determined and a solution may not exist. Conversely, if the dimension of the query is
lower than D., the estimation problem is under-determined and a continuum of solutions exist
— in this case, as will be explained later, our algorithm will provide multiple answers that can
be interpreted as a sampling of that continuous solution. The M local models that describe the
learned manifold can be used to provide an estimate x. for a specific query xq. For a single
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model m, we can choose the estimate of x. to be the value that maximizes the likelihood of the
data point x given model m, i.e., that maximizes p(x|m). Maximization of this likelihood can be
achieved by minimizing the corresponding Mahalanobis distance to the center of the model m:

Ji=(x—w)TCHx—u)

The data is characterized by its first (mean o) and second order (covariance matrix C) moments.
Consider the following decomposition for the covariance matrix:

ct= Cq Ca
Caq Caa
where Cy, Cga, Cog and Cu are, respectively, of dimensions Dy x D;,

Dy x Du, Da x Dg and D x Da. Then after some simple calculations we get the estimate
)za (Xq) = _C;alcaq (Xq - /uq) + U,

The following experiment shows a simple example of a sensory-motor relation. We can see that
the correct relation (in blue) is accurately estimated (red lines) and that a one-to-many relation
can be recovered.

Fig. 4. Recovering the forward model embedded in the manifold. With
axq = 0.5 the six possible outcomes are successfully estimated (represented
in the figure by black asterisks).

In future work we will apply and evaluate the performance of the proposed model to data
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obtained from redundant robots with multiple degrees of freedom.

2.3.6 Work done by UNIFE on sensorimotor maps (UNIFE)

The brain network for the recognition of biological motion includes visual areas and structures
of the mirror-neuron system. The latter respond during action execution as well as during
action recognition. As motor and somatosensory areas predominantly represent the
contralateral side of the body and visual areas predominantly process stimuli from the
contralateral hemifield, we were interested in interactions between visual hemifield and action
recognition. In the present study, human participants detected the facing direction of profile
views of biological motion stimuli presented in the visual periphery. They recognized a right-
facing body view of human motion better in the right visual hemifield than in the left; and a
left-facing body view better in the left visual hemifield than in the right. In a subsequent fMRI
experiment, performed with a similar task, two cortical areas in the left and right hemispheres
were significantly correlated with the behavioural facing effect: primary somatosensory cortex
(BA 2) and inferior frontal gyrus (BA 44). These areas were activated specifically when point-
light stimuli presented in the contralateral visual hemifield displayed the side view of their
contralateral body side. Our results indicate that the hemispheric specialization of one’s own
body map extends to the visual representation of the bodies of others.

In 2008, a paper on the interaction of visual hemifield and body view in biological motion
perception has ben published on the European Journal of Neuroscience. The work is co-
authored by Ferrara, Muenster, Zurich and Duesseldorf Universities. We think that the results
and the teorethical conclusions are quite relevant as far as WP3 is concerned. The topic of the
study is outlined below and the paper is attached to this deliverable in the appendixes section.
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2.3.7 A sensorimotor approach to orienting of attention (UNIFE).

Traditionally, attention is conceived as a supramodal mechanism subserved by
anatomical circuits separated from those involved in data processing. The premotor theory of
attention proposes that attention results from an activation of the same “pragmatic” circuits that
program oculomotion, in the case of spatial attention, and that program hand grasping
movements, in the case of attention directed towards graspable object. This theory have found a
large amount of experimental evidence.

2.3.7.1 Early behavioral evidence in favor of premotor theory of attention

The ability to detect visual stimuli in space could be enhanced by the knowledge of the
incoming stimulus location. The term commonly used to indicate this phenomenon is
visuospatial attention. Although shifts of attention are normally accompanied by overt eye and
body movements there is ample evidence that perceptual enhancement can be obtained even in
the absence of movement execution.

From early Eighties a theory was formulated on how attention works (see Posner &
Dehaene, 1994). This “classic theory of attention” claimed that attention is a unitary,
supramodal system, anatomically separated from the circuits underlying sensorimotor
transformations, that acts as a control system, increasing the efficiency of the basic sensorimotor
system. The idea of a global attentional system was abandoned with the introduction of modern
brain imaging techniques that showed that different brain circuits become active according to
the task the subjects were required to execute. Recent versions of the classic theory suggest the
existence of at least two different control systems: a posterior, parietal system subserving spatial
attention and an anterior one involved in the attentional recruitment and control of brain areas
to perform complex cognitive tasks (see Posner & Dehaene, 1994). In this new formulation,
however, is still present the basic tenet of the theory: that attention is a supramodal control
system. The idea of a unidirectional influence from attention to perceptual and motor systems
finds severe difficulties particularly in explaining two experimental results, one coming from
electrophysiology and the other from psychophysics, that indicate that orienting of attention is
strictly influenced by anatomical and physiological constrains of sensorimotor systems.

The former experimental result concerns the impossibility to anatomically localize a
global system for attention in space. The initial demonstration of a dissociation between space
sectors was provided by a lesion experiment in monkeys. According to the site of the lesion,
monkeys showed either (lesion of area 8, frontal eye fields) a contralateral neglect, stronger for
stimuli presented far from the monkey, in the absence of a “personal neglect”, or (lesion of
ventral area 6) the ignorance of stimuli presented near the monkey, even when they touched its
skin, in the presence of accurate detection of stimuli presented in the extrapersonal space
(Rizzolatti et al., 1983). Subsequently, similar dissociations between different space sectors were
reported in patients with lesion of parietal and frontal lobe. It appears therefore that the neglect
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as full-fledged syndrome, which includes attentional deficits for personal, peripersonal and
extrapersonal space, is not a consequence of the destruction of an attention control system, but
results from lesions of anatomically distinct circuits. This result is obviously a strong blow to
the classic theory of visuospatial attention.

The psychophysical result concerns a very robust phenomenon, called “meridian effect”,
which is commonly found when a typical experimental paradigm on orienting of visuospatial
attention is used. The basic visual display used in these experiments consists of a central box
and a peripheral row of boxes on each side of the central box, either vertically or horizontally
oriented. Subjects are instructed to maintain fixation on the central box, to direct attention to the
cued box, and to press a switch as fast as possible at the occurrence of the imperative stimulus.
The cue indicates that the incoming stimulus will appear at the cued location with a probability
higher than in the other locations. The imperative stimulus usually consists of a small
geometrical shape that appears at the center of one of the peripheral boxes. In experiments on
voluntary orienting of spatial attention the cue consists of a symbol, such as a digit, placed close
to the central box, that require a conscious interpretation in order to individuate the cued box.
Results commonly show that reaction times to stimuli at the cued location (valid trials) are
faster than those to stimuli at an uncued location (invalid trials). According to the classical
theory of spatial attention, when the target is shown at an uncued box, attention has to move
from the cued box to the target, determining a lengthening of reaction times. The lengthening is
greater when the invalid stimulus is far from the cued box than when it is close to it because the
time depends on the distance attention has to cover. The classic theory has, however, serious
difficulties in explaining why attention takes more time to cross the visual fields meridians
rather then to move along the same visual hemifield in which it is already focussed (meridian
effect). This is a robust phenomenon of the order of 20-25 ms, which has been described by
many authors in different experimental conditions (see Rizzolatti & Craighero, 1998). If
attention is a control system independent of basic anatomical and physiological circuits, why
should its action be delayed by anatomical landmarks such as the principal meridians of the
visual field?

In the late Eighties an alternative view to the classic theory of attention was formulated,
to give a theoretical framework able to explain why orienting of attention is strictly linked to
anatomical and physiological constrains of sensorimotor systems. The fundamental claim of this
new theory, called “premotor theory”, was that attention does not result from nor requires a
control system separated from sensorimotor circuits. On the contrary, attention derives from the
activation of the same circuits that, in other conditions, determine perception and motor activity
(Rizzolatti et al., 1994), giving, in this way, an easy explanation of the strict link between
attention and sensorimotor limits.

At the beginning the premotor theory of attention addressed specifically spatial
attention. According to it, spatial attention derives from an endogenous or exogenous activation
of cortical maps that transform spatial information into movements. The activation of these
pragmatic maps determine both an increase in the motor readiness to respond to some space
sectors, and a facilitation in processing stimuli coming from that space sector toward which the
motor program controlled by the pragmatic map was prepared. The fundamental assumption is
that in humans there is a stage in which motor programs are set, but not executed (evidence
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supported by electrophysiological data). This stage, which occurs either in response to a
stimulus or endogenously, is what introspectively is felt as spatial attention. Even if premotor
theory of attention maintains that spatial attention can be produced by any map that codes
space, the strong development of the foveal vision and neural mechanisms related to foveation
present in humans, indicates that a central role in the attentional selection of a location in the
visual space is played by those maps that code space for oculomotion. In other words, orienting
attention to a determined spatial location in the visual field is a consequence of the
programming of an ocular movement toward that location, even if the saccade is not
subsequently executed.

In the light of this consideration, let us examine how the premotor theory explains the
results of the classical experimental paradigm on orienting of attention previously described,
commonly called the “Posner paradigm”. As soon as the location of the imperative stimulus can
be predicted, a motor program for saccade toward the expected location is prepared. This
program specifies the direction and the amplitude of the saccade. At this point, two events
occur: the location of the expected stimulus becomes salient with respect to all other locations,
and the stimuli appearing in that location are responded to faster. This is true both when the
required response is a saccade, towards or not the target, or another arbitrary response. If the
target does not appear in the cued location, in agreement with the classic theory, the response
can be emitted only when attention is allocated to the new point. Thus, the invalid response is
delayed both because the expected location is not facilitated and because a time-consuming
change in the saccade program should take place before the emission of the response. This way
to consider attention one of the consequences of programming and reprogramming ocular
movements gives to the premotor theory an easy explanation of the meridian effect. Given the
fact that goal-directed saccades are prepared firstly deciding the saccade direction and then
deciding the saccade amplitude, changes in the direction require a radical modification in the
oculomotor program while changes in the amplitude imply only a readjustment of a pre-
existing program. The premotor theory refers to this anatomical constrain of the oculomotor
system to explain the meridian effect. When the amplitude of the attention movement has to be
modified without changing the basic direction parameters, only an adjustment of the motor
program is needed. In contrast, when the target appears in the hemifield opposite the one
containing the cued location, then it is the direction of the attention that has to be modified. In
this case, the process is more time-consuming because a new program, involving (if executed) a
radically different set of muscles, has to be constructed. This complete program change would
be the origin of the meridian effect.

2.3.7.2 Direct evidence in favor of the premotor theory of attention come from two
different series of experiments both using slight modifications of the
Posner paradigm.

The first series of experiments regards the use of a vertical saccade as measured variable
and visual or acoustic stimuli as target. The logic of the experiment started on evidence coming
from studies on oculomotor system in man that demonstrated that when the oculomotor system
is activated by two simultaneous or closely consecutive stimuli, there is an effect of one
stimulus on the other, resulting in an interference between the responses to them. According to
the premotor theory, if spatial attention involves an activation of oculomotor circuits, then this
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activation should influence an overt oculomotor response. The results showed that when
subjects paid active attention to a given spatial location, the saccade trajectory deviated
contralateral to the attention site, even when the imperative stimulus, triggering the saccade,
was auditory and not lateralized. The deviation was therefore due to purely attentional factors
(Sheliga et al., 1995). These data indicate that any time attention is oriented to a certain spatial
location, attention orientation is accompanied by an oculomotor programming. Although
obviously this does not prove a causal relation between oculomotion and attention, it fully
confirms the prediction of premotor theory, while, in contrast, the account of this phenomenon
is not clear if one accepts the tenets of the classic theory.

The second series of experiments try to prove the existence of a causal relation between
oculomotion and attention. To this purpose, conditions in which, either for the presence of a
peripheral palsy or for the maintenance of an extreme eye posture, the execution of a saccade
towards the cued position is prevented were studied. If this conditions determine an influence
on orienting of attention it is difficult to find an alternative hypothesis to an oculomotor
involvement causal for orienting of attention.

A first experiment investigated if a peripheral oculomotor lesion, that determines the
impossibility to normally execute an eye movement, affects also the possibility to voluntarily
orient attention in a task in which no eye movements are required. To this purpose, patients
with rectus lateralis (abducens) oculomotor muscle palsy and with normal visual acuity were
submitted to a Posner paradigm. Due to lesion lateralization, participants were asked to
perform the experiment in monocular vision, both with the paretic and the non-paretic eye. The
driving hypothesis was that, if a peripheral oculomotor lesion affects eye movement execution,
the altered efferent copy/or the altered re-afferent signals from the plegic eye should influence
the oculomotor function. If the involvement of the oculomotor system during visuospatial
attentional tasks is not a mere epiphenomenon and reflects the existence of a true causal
relationship, one should expect that any pathological modification in oculomotor ability should
be paralleled by a modification in the ability to orient visuospatial attention. Results indicated
that patients show dissociation in their performance according to the performing eye. Patients
were able to correctly orient attention (valid trials reaction times faster than invalid ones) when
the performing eye was the normal one, while they were not able to orient attention (no
difference between valid and invalid trials) when they were using the paretic eye. This data
demonstrate that also a pathological state involving the more peripheral levels of the
oculomotor system can determine specific effect on visuospatial attention allocation (Craighero
et al., 2001).

A second experiment wanted to reproduce in normals the impossibility to normally
execute an eye movement and to verify if this condition influences the ability to orient spatial
attention. To this purpose normal subjects were submitted to the same spatial attention
orienting task used in the previously reported study. Subjects were submitted to two different
monocular sessions, having the precise instruction to maintain continuously their gaze on the
fixation square. In the “frontal” session, subjects performed the experiment being in front of the
computer screen, while in the “rotated” session they were rotated of 40° clockwise or
counterclockwise. The performing eye was always the eye closer to the screen. While in the
frontal session, both the right and the left eye were able to execute a movement toward the
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temporal and the nasal visual hemifield, in the rotated one, the performing eye had a posture
that renders impossible a movement toward the temporal visual hemifield. It is important to
note that the distance between the fixation point and the stimulus location was such to allow a
perfect detection of the appearance of the stimulus. Considering the influence that an
oculomotor palsy has on the ability to orient attention, the hypothesis at the basis of the present
experiment was that also an artificial “palsy” induced in normals by an extreme eye posture
should influence the orienting of attention. Results confirmed the hypothesis indicating that
while in the frontal session participants were able to correctly orient attention when the
stimulus was presented both in the nasal and in the temporal visual hemifield, in the rotated
session, attention was correctly allocated only when the target was presented in the nasal visual
hemifield. No difference in reaction times between valid and invalid trials was found when the
stimulus appeared in the temporal visual hemifield (Craighero et al. 2004).

Therefore these last two experiments indicate that the oculomotor activation coincident
with attention allocation, being far from be a mere epiphenomenon, could reflect a volitional
attempt to enhance perception by backward activating the circuits normally involved in
sensorimotor transformation for eye movements towards visual stimuli.

2.3.7.3 Electrophysiological evidence of an oculomotor involvement during
orienting of spatial attention

Recent neuroimaging studies have supported a neuroanatomical link between
visuospatial attention and eye movements, either by noting that patterns of activations obtained
in attentional tasks resemble those in oculomotor tasks (Nobre et al., 1997) or by comparing
attentional tasks of visuospatial orienting in the presence or absence of eye movements
(Corbetta et al., 1998; Nobre et al. 2000). Corbetta and collegues (1998) found overlapping
regional networks in parietal, frontal, and temporal lobes both during a task involving covert
shifts of attention to peripheral visual stimuli and during a task involving both attentional and
saccadic shifts to the same stimuli. Nobre et al. (2000) compared brain areas activated in tasks of
covert visuospatial orienting and in tasks requiring large and repetitive saccades toward
peripheral stimuli. Results showed that the two tasks activated highly overlapping neural
systems. No system of distinct brain areas was activated exclusively by the covert attention or
by the saccades task. Beauchamp et al. (2001) wanted to better understand how the network
subserves attentional shifts by examining overt shifts of spatial attention (shifts of attention
with saccadic eye movements) and covert shifts of spatial attention (shifts of attention without
eye movements) using identical tasks and stimuli located at similar distance from fixation.
Results showed that both overt and covert shifts of visuospatial attention induced activations in
frontal cortex (especially the precentral sulcus) parietal cortex (especially the intraparietal
sulcus) and lateral occipital cortex. Overt shifts of attention elicited more neural activity than
did covert shifts, reflecting additional activity associated with saccade execution. These results
confirmed that overt and covert attentional shifts are subserved by the same network of areas.

A series of electrophysiological experiments performed on monkeys” brain have given a
well-proven anatomical and physiological basis to the premotor theory of attention. In
particular, Kustov and Robinson (1996) gave a physiological explanation to the saccade
deviation found during an orienting of attention task when an ocular movement is required as
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response (Sheliga et al., 1995), by recording neurons activity from the monkey superior
colliculus. These authors showed that when a monkey pays attention to a given location in
space there is a change in the excitability of the superior colliculus. This change was
demonstrated by the presence of a saccade shift with respect to their normal trajectory (elicited
by the electrical stimulation of the superior colliculus) during allocation of spatial attention. The
change was present when attention was allocated as a consequence of both an endogenous and
an exogenous cue presentation. Particularly striking was the observation that the collicular
excitation also changed when the monkey was instructed to make a manual response and keep
the eyes still after imperative stimulus presentation. This last finding clearly shows that a mere
shift of attention without any eye movement requirement determines a change in the
oculomotor system.

In a very brilliant electrophysiological experiment Moore and Fallah (2001) have
reported evidence that it is possible to enhance spatial attention by altering oculomotor signals
within the brain. The authors trained two monkeys to make manual responses to signal the
transient dimming of a peripheral visual target in the presence of flashing distractors and tested
the effects of FEF microstimulation on monkeys’ performance. They firstly determined the
location in space to which suprathreshold microstimulation shifted the direction of gaze,
defining the motor field, and then they tested the effects of subthreshold microstimulation of
the on monkeys’ performance when the target was placed inside and outside the motor field.
The idea at the basis of the experiment was that if oculomotor planning gives rise to attentional
filtering of visual signals, stimulation of an oculomotor area at levels below the movement
threshold should allocate attention to targets positioned in the part of space represented by
neurons at the stimulation site. Results have showed that subthreshold stimulation of the FEF
facilitates attention to the target stimulus (lower psychophysical threshold level) when but only
when the target stimulus was positioned in the motor field, providing evidence of a direct effect
of oculomotor signaling on the allocation of spatial attention.

2.3.7.4 Non-oculomotor attention

In everyday life most of our actions in space are preceded by foveation and this gives to
the oculomotor system a special central position in spatial attention. There are, however, some
conditions in which we do not use, or do not use primarily, eye movements to select stimuli in
space. In these cases spatial attention should depend basically on circuits other than those
related to eye movements. Probably the best documented evidence in favor of spatial attention
not related to eye movements is that deriving from experiments conducted by Tipper et al.
(1992). They studied, in normal participants, the effect of an irrelevant stimulus located in or out
of the arm trajectory necessary to execute a pointing response. The result showed that an
interference effect was present only when the distractor was located in the trajectory necessary
to execute a pointing response. Control experiments suggested that the effect was not due to a
purely visual representation of the stimuli or to spatial attention related to eye movements.
Rather, the organization of the arm-hand movement determined a change in the attentional
relevance of stimuli close to the hand or far from it.

A series of experiments tried to verify if the premotor theory of attention could be
extended from orienting of attention to spatial locations, to orienting of attention to graspable
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objects. Objects are represented in both the ventral and the dorsal stream. Whereas processing
in the ventral stream is responsible for perceptual and cognitive representations of the visual
characteristics of objects and their significance, processing in the dorsal stream underlies the
organization of the appropriate object-related hand movements. There is increasing
neurophysiological evidence that this “pragmatic” function is performed by a circuit in the
dorsal stream that codes the intrinsic visual characteristics of the objects and transforms them
into the appropriate distal movements. Evidence in favor of the presence in humans as well of a
strict link between the representation of an object’s visual properties and specific motor
programs to act on it has been provided by a recent study (Tucker and Ellis, 1998). Normal
human subjects were presented with photographs of common graspable objects. The subjects
had to decide by a key-pressing made either with the left or the right hand whether the
presented object was upright or inverted. The results showed that the reaction times were faster
when the key-press response was executed by the hand most suited to grasp the presented
object, suggesting that visual objects potentiate actions that may be performed on them, even in
the absence of explicit intentions to act. On the base of this strict link between objects and
congruent actions, it is possible to modify the claim of the premotor theory of attention by
saying that allocation of attention to a graspable object is a consequence of preparing a grasping
movement to that same objects. An experiment was performed to test this hypothesis
(Craighero et al., 1999). Normal human participants were required to prepare to grasp a bar and
then to grasp it as fast as possible on presentation of a visual stimulus. On the basis of the
degree of sharing of their intrinsic properties with those of the to-be-grasped bar, visual stimuli
were categorized as “congruent” or “incongruent”. Results showed that grasping reaction times
to congruent visual stimuli were faster than reaction times to incongruent ones. These data
indicate that preparation to act on an object produces faster processing of stimuli congruent
with that object. The same facilitation was present also when, after the preparation of hand
grasping, participants were suddenly instructed to inhibit the prepared grasping movement
and to respond with a different motor effector. There is a clear parallelism between the
facilitation resulting from the preparation of a grasping movement and that resulting from
oculomotor programming. In the former case detection of a given object’s graspability
properties is facilitated, whereas in the latter case facilitation favors a specific spatial location.

2.3.8 Do we share gaze with robots? A pilot experiment on the interaction between
humans and the i-cub (UNIFE+IST)

In order to study and model oculomotor involvement in orienting of visuospatial
attention, UNIFE and IST collaborated to perform an experiment based on recent behavioral
data indicating that gaze direction triggers reflexive shifts of attention toward the gazed-at
location. Two are the main goals of the experiment. The first one concerns the comparison of
effectiveness in orienting of attention between the drawing of a schematic face apparently
moving its eyes, and the real face of an experimenter seated in front of the subject and directing
his gaze. In literature, only schematic drawings, or static face pictures have been used. The
second goal addresses the way in which individuals consider the i-Cub: is it considered more
similar to the drawing of a schematic face or to a real human face? In other words, is the
effectiveness in orienting of attention determined by the direction of the i-Cub gaze, more
similar to that obtained by observing gaze direction in a schematic face or in a human face?
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In order to answer these questions we performed an experiment in which participants were
required to press a button as soon as an LED placed on their right or on their left was switched
on (see the figure below).

participant

Position

* of the computer screen

gfor a;rows or schematic response

aces ;
switch

e of the i-Cub

* of the experimenter

Before the appearance of the imperative stimulus, four different experimental situations, each of
them presented separately in different experimental sessions, could be presented: (1) a central
horizontal arrow pointing either towards the left or towards the right; (2) a schematic face with
its eyes deviated either towards the left or towards the right; (3) the i-Cub directing its gaze
towards the left or towards the right; (4) the experimenter directing his gaze towards the left or
towards the right.

Preliminary results of the experiment indicate, firstly, that the orienting of attention determined
by the schematic face is more similar to that determined by an arrow than to that determined by
a real human face. Thus, a schematic face can’t be considered a “biological stimulus” as it is
often defined in literature. Secondly, the performance of the participants in the i-Cub session is
statistically more similar to the performance in the experimenter session than to the one in the
other two sessions. Consequently, from this preliminary experiment, we can suggest that the i-
Cub is perceived to be “more biological” than the drawings of schematic faces.
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4 Conclusions

This deliverable presents the current state of the art of experiments and models on sensorimotor
integration together with some demos on infants crawling modelling. This is the final version of
the Deliverable that has been provided at month 48 and includes all the contributions to
Workpackage 3 provided by RobotCub partners during the first four years of the project.
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Abstract

In embodied artificial intelligence is it of interest to study
the informational relationships between the agent, its actions,
and the environment. This paper presents a number of sta-
tistical measures to compute the informational distance be-
tween sensors including the information metric, correlation
coefficient, Hellinger distance, Kullback-Leibler, and Jensen-
Shannon divergence. The methods are compared using the
sensory reconstruction method to find spatial positions of vi-
sual sensors of different modalities in a sensor integration
task. The results show how the information metric can find
relations not found by the other measures.

Introduction

In the early 1960s H. B. Barlow suggested (Barlow, 1961)
that the visual system ol animals “knows™ about the struc-
ture of natural signals and uses this knowledge Lo represent
visual signals. Ever since then neuroscientists have analysed
the informational relationships between organisms and their
environment. In recent years, with the advent of embodied
artifical intelligence, there has also been an increased inter-
est in robotics and artificial intelligence to study the informa-
tional relations between the agent. its environment, and how
the actions of the agent affect its sensory input. It is believed
that this ch can give us new principles and quantitative
measures which can be used to build robots that can exploil
bootstrapping (Prince et al., 2005) and continously learn, de-
velop, and adapt depending on their particular environment,
environment, and task to perform. This paper presents some
work in this area and presents a number of methods for com-
puting the distance between sensors and how these meth-
ods can be useful for sensor integration of different sensor
modalities.

The informational relationships between sensors are de-
pendent on the particular embodiment of an agent. Thus,
these relationships can be useful for the agent to learn about
its own body, the potential actions it can perform, and how
the sensors relate to its particular environment. In (Olsson
et al., 2004b) the sensory reconstruction method, first de-
scribed by Pierce and Kuipers (1997), was applied to robots

and extended by considering the informational relations be-
tween sensors. The results showed how the visual field could
be reconstructed from raw and uninterpreted sensor data and
how some symmetry of the physical body of the robot could
be found in the created sensoritopic maps. This method was
also used in (Olsson et al., 2005b) to show how a robot can
develop from no knowledge of its sensors and actuators to
perform visually guided movement.

One other aspect of the information available in an agent’s
sensors is that the particular actions of the agent can have an
impact on the nature and statistical structure of its sensoric
input. This has been studied in a number of papers since
(Lungarella and Pfeifer, 2001); see for example (Sporns and
Pegors, 2003, 2004; Lungarella et al., 2005). The results
show how saliency guided movement decreases the entropy
ol the input while increasing the statistical dependencies be-
tween the sensors. The specilic environment ol an agent also
limits in principle what an agent can know about the world
and the physical and informational relationships of its sen-
sors (Olsson et al., 2004a).

Information-theoretic measures have also been used to
classily behaviour and interactions with the environment us-
ing raw and uninterpreted sensor data from the agent. In
(Tarapore et al., 2004) the statistical structure of the sensoric
input was used to fingerprint interactions and environments.
Mirza et al. (2005b) considered how the informational rela-
tionships between its sensors, as well as actuators, can be
used to build histories of interaction by classifying trajecto-
ries in the sensorimotor phase space. In (Kaplan and Halner,
2005) the authors also considered clustering behaviours by
the informational distances between sensors by considering
conligurations ol matrices of information distances between
all pairs of sensors.

One important issue in this research is what measures to
use to quantify the informational relationships. In (Lun-
carellaet al., 2005) the authors present a number of methods
for quantifying informational structure in sensor and motor
data. The focus is on integration, i.e., how much information
two or more sources have in common. In this paper we fo-
cus on the opposite, i.e., how to compute how different two
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or more sources are. Following (Olsson et al., 2004b), sev-
eral papers including (Olsson et al., 2004a, 2003b.c.a, 2006;
Mirza et al., 2005a.b; Kaplan and Hafner, 2005; Hafner and
Kaplan, 2005) have used the information distance metric
disucssed by Crutchfield (1990) to compute the informa-
tional distance between sensors. An important question the
authors have received several times in reviews ol papers and
in discussions is “why the information metric?”. This is a
good question and in this paper we present a number of al-
lernative distance measures suggested by colleagues and re-
viewers as well as the information metric. To compare the
potential utility of the methods we apply them as the dis-
tance measure used in the sensory reconstruction method
(Pierce and Kuipers, 1997; Olsson et al., 2004b). In the ex-
periment the sensors of the visual field of a robot is split
into three different modalities: red, blue, and green, and the
problem is to find the relationships between sensors, includ-
ing which sensors come [rom the same pixel in the camera.
This is an example of sensor integration. The results show
how the information metric performs better in this problem
as it measures both linear as well as non-linear relationships
between sensors,

The rest of this paper is structured as follows, The next
section presents a number of methods to compute the dis-
tance between two sensors. Then a short introduction to the
sensory reconstruction method is given before the results of
the experiments are presented. The final section concludes
the paper.

Measuring the Distance Between Sensors

In this section we present a number ol methods for com-
puting the distance between two sensors S, and §,. Each
sensor can assume one of a discrete number of values (con-
tinuous values are discretized) S, € x at each time step ¢
where x is the alphabet of possible values. Thus, each sen-
sor can be viewed as a time series of data {S},57,...,57}
with T elements. Each sensor can also be viewed as a ran-
dom variable X drawn from a particular probability distribu-
tion py(x), where p.(x) is estimated {rom the time series of
data. Similarly the joint probability distribution py(x,y) is
estimated [rom the sensors S, and S,.

A distance measure d(X,Y) is a distance function on a
set of points, mapping pairs of points (X.Y) to non-negative
real numbers. A distance metric in the mathematical sense
also needs to satisfy the three following properties:

e d(X.Y)=d(Y.X) (Symmelry).
e d(X.Y)=0 iff ¥ =X (Equivalence).
e d(X.Z) <d(X.Y)+d(Y,Z). (Triangle Inequality).

If (2) fails but (1) and (3) hold, then we have a pseudo-
metric, [rom which one canonically obtains a metric by iden-
tlifying points at distance zero from each other. This is done
here and in (Crutchfield, 1990).

‘Why can it be useful to use distance measures which are
metrics in the mathematical sense? If a space of information
sources has a metric, is it possible to use some of the tools
and terminology of geometry. It might also be useful to be
able to talk about sensors in terms of spatial relationships.
This might be of special importance il the computations are
used to actually discover some physical structure or spatial
relationships ol the sensors, for example as in (Olsson et al.,
2004b), where the spatial layout ol visual sensors as well as
some physical symmetry of a robot was found by informa-
tion theoretic means.

Distance Measures

The [-norm distance used in (Pierce and Kuipers, 1997) is
different from the distance measures that follows in that it
does not take in to account the probabilites of the different
values that a sensor can take. It is normalized between 0.0
and 1.0 and is defined as

T
|
dI(SnS_\'):TZ‘SL_S\-l- (1)

=1

The correlation coefficient is defined as

T (S -85 =5,
o 2o (5 =58, - 5y) @

VL (8- 802 ST (8 - 52

where S, and 5_'_\. are the mean of S, and S, respectively. The
range ol ris —1.0 < r < 1.0, where 1.0 means that they are
perfectly correlated in a linear way, 0 that they are not lin-
ecarly correlated, and —1.0 perfectly negatively correlated.
This can be made symmetric by computing the squared cor-
relation coefficient, which is in the range 0 < < 1.0, and
then

dec(Se.8y) =1 =135, 3)

This is still not a metric since it does not satisly the triangle
inequality (Ernst et al., 2005).

The information metric is proved to be a metric in

(Crutchfield, 1990) and is defined as the sum of two con-
ditional entropies, or formally

dng (S, 8,) =H(X|Y)+H(Y[X), (4)
where

HEX) == pley)log, plyl). (5)

XEX yEY

The Kullback-Leibler divergence (Cover and Thomas,
1991) is defined as

_ g, 220 i
D(p«l|py) = ;‘D"'('V) log2 pylx)’ (U
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where (J]ngjl% =0 and p, log, & = = The Kullback-
Leibler measure is not a metric because it is not symmetric.
It can be made symmetric by adding two Kullback-Leibler
measures,

dgp(Se.Sy) = D(P.\HP\') +D([’\'HP\): (7

where p, is the probability distribution associated with sen-
sor Sy and py with §y. This is still not a metric since it does
not satisfy the triangle inequality.

The square root of the Hellinger distance, also known as
Bhattacharya distance (Basu et al., 1997) , is a metric and is
defined as

1 — 2
dp(Sy,5y) =, ?Z (\/Pr(-‘f) - V"P\‘(“TO . (8)

XEX

Finally, the Jensen-Shannon divergence, presented in
(Lin, 1991), is defined as

drs(Se.Sy) =H(nxX + mp¥) — nxH(X) —myH(Y), (9)

where my.my < 0,7y + 7y = 1, are the weights associated
with the sensors S, and §,. In this paper the weights were
always my = my = 0.5, In (Endres and Schindelin, 2003) it
was proved that the Jensen-Shannon is the square ol a met-
ric, i.e., v/dys is a metric, which was used in the experiments
presented in this paper.

Sensory Reconstruetion Method

In the sensory reconstruction method (Pierce and Kuipers,
1997; Olsson et al., 2004b) sensoritopic maps are created
that show the informational relationships between sensors,
where sensors that are informationally related are close o
each other in the maps. The sensoritopic maps might also
reflect the real physical relations and positions ol sensors.
For example, if each pixel ol a camera is considered a sensor,
is it possible to reconstruct the organization ol these sensors
even though nothing about their positions is known. Tt is
important to note that using only the sensory reconstruction
method, only the positional relations between sensors can
be found, and not the real physical orientation of the visual
layout. To do this requires higher level feature processing
and world knowledge or knowledge about the movement of
the agent (Olsson et al., 2004b). Figure | shows an example
ol a sensoritopic map for a SONY AIBO robot.

To create a sensoritopic map the value for each sensor at
each time step is saved, where in this paper each sensor is
a specific pixel in an image captured by the robot. The first
step of the method is to compute the distances between each
pair of sensors. In the paper by Pierce and Kuipers (1997)
the 1-norm distance was used but after (Olsson et al., 2004h)
the information metric has been used in a number of pa-
pers. In this paper the different distance measures presented
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Figure 1: A sensoritopic map created by the sensory recon-
struction method taken from (Olsson et al., 2004b) using the
information metric. In this example there are 150 sensors,
including 100 image sensors that are labeled 1-100 to the
right in the map.

in the previous section are used. From the matrix of pair-
wise distance measurements between the sensors the dimen-
sionality of sensory data (two in this case of a visual field)
is computed and a sensoritopic map ol that dimensionality
can be created, using a number of different methods such
as metric-scaling, which positions the sensors in the two di-
mensions of the metric projection. In our experiments we
have used the relaxation algorithm described by Pierce and
Kuipers (1997).

Experiment

This section describes the performed experiment and the re-
sults.

Method

In our experiments a SONY AIBO robotic dog was placed
in a sitting position on a desk in the lab. The robot only
moved its head with uniform speed using the pan and tilt
motors in eight directions: up, down, left, right, and four
diagonal directions. Five sequences of 6000 frames each of
visual data was collected from the camera at a resolution of
88 by 72 pixels with 8 bits for each channel (red, green, blue)
at an average rate of 20 frames per second. The collected
images were downsampled to § by 8 pixels using averaging.
Each pixel of the image had one red, one green, and one
blue sensor. Thus, there is a total of 192 sensors (64 of each
modality) where the red sensors are labeled R1 — R64, the
green G1 —G64, and the blue sensors Bl — B64. The sensors
labeled 1 are located at the upper left corner of the image and
64 at lower right corner. In the collected data the range of
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—__Fxp. 192RGB  [192ARGB
Measur
I-norm 0.32 -
(0.01)
Correlation 0.19 0.23 0.21
coellicient (0.02) (0.03) (0.05)
[nformation 0.07 0.12 0.09
imetric (0.02) (0.03) (0.03)
ICullback- 0.37 0.35 0.41
[eibler (0.03) (0.01) (0.05)
Hellinger (0.45 0.40 0.46
(0.05) (0.02) (0.04)
Jensen- 0.45 0.39 0.45
Shannon (0.04) (0.01) (0.04)

Table 1: Average distances between all pairs of correct and
reconstructed sensors using equation 10 with standard de-
viation in parentheses. The column 64R shows the average
distances for the 64 red sensors of figure 2 and 192RGRB the
red, green, and blue sensors of figure 3, both using normal
binning. 192ARGB shows the results for the adaptive bin-
ning of ligure 4.

the blue sensors was slightly lower than the red and green
sensors with a slightly smaller variation.

Sensoritopic maps were created from each of the five se-
quences ol data by the sensory reconstruction method using
the different distance measures previously described. The
presented maps are examples but all maps created using one
particular distance measure had the same characteristics as
the ones presented here.

Results

Figure 2 shows sensoritopic maps computed with the dil-
ferent distance measures ol only the red sensors Rl — R64.
First, if we look at the maps lor the Kullback-Leibler,
Hellinger, and Jensen-Shannon distance, we find no real
structure.  For the correlation coefficient distance, figure
2(by, we find that sensors that are close in the visual field
tend to be closer in the sensoritopic map, but it is not very
clear. Now, compare this to the sensoritopic maps for both
the 1-norm distance, figure 2(a). and the information metric,
2(¢). Here the spatial relationships of the red sensors have
been found, with sensor R1 in the upper left corner and R64
in the lower left corner for the 1-norm distance and the R1
sensor in lower left corner for the information metric. Since
the sensory reconstruction method cannot find the true phys-
ical location ol sensors but only the spatial relationships both
of these maps represent the visual field.

Up until now the term “reconstructed™ has been used in
an informal way, where a visual field is reconstructed if the
sensoritopic map and the real layout of the sensors look sim-
ilar. One way this similarity can be formally quantified is by
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Figure 2: Sensoritopic maps of the red sensors.

compuling the relative distances between pairs of sensors in
the reconstructed visual field and the real layout of the sen-
sors. Let r;; be the Euclidean distance between two sensors
i and j in the reconstructed map. and £; ; the distance be-
tween the same two sensors in the real layout, where the x
and y coordinates in both cases have been normalised into
the range [0.0,1.0]. Now the average distance between all
pairs of sensors can be compared,

) I
dirt)=—3"|rij—ti
iJ

where N is the number of sensors. This compares the relative
positions of the sensors and not the physical positions, and
d(r.£) will have a value in the range [0.0,1.0]. A distance of
zero means that the relative positions are exactly the same,

(10
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and sensors placed at completely random positions will have

an average distance ol approximately 0.52 H Pmﬁ%ggg -

Table 1 shows the average distances for 10 created maps Esﬁfﬁ@%‘ %%%;E ““%B%“é?&w 'G”@D 2R
for each of the five sets of data using equation 10. The 64R ¢ m%a@ i 57 c&_&_n- & “ar it
column shows that the 1-norm and information metric have a . STk Q% 'aﬁaﬁgzﬁm
significantly lower average distance then the other measures, NS EEM "w G'%zg e %ﬁﬁﬂf ) %ﬁfﬂmm
indicating that using these two measures more accurately re- B?%%? G&%ﬁ&fﬁ:}fj‘” &ﬁx}“ E&%ﬁ;ﬁ‘# G i
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i ) Figure 4: Sensoriopic maps of 192 sensors using entropy
i P 4 F 4 maximization ol the sensor data.
: i Hellinger map and Jensen-Shannon map both contain three
ﬂ' — ' . clusters, one for each modality. The Kullback-Leibler map
T T TR T PR 3 B i3 " A . -
is divided in to four clusters. The 1-norm distance shows
(e) Hellinger (f) Jensen-Shannon how structure within the modalities is present but there is no
fusion of the sensors from different modalities. The correla-
Figure 3: Sensoriopic maps ol 192 sensors using uniform tion coefficient measure shows a similar structure but there
binning. is some overlap between the red and the green sensors. For
the information metric, figure 3(c), the situation is differ-
Figure 3 shows sensoritopic maps for all the red, green, enl. Here the sensors of dillerent modalities [rom the same
and blue sensors, and column 192RGB of table 1 show the location in the visual field are clustered together. This is
corresponding average distances. This is an example of sen- an example of autonomous sensory fusion where sensors of
sor integration where the problem is to find what sensors different modalities are combined. A well-studied example
that are from the same location of the visual field, when the of this in neuroscience is the optic tectum of the rattlesnake,
only input data to the system is the raw and unstructured where nerves [rom heal-sensitive organs are combined with
data from the 192 sensors without any classification. The nerves from the eyes (Newman and Hartline, 1981).
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In (Olsson et al., 2005¢) it was shown how entropy max-
imization of the data in individual sensors might be useful
to find correlations between sensors of dillerent modalities.
Figure 4 shows sensoritopic maps and column 192ARGB
of table 1 the average distance computed using the same
data as before where it has been preprocessed by maximiz-
ing the entropy in each sensor using a window of 100 time
steps (see (Olsson et al., 2005¢) for details of this method).
The 1-norm distance is not included since it is operating on
raw sensor values and not on probabilities. The Kullback-
Leibler, Hellinger, and Jensen-Shannon measures now clus-
ter the red and green together and the blue in another clus-
ter. The map of the correlation coefficient is similar, albeil
with with more structure showing the layout of the individ-
ual sensors of the different modalities, as also can be seen
in the average distance in table 1. The information metric
in figure 4(b) again shows clustering of the different modali-
ties according to their spatial location in the visual field. For
example is sensor R28 clustered together with B28 and G28.

Discussion

Why is it the case that the information metric enables the
sensory reconstruction method o find these relations be-
tween sensors of different modalities when the other mea-
sures do not? By considering the individual as well as joint
entropies of the sensors the information metric provides a
general method for quantifying all functional relationships
between sensors, while many other methods only find some
relationships.  For example, a correlation coellicient ap-
proaching 0 does not imply that two variables actually are
independent (Steuer et al., 2002).

Conclusions

For purposes ol autonomous construction of the relations
among sensors in an embodied agent, in this paper we com-
pared the information metric to five other distance measures:
the 1-norm distance, the correlation coeflicient, Kullback-
Leibler divergence, Hellinger distance, and the Jensen-
Shannon divergence. Among these the information metric,
I-norm distance, Hellinger distance, and the squared Jensen-
Shannon divergence are metrics in the mathematical sense.
The comparision was performed by applying the distance
measures as the distance measure used in the sensory re-
construction method. The created sensorilopic maps were
evaluated by comparing the average spatial distances of the
sensors of the reconstructed maps with the spatial distances
between the sensors ol the real square layout of the sensors.

The results showed that for autonomous construction of
the relationships between sensors ol different modalties,
sensoritopic reconstruction using the information metric was
the only successful method, outperforming all the other dis-
tance measures. When using sensors from only one modality
the average reconstruction distance of the information met-
ric was similar to the 1-norm distance. Among the other pro-

posed measures the correlation coefficient had a shorter av-
erage distance than the others, but still significantly greater
than the information metric. This is due to the fact that the
information metric captures general relationships between
sensors and not just linear relationships, as is the case with
many other measures,

In recent years there has been an increased interest in
studying the informational relationships between robots,
their environment, and how their actions affect the infor-
mation available in their sensors. Here the information
metric is useful since it captures general relationships be-
tween sensors. This has, for instance, been exploited to dis-
cover optical and information flow in sensors ol different
modalities (Olsson et al., 2005a, 2006), and to build “in-
terpersonal maps™ that represent the informational relation-
ships between two agents (Halner and Kaplan, 2005). It has
also been used to study the informational content available
to robots in environments with oriented contours (Olsson
et al., 2004a), inspired by the developmental studies of kit-
tens reared in restricted visual environments (Wiesel, 1982;
Callaway, 1998),

One possible avenue for [uture research is (o study how
robots, just like animals, can optimize their sensory system
based on the statistics of their specilic environments, as well
as the actions and embodiment of the particular robot. Here
the construction of sensoritopic maps using the information
metric can be used as a general method to find the informa-
tional relationships between the sensors and the actions of
the robol. It would also be of interest to study how a robot
actively can shape the informational relationships among its
sensors by deliberate actions.
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Summary

What is the evolutionary origin of the human ability to under-
stand and predict the behavior of others? Recent studies
suggest that human infants’ early capacity for understand-
ing others’ goal-directed actions relies on nonmentalistic
strategies [1-8]. However, there is no consensus about the
nature of the mechanisms underpinning these strategies
and their evolutionary history. Comparative studies can
shed light on these controversial issues. We carried out
three preferential looking-time experiments on macaques,
modeled on previous work on human infants [1-5], to test
whether macaques are sensitive to the functional efficacy
of familiar goal-related hand motor acts performed by an ex-
perimenter in a given context and to examine to which extent
this sensitivity also is present when observing non-goal-re-
lated or unusual goal-related motor acts. We demonstrate
that macaque monkeys, similar to human infants, do indeed
detect action efficacy by gazing longer at less efficient ac-
tions. However, they do so only when the observed behavior
is directed to a perceptible and familiar goal. Our results
show that the direct detection of the functional fitness of ac-
tion, in relation to goals that have become familiar through
previous experience, is the phylogenetic precursor of inten-
tional understanding.

Results and Discussion

The evolutionary origin of the human ability to understand and
predict the behavior of others has become a matter of contro-
versy since the apparent inability of nonhuman primates to un-
derstand others as intentional agents [9] was recently chal-
lenged. In fact, there is evidence that chimps, when engaged
in a competitive setting, are able to infer what others know
on the basis of where they are looking [10]. Even more impres-
sively, it has been shown that rhesus monkeys can establish
a coghnitive link between seeing and knowing [11] and hearing
and knowing [12]. These results show that nonhuman primates

*Correspondence: vittorio.gallese@unipr.it

possess the ability to understand what others know about the
world on the basis of observable behavioral cues.

We decided to address the issue of the evolution of human
ability to understand the intentional behavior of others by
studying how macaque monkeys evaluate the efficacy of the
observed motor behavior of a human agent in terms of the ad-
equacy between means and ends in a given context. To that
purpose, we carried out three preferential looking-time exper-
iments modeled on Gergely et al.’s previous work with infants
[1] and substituted their computer-generated stimuli with real
actions performed in front of the monkeys by a human agent.
In experiment 1, macaque monkeys were tested to assess
their sensitivity to the adequacy between the means (the
type of reaching-to-grasp trajectory) and the goal (grasping
an object) of observed goal-directed motor acts according to
the contextual constraints (presence or absence of an obsta-
cle). In experiment 2, macaque monkeys were tested to evalu-
ate to which extent this sensitivity correlates with the goal
relatedness of the monkeys’ observed motor acts by showing
them non-goal-related movements. Finally, experiment 3 was
designed to assess whether the observation of any goal-di-
rected motor act, regardless of whether it is part of the mon-
keys’ behavioral repertoire, would trigger the sensitivity to its
means-end adequacy.

In contrast to previous studies [1-7, 13], we introduced
quantitative methods to assess the monkeys’ gaze by means
of an infrared eye-tracking device. We also measured the kine-
matics components of the actions observed by the monkeys
via a high-resolution video motion analysis (see the Supple-
mental Data).

Experiment 1

Experiment 1 included two testing sessions (Figure 1). In the
experimental session, monkeys (n = 6) were familiarized with
ahuman experimenter who moved her hand above an obstacle
to grasp an object (see Movie S1). In the following two test
events, the obstacle was removed. In one test event (motor
acts were congruent to the physical context), the experimenter
canonically reached and grasped the object by following
a novel, straight-line trajectory (see Movie S2). In the other
test event (motor acts were incongruent to the physical con-
text), the experimenter reached up and grasped the object
by following a curvilinear path identical to the one executed
during the familiarization trial to bypass the obstacle (see
Movie S3).

If during the familiarization trial monkeys interpreted the ob-
served motor act as the shortest path to the goal with respect
to the context, a motor act displaying the same curvilinear path
to the goal in a context free from any obstacle should have trig-
gered monkeys’ attention (expressed by a greater amount of
looking time) more often than when observing a motor act
that follows a shorter, straight-line path. Alternatively, if mon-
keys attended to the surface structure of the observed motor
act without relating it to the target object or the context, we
expected a reverse pattern of gaze behavior during test trials,
indicating sensitivity to novel actions.

In the control session, the same monkeys (n = 6) were
familiarized with a motor act identical to that used in the
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Figure 1. Testing Conditions in Experiments 1, 2, and 3

The top two panels illustrate the familiarization condition followed by the congruent and incongruent test events in both experimental and control sessions in
experiment 1. The middle panel shows the familiarization condition followed by the congruent and incongruent test events presented in experiment 2. The
bottom panel illustrates the familiarization condition followed by the congruent and incongruent test events presented in experiment 3.

experimental session (curvilinear trajectory, see Figure 1) but
executed in a situation where the location of a physical obsta-
cle didn’t block the direct access to the target object (see
Movie 4). The familiarization trial was then followed by the
same two test events presented during the experimental ses-
sion (see Movies S2 and S3). The rationale was to assess the
importance of contextual features during motor-act observa-
tion and prediction. First, an analysis of variance (ANOVA)
with repeated measures, with session (experimental or con-
trol) as the within-subjects variable, was conducted on the
normalized (Arcsine transformation) mean looking time for
the familiarization events (for further details on the statistical
analyses, see the Supplemental Data). Results revealed no
session effect on looking time (F(; 5y = 0.138, p = 0.726). Thus
subjects’ familiarization with the events was comparable
between both sessions.

Second, in order to assess looking-time differences be-
tween test events for both sessions and to control for the pre-
sentation order of test events, a2 x 2 x 2 repeated-measures
ANOVA was carried out on the normalized mean looking
time, with session (experimental or control) and condition

(congruent or incongruent) as within-subjects factors and
order (congruent first or incongruent first) as the between-sub-
jects factor. Results revealed no significant main effect or in-
teraction for order (all p values are >0.05). Thus this variable
was collapsed in the subsequent analyses. The interaction be-
tween the factors session X condition was significant, F(1 4) =
28.576, p = 0.006. A separate two-way ANOVA (session x con-
dition) was therefore performed, followed by Tukey’s post-hoc
test. The results (Figure 2A) showed that in the experimental
session, monkeys looked significantly longer at the incongru-
ent events (mean = 43.26 = SD = 10.12) than at the congruent
events (24.76 + 7.42), p = 0.001. A sign test confirmed that all
monkeys (100%) behaved the same way (p = 0.031). This dif-
ference, however, didn’t reach significance during the control
session, p = 0.692; sign test, n.s. (Figure 2B).

Because it is known that monkeys use gaze information as
an indicative behavioral cue (see [14] for a review), we com-
pared the amount of time monkeys spent looking at the exper-
imenter’s face (see the Supplemental Data) when congruent
and incongruent events were observed. Results from the
two-way ANOVA (session X condition) showed that only the
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Figure 2. Looking-Time Analysis in Experiment 1

Conditions

(A and B) Shown are the normalized mean looking-time = SEM directed to the motor events area of interest (AOI) in the experimental session (A) and in the

control session (B).

(C and D) Shown are the normalized mean looking-time = SEM directed to the face AOI in the experimental session (C) and in the control session (D).

*p < 0.05.

main condition factor was significant, F; 5)=15.222, p = 0.011.
Results from Tukey’s post-hoc test demonstrated that mon-
keys looked longer at the experimenter’s face during incongru-
ent events than during congruent ones, p = 0.011. We further
explored the looking time with a sample-paired t-test for
both the experimental and control sessions. The results
showed that during the experimental session, monkeys
explored the experimenter’s face significantly more when
she performed incongruent actions (18.45 + 11.65) compared
to when she performed congruent actions (7.18 = 4.47),
t(5) = 3.496, p = 0.017 (Figure 2C). No significant differences
emerged during the control session, t(5) = 1.41576, p = 0.216
(Figure 2D).

Experiment 2

In experiment 2 (Figure 1), we investigated the influence of the
goal directedness of the experimenter’'s movements on the
modulation of the monkeys’ looking time. To this purpose,
we familiarized the monkeys (n = 6) to the observation of
a non-goal-related curvilinear trajectory of the experimenter’s
arm in which she brought her hand above the obstacle and
stopped it in a fist posture above the target object without
touching it (see Movie S5). In the following two test events,
the obstacle was removed. In one test event (trajectory con-
gruent with the physical context), the experimenter moved
her hand toward the target object by following a novel
straight-line trajectory and stopped it in a fist posture without
touching it (see Movie S6). In the other test event (trajectory in-
congruent with the physical context), this movement was exe-
cuted by following a curvilinear path identical to the one per-
formed during the familiarization trial to bypass the obstacle
(see Movie S7). If the monkeys’ appreciation of means-ends

adequacy depended on their sensitivity to the goal relatedness
of observed movements, the absence of a concrete goal
shouldn’t evoke any attentional enhancement during the ob-
servation of incongruent hand trajectories. A one-way ANOVA
showed no difference between the amount of looking-time dur-
ing the familiarization condition of both experiment 2 and ex-
periment 1 (experimental session) (F(1,10) = 1.182, p = 0.302).
Two separated repeated-measures ANOVAs showed no main
effect of condition on the amount of looking time during both
test events, F(; 5 = 3.514, p = 0.119 (Figure 3A) and on the
amount of looking time directed to the experimenter’s face dur-
ing test events observation, F(; 5= 0.341, p = 0.585 (Figure 3B).

Experiment 3
In experiment 3 (Figure 1), we explored whether the evaluation
of the action’ s efficiency in a certain context is extended to
goal-related motor acts the monkeys most likely never ob-
served before and certainly never executed, such as lifting
an object with the thumb. To this purpose, monkeys (n = 5) ob-
served the actions of a human experimenter who had a piece
of Velcro wrapped around the tip of her thumb. They were first
familiarized to the observation of the experimenter moving her
hand above an obstacle to contact and lift the target object
(the same one used in experiment 1) with the thumb (see Movie
S8). In the following test events, the obstacle was removed. In
one test event, the experimenter contacted and lifted the ob-
ject by following a novel, straight-line trajectory (see Movie
S9), whereas in the other test event the experimenter executed
this action by following a curvilinear path identical to the one
monkeys had been familiarized with (see Movie S10).

If the observation of any goal-directed motor act automati-
cally triggered a particular sensitivity to its efficiency within
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a given context, then watching a human agent achieve her/his
goal through an inefficient trajectory should provoke a reliably
greater attentional enhancement than would watching her/him
following a path congruent to the context (see results of exper-
iment 1). On the other hand, if the appreciation of the means-
ends adequacy was restricted to the goal-directed motor
acts previously practiced by the monkey, the observation of
unfamiliar goal-related motor acts shouldn’t evoke any atten-
tional enhancement even when following incongruent trajecto-
ries. A one-way ANOVA showed no difference between the
amount of looking time during the familiarization condition of
experiments 3 and 1 (experimental session), (F(1,) = 0.010,
p =0.920). Two separated repeated-measures ANOVAs showed
no main effect of condition on the amount of looking time dur-
ing both test events, F(y 4) = 6.796, p = 0.596 (Figure 4A) and on
the amount of looking time directed to the experimenter’s
face during test-event observation, F(; 4) = 0.402, p = 0.560
(Figure 4B).

Finally, in order to compare the results of experiments 1 and
3, a crossexperiment mixed-design ANOVA with experiment
(experiment 1, experimental session; experiment 3) as a be-
tween-factor and condition (congruent or incongruent) as
awithin-factor was conducted. Results yielded a significant in-
teraction between experiment and condition, F g = 11,565,
p = 0.008. Results from Tukey’s post-hoc test showed that in
experiment 1 (experimental session), monkeys looked signifi-
cantly longer at the incongruent events than at the congruent
ones (p = 0.0003), whereas no significant differences occurred
between those two conditions in experiment 3, p = 0.132.
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Figure 4. Looking-Time Analysis in Experiment 3

Conclusions

Results from experiment 1 show that macaque monkeys, sim-
ilar to 9- to 12-month-old human infants, detect the goal of an
observed motor act and, according to the physical character-
istics of the context (position of the obstacle), construe expec-
tancies about the most likely action the agent will execute in
a given context and therefore react differently to the same
goal (object grasping) when accomplished by different means
(type of hand trajectory). Monkeys’ sensitivity to means-ends
adequacy was further corroborated by their longer exploration
of the experimenter’s face in the experimental incongruent
condition. It could be hypothesized that when the experi-
menter started to execute motor acts that violated the
expected means-ends adequacy that monkeys tried to dis-
ambiguate the situation by searching for additional cues
such as exploring experimenter’s gaze direction and/or facial
expression.

How do the present data relate to the evidence of Gergely
et al. [1] on human infants given that our paradigm was mod-
eled on theirs? Csibra and Gergely [2] proposed that the devel-
opment in ontogeny of a full-blown, mentalistic intentional
stance [15] is preceded by a nonmentalistic teleological stance
based on a similar rationality principle applied to factual reality
and not on mental states. Teleological reasoning is described
as a “normative evaluation of actions based on the principle of
rational action, which allows for the assessment of the relative
efficiency of the action performed to achieve the goal within
the situational constraints given” [16]. According to the teleo-
logical hypothesis, revolving around an emerging theory of
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rational action, infants assume that agents pursue their goal in
the most efficient manner available given the constraints of
reality. Thus, 9- and 12-month-old infants refer to this interpre-
tational system to attribute goals to humans [4] as well as to
nonhuman [1-3] agents.

The results of our experiment 1, in spite of the different types
of stimuli employed, show an apparent similarity with those
obtained by Gergely et al. [1]. Experiment 2 demonstrates
that macaque monkeys’ evaluation of the action mean em-
ployed in a certain context strictly depends upon the achieve-
ment of a goal state (e.g., a motor act producing an observable
change in the state of reality). Just like 12-month-old human
babies observing actions directed to an absent target object
[4], our results show that when no interaction exists between
effector and target object with the resulting lack of causal
effect in reality, the evaluation of the observed motor act’s fit-
ness to the physical constraints of its context becomes impos-
sible.

The results of our first two experiments demonstrate that
macaque monkeys pay attention to the relation between the
observed motor acts and their observable outcome within
the constraints of a certain context (see also [17]). The results
from experiment 3, though, reveal that the specific sensitivity
to means-ends adequacy disappears when the goal-related
behavior and its end state are unfamiliar to the observing mon-
keys. However, given that the action in experiment 3 was both
visually unfamiliar and absent from monkeys’ action reper-
toire, our data do not enable us to firmly establish whether
the monkeys’ failure to see the observed action as goal di-
rected was due to either a lack of motor or perceptual familiar-
ity. Both hypotheses are, in principle, equally possible. The
issue of whether motor training or extensive perceptual expo-
sure would allow monkeys to extract the action’s goal remains
to be assessed through future experiments. Nevertheless, we
think that evidence both from monkeys and humans makes it
reasonable to propose the “lack of motor expertise” hypothe-
sis as a viable option. Let us see why.

Single neurons recording studies in macaque monkeys re-
vealed the existence of a class of motor neurons (mirror neu-
rons) that discharge during both the execution and the ob-
servation of goal-directed motor acts [18, 19]. It has been
proposed that the mirror neuron system (MNS), by matching
observed, implied, or heard goal-directed motor acts on their
motor representation in the observer’s motor system, allows
a direct form of action understanding through a mechanism
of embodied simulation [20].

Recent neurophysiological studies have reported that a par-
ticular class of ventral premotor mirror neurons starts to re-
spond to the observation of unfamiliar actions after extensive
visual exposure to them [21] or after motor training [22]. The re-
sults of both experiments seem to suggest that when an action
performed by others becomes familiar, independently from the
perceptual or motor source of its familiarization, it is neverthe-
less always mapped onto the motor representation of a similar
goal (to take possession of an object) belonging to the ob-
serving individual (on the impact of visual familiarity on motor
representations, see also [23, 24]).

A similar MNS involving homolog cortical areas has been
discovered in the human brain [18]. Even more strikingly, sev-
eral brain-imaging studies have shown that the intensity of the
MNS activation during action observation depends on the sim-
ilarity between the observed actions and the participants’
action repertoire [25-30]. In particular, one fMRI study [27] fo-
cused on the distinction between the relative contribution of

visual and motor experience in processing an observed action.
The results revealed greater activation of the MNS when the
observed actions were frequently performed with respect to
those that were only perceptually familiar but never practiced.
Finally, it has been shown that motor familiarity, but not
perceptual familiarity, influences the capacity of 3-month-old
infants to extract goals from observed actions [5].

Our study does not provide direct evidence about the neural
mechanisms underpinning the present results. However, we
believe that a plausible explanation could be that macaques
evaluate the observed human acts by mapping them on their
own motor representation through the activation of the MNS.
Furthermore, we propose that the monkeys’ experience in pro-
gramming and executing goal-directed hand motor acts within
certain contextual constraints would result in an automatic ac-
tivation of the very same neural clusters when observing a mo-
tor act that reflects a similar adequacy to the context [19]. It is
possible that when the monkeys are familiarized with an ob-
served motor act consonant with their motor repertoire (like
passing over an obstacle to grasp an object), its resulting em-
bodied simulation automatically drives the perception of the
other experimenter as a “like-me” entity [31], thus enabling
the observer to predict the trajectories of future actions in dif-
ferent contexts (see congruent and incongruent test events).
This, however, appears to be true only to the extent that ob-
served motor acts are familiar to the observer, whereas famil-
iarization with inadequate motor acts (experiment 1, control
session), non-goal-related movements (experiment 2), or unfa-
miliar goal-related motor acts (experiment 3) does not allow
any simulation and prediction.

One final point worth discussing is related to the possible
different level of complexity of the actions displayed in exper-
iments 1 and 3 as a potential source of the difference in results
obtained in these experiments. Yet, if the displayed actions are
parsed as a sequence of goal-related motor acts, both of them
appear to be composed of two sequentially chained motor
acts (“reach-to-grasp” in experiment 1 and “reach-to-lift” in
experiment 3), thus showing a similar level of complexity.

Let us finally turn to the relevance of our results to the ontog-
eny of action understanding. An increasing body of experi-
mental evidence shows that human infants develop early ac-
tion understanding abilities within the first year of life [32, 33]
and that the capacity to detect the goal of another’s action is
closely related to the infants’ prior motor experience [5-8]. Fur-
thermore, a recent study demonstrates that 3-day-old human
neonates [34], similar to other species of animals such as
chicks [35], show an inborn predisposition to attend to biolog-
ical motion. Such a mechanism has high evolutionary rele-
vance because it allows the act of recognizing the movement
of others in order to make an appropriate response [36]. Al-
though no strong evidence directly links human infants and
nonhuman primates’ ability to understand others as goal-ori-
ented agents to the natural tendency to attend to biological
motion, it seems reasonable to hypothesize that these two
abilities are grounded on a common implicit embodied mech-
anism. Such a mechanism might account for the phylogenetic
evolution of goal attribution [37, 38].

Taken together, our results suggest that nonhuman pri-
mates and human infants possess a similar ability to recognize
and evaluate the adequacy of goal-related behavior, which,
however, seems to operate at a broader level in infants. The
present evidence shows that perceptual and/or motor exper-
tise are important elements for the evolution of humans’ ca-
pacity of understanding the intentional behavior of others.
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We propose that the direct detection of the functional fithess
of action, in relation to goals that have become familiar, is
the phylogenetic precursor of intentional understanding.

Supplemental Data
Experimental Procedures, three figures, and ten movies are available online
at http://www.current-biology.com/cgi/content/full/18/3/227/DC1/.
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Abstract Although point-to-point reaching motions have 1 Introduction

received a lot of attention, the way these movements are
controlled remains incompletely resolved. Different con-
trollers seem to be recruited depending on the task. Un-
constrained reaching movements in space are strongly
curved, in opposition to the widely accepted view of
quasi-straightness. We argue that the curvature of the
movement is due to environmental constraints that af-
fect directly the planning of the movement.

We propose a mathematical model whereby move-
ments are planned through the combination of two con-
current controllers for the wrist and elbow in space. Co-
herence constraints are enforced between the two sys-
tems to simulate biomechanical constraints at the wrist,
elbow and shoulder levels. External constraints, such as
the presence of obstacles, are encapsulated in a virtual
force which affects the planning of the movement.

The predictions of the model are validated against
kinematic data from human reaching motions. Four types
were contrasted: intransitive versus transitive reaching
motions and natural versus un-natural motions. In the
un-natural case, subjects were requested to exaggera-
tedly elevate the elbow during the movement. In all four
movements types, the movements are highly curved. The
model renders with high accuracy the kinematics of the
movements and accounts for the curvature as an effect
of the virtual force.
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Much attention has been devoted to the study of point-
to-point reaching movements, most of which focused on
movements restricted to a plane. These studies high-
lighted several invariant features (Gibet et al 2004), such
as quasi-straightness of the hand path from initial and
target positions and the so-called bell-shaped velocity
profile (Morasso 1981). Soon, such simple rules were ques-
tioned when considering unconstrained motions instead
of the usual paradigm of constrained motions, or so-
called compliant motions (Desmurget et al 1997). Indeed,
the majority of the studies of point-to-point movements
were highly constrained and required subjects to hold
a hand-held cursor. Unconstrained motions, in contrast,
refer to free motions of the hand. Results from uncon-
strained studies show that the spatio-temporal charac-
teristics of compliant and unconstrained movements are
fundamentally different. (Desmurget et al 1997) showed
that movement duration was higher in the compliant
condition than for unconstrained movements. Further-
more, path curvature was significantly higher for uncon-
strained motions. Hence, compliant and unconstrained
motions involve different control strategies. Evidence sup-
ports the hypothesis that unconstrained motions are not
following a straight line but are slightly curved. This hy-
pothesis is further supported by (Boessenkool et al 1998)
who states that trajectory curvature is an inherent prop-
erty of unconstrained arm movements.

Another largely unresolved issue of motor control re-
lates to the redundancy of the arm joints. A simple way
to illustrate this is to consider the various postures that
the arm can adopt to touch the same target. Several
mathematical models have tried to answer this delicate
question. Choosing between describing the kinematics
of the arm in Cartesian coordinates or in joint angle
space is a thorny problem and evidence comes in sup-
port of either of the two representations depending on
the task (Flash and Hogan 1985; Rosenbaum et al 1995;
Torres and Zipser 2002). To overcome this problem, the



movements are often described more abstractly in terms
of a global measure. This measure encodes the cost of
each movement and the optimal movement is the one
that minimizes this cost function. Cost functions may be
defined using either kinematics or dynamic information
on the movement.

Cost functions based on kinematic information deal
with geometrical and temporal information: position, ve-
locity, acceleration, etc. In (Flash and Hogan 1985), the
cost function is defined as the square of the magnitude of
the jerk (rate of change of acceleration) integrated over
the entire movement. The minimum jerk model generates
smooth hand trajectories which are straight and follow
a bell-shaped velocity profile.

Cost functions based on dynamic information depend
on the forces acting on the hand and arm. The mini-
mum torque change model (Uno et al 1989) proposes as
measure of performance the square of the first deriva-
tive of the torque integrated over the entire movement.
In (Uno et al 1989) the model was compared to the
minimum jerk model for unconstrained horizontal move-
ments between two targets located in the sagittal plane.
It was shown that the minimum torque change model
and minimum jerk model were both predicting straight
hand paths. However, for trajectories starting with the
arm stretched sideways, the two models gave very differ-
ent predictions. The minimum jerk model still predicted
a straight-line hand paths whereas the trajectories pre-
dicted by the minimum torque model were gently curved,
and thus more similar to observed human motion.

Other methods have been proposed to model the arm
trajectories. Harris and Wolpert proposed the minimum
variance theory (Harris and Wolpert 1998). Their model
is based on the physiological assumption that the control
signal is corrupted by noise. In the presence of this noise,
the shape of the hand trajectory is selected so as to min-
imize the variance of the final arm position. In (Ogihara
and Yamazaki 1999), the authors take a very different
approach. They modeled the nervous system as a recur-
rent neural network. Given a goal position, the modeled
nervous system was able to generate muscular activa-
tion signals used to move the hand to the target posi-
tion. An interesting feature of this model is its ability to
model the position of the whole arm. Most of the models
presented previously were dealing mainly with the hand
trajectory. A method has been proposed in (Kang et al
2003) to model the arm with its 4 DOFs. The arm tra-
jectory is decomposed into intermediate positions. The
model solves the joint angles for these positions by mini-
mizing the sum of absolute value of all joints’ torque work
in each sub-path (trajectory between two via-positions).
Their model unfortunately showed poor results for the
adduction/abduction angle of the shoulder. Following
this same idea, Gu et al. proposed the equilibrium point
based model (Gu and Ballard 2006). The human arm

motion can be seen as a sequence of short motion seg-

ments. Movements are generated by gradually shifting
from one segment position to the next.

The models we have reviewed in the previous para-
graphs are mostly dealing with compliant gestures or are
modeling solely the hand path. Few of those have been
designed to predict the evolution of movement of the
entire arm, from start to target. In the present paper,
we propose a method for generating the position of the
entire arm for point-to-point motions. Further, since the
elbow and hand locations are known, the whole arm con-
figuration is determined, we model the control of the arm
trajectory with two concurrent dynamical systems driv-
ing the hand and elbow separately, but coupled through
kinematics constraints. We extend the biologically plau-
sible VITE model (Bullock and Grossberg 1988), that de-
scribes a dynamical system to generate straight point-to-
point trajectories in the Cartesian space. The extended
VITE model we propose accounts for the observed cur-
vature of the movement. Note that an extension of the
VITE model that generate curved writing movements
has already been proposed (Bullock et al 1993). The ex-
tension consisted in running three coupled VITE con-
trollers to control the x-, y- displacements and wrist
rotation of the hand, respectively. The curvature was
the result of initiating each model at different start-
ing times. An important disadvantage of this approach
to model point-to-point movement is that it required a
series of multiple arbitrary targets for each curvature
change, which is not the case with the EFF-VITE model.

In order to validate the model, we conduct motion
studies, in which unconstrained reaching motions are
generated. Most of the literature has focused on the study
of reaching movements directed at a target (Atkeson
and Hollerbach 1985; Desmurget et al 1997; Magescas
and Prablanc 2006). To determine if the curvature of
the movement results from generating transitive (i.e. di-
rected to a target) versus intransitive movements, we
contrast two conditions in which subjects either reach
for an object or do a reaching motion directed to no
particular location on a table. We hypothesized that in
both conditions the trajectories would be curved and ar-
gue that this curvature is necessary and fulfills two main
goals: to avoid uncomfortable arm postures (for exam-
ple, it is more natural to extend the elbow to the right
during the motion than keeping a purely straight trajec-
tory) and to encapsulate environmental constraints such
as the presence of the table.

Furthermore, in order to better understand how the
central nervous system manages to decouple the control
of the upper and lower arms, when forced to do so, we
investigated the kinematics of motion in which the elbow
was forced to follow a trajectory more elevated than that
found during natural reaching movements. (Koshland
et al 2000) showed that, reaching during movements,
the wrist exhibited similar characteristics as the prox-
imal joints, demonstrating a coupling among the joints.
We thus expected the curvature of the trajectories of



the wrist also to increase as an effect of the exaggerated
elevation of the elbow.

In Section 2 we describe the dynamical systems driv-
ing the elbow and wrist motions and explain how co-
herence constraints between the wrist and elbow are en-
forced in the model. Section 2.2 describes the experi-
mental set-up and procedure followed during the motion
studies. A comparative analysis of the model’s predic-
tions and human data is done in Section 3, followed by
a discussion of the model’s biological plausibility.

2 Materials and Methods
2.1 Description of the model

Our proposed approach is based on an extension of Bul-
lock and Grossberg’s Vector Integration To Endpoint
(VITE) model (Bullock and Grossberg 1988). The VITE
model is a biologically inspired model that can only gen-
erate straight point-to-point trajectories. Contrary to the
VITE model, the extended force-field version of the VITE
model (EFF-VITE) can account for curved reaching move-
ments, and can be used to model both the trajectories of
the hand and elbow. Compared to the VITE model, the
EFF-VITE model is time-independent and thus stable in
case of long lasting perturbations. Furthermore, it repre-
sents a proper force governed system. In the EFF-VITE
system, the trajectory of the hand or elbow is governed
by the following dynamical system:

B(t) = a(—i(t) + Bg(t)’ (h(t) + 7)( 2= () — z(1)]
+g(OF () (1)

and
F(t) = g(t)ju+ h(t)v @
where

- |z () — =)
g(t) = lx(t) — z(0)]| + ||l=*(t) — =(t)]|
) — () —z(0)]]

[2(t) = z(0)[| + [lz*(t) — = ()|

are respectively the ratios between the distance separat-
ing the hand from the final target position z* and the dis-
tance separating the hand from the initial position z(0)
over their total. The force F helps to comply with envi-
ronmental constraints due to the volume and geometry
of the body. F is the weighted sum of two constant force
vectors that push the trajectory away from the straight
line. u is the modulated force that perturbs the begin-
ning of the movement, whereas v perturbs the end of
the movement (Figure 1). The parameter a € Rt was
fixed to a constant value. Parameters 3, v and ¢ control
the general form of the velocity profile. 3 controls the

asymmetry and peak value of the velocity profile. v en-
ables the initiation of the movement, and § controls the
final approaching phase of the movement and parameter-
izes the trade-off between precision and execution time.
For example, lowering the value of ¢ shortens the move-
ment deceleration phase but also increases the risk of
overshooting the target position (Figure 2). The role of
the parameters will be further discussed in Sections 3.2.2
and 3.2.3.

An arm configuration corresponds to a particular po-
sition in space of both the wrist and elbow. In the duo-
EFF-VITE model, two concurrent EFF-VITE models
are modeling the hand and elbow paths. As the hand and
elbow are linked, these two systems are not independent.
Hence, coherence constraints must be enforced in order
to have a meaningful representation of the movement.
Figure 3 presents the overall structure of the duo-EFF-
VITE model. The outcome of the model is the position
of the hand and elbow in the Cartesian space at each
time step.

Let x4 and xe be the position of the wrist and el-
bow in the 3D space where the origin is centered on the
shoulder. The position of the arm is such that:

|[xe|| = L1 (3)
and
|[xe = Xwl|| = L2 (4)

where L1 and Lo are respectively the length of the upper-
arm and forearm , and ||.|| defines the vector norm.

Let xw9(t) and x.%(t) be the desired position of the
wrist and elbow given by the EFF-VITE models at each
time step t. In general, the variables x,? and x¢? will
not be consistent with kinematic constraints. In order to
have consistent values, we find the values xy* and x¢*
that minimize the similarity measure H:

d
|

()

H(xw™,Xe") = [|xXw" — deH +|[xe™ — Xe

under constraints given by equations (3) and (4).
The problem is solved analytically by using Lagrange
optimization. We define the Lagrangian as:

L(xw" Xe", A1, A2) = H + AT (|[xe*|| — L)

+ A3 (Ilxe™ = xw |l = L2)  (6)

oL .
Oxe* "

= xw?) + Dol [xe” — x| (" = %) =0 (7)
2(xe* — ) + A1 ||xe™| | 1xe
+halxe” — xw || 7 (k" = xw) = 0 (8)

We thus need to solve the following system:

To solve VL = 0, we derive respectively 762]; =,

2(xw "

2(Xw* — Xw?) + Aa|[Xe* — X || T H(Xw — Xe¥) =0
2(xe* — Xeb) 4+ A1 |[xe*|| T xe*

Fho|[Xe® — Xw || T H(Xe® — Xw*) =0

||Xe*H —Li=0

[|xe* — xw*|| = L2 =0
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Fig. 1 Dynamics of the movement as a function of the force parameters. A: Forces are modulated such that u affects mostly
the beginning of the movement and v mostly the end of the movement. The direction of the deviation from the straight
trajectory is determined by the sign of the force. B: By combining the two forces u and v, trajectories that change direction
can be obtained. Pararameter values: a = 50, 8 = 10, v = 0.01 and 6 = 1.
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Fig. 2 Effect of the parameters v, 8 and & on the speed profile of the movements. The parameters v (left) affects the
beginning of the movement. The lower its value, the more time it takes the subject to start a movement. 8 (middle) controls
the asymmetry and peak value of the velocity profile (o in our model is constant). § (right) defined the approaching speed
and thus parameterizes the trade-off between precision and execution time. In the rectangle, one can see the arm reaching
the target too quickly and overshooting it at § = 0.6. Parameter values: « = 50, 8 = 10, v = 1.5, v = 0.01 and 6 = 1.

(9)

As the system has several solutions, we choose the solu-
tions Xy, Xe* € R that minimize H. As the system is
non-linear due to the presence of the norm, solutions are
found numerically.

2.2 Experiments

Subjects Eight healthy subjects (4 females, 4 males, mean
age 26 +4) volunteered to perform a one-handed task
consisting of point-to-point motions. All subjects were

musculo-skeletal disorder. All had normal or corrected
to normal vision.

Procedure Subjects sat comfortably on a chair in front
of a table. They were asked to maintain a steady trunk
position all along the recording session. Each hand move-
ment started in the same rest position, with the forearm
lying on the table and perpendicular to the trunk (Fig-
ure 4, left). Subjects were shown the movements by a
demonstrator. There were two conditions. In the first
condition, movements were directed towards an object
placed 30 cm away from the subject in the sagittal plane
(Figure 4, right). In the second condition, subjects had

right-handed (Edinburgh Handedness Test, Oldfield (1971))to reach in front of them and land their hand palm-down

They were all naive regarding the purpose of the ex-
periment. They reported no history of neurological or

on the table. No location on the table was specified in
this second condition. We refer to these two conditions



EFF-VITE model

EFF-VITE model

—> in Cartesian space in Cartesian space €—
for the hand path for the elbow path
d
Xw
desired hand position d
XC
desired elbow position
Coherence constraint:
Kinematic constraints
at the arm level
k *k
Xw Xe

hand position after coherence constraints

elbow position after coherence constraints

Fig. 3 The wrist-and-elbow path controller: The first EFF-VITE model (on the left) models the trajectory of the wrist
in cartesian coordinates, whereas the second EFF-VITE model is used to model the elbow path in cartesian space. The
coherence constraints ensure the desired positions x% and x¢ given by the EFF-VITE models are consistent relative to
kinematic constraints. The modified values after coherence constraint for both the wrist and elbow positions, x}, and x}, are

fed back to the EFF-VITE models.

Subject in the rest position

Target

| Sagittal plane

| Target

30 cm

i Subject in the rest position

Fig. 4 Left: Experimental set-up seen from the right side with the subject in the rest position. Right: upper view of the
set-up showing the position of the target when subjects performed transitive motions.

respectively as transitive (Trans) and intransitive (In-
trans) movements in the rest of the paper.

For each condition, the subjects were instructed to
perform two variants of the movements. In the first vari-
ant (so-called “Elb”), the subjects were asked to exagge-
ratedly elevate the elbow throughout the motion. In the
second variant (so-called “Norm”), subjects were asked
to perform motion in the way that seemed most natural
to them. Movements were thus of four types: intransi-
tive with normal kinematics (Intrans Norm), intransi-
tive with an exaggerated elevation of the elbow (Intrans
Elb), transitive with normal kinematics (Trans Norm)
and transitive with an exaggerated elevation of the el-
bow (Trans Elb). Figure 5 presents snapshots of the
four types of reaching movements.

Subjects were shown several times each movement
types. Additional explanation was given when necessary.
The subjects were instructed to replicate as precisely as

possible these movements. A series of five movements for
each condition and variant was recorded for each subject
(Table 1).

Data acquisition The trajectory in space of the shoul-
der, elbow and wrist were recorded by using a kinematics
recording system formed by three ProReflex MCU1000
cameras (QUALISYS AB, Sweden) detecting the 3D po-
sition of infrared reflecting markers (n=4) positioned on
the left and right shoulders, right elbow and right wrist.
The position of the markers was recorded at a frequency
of 200 Hz during the execution of the movements. Fig-
ure 6 presents one subject wearing the markers as well
as the shoulder-centered frame of reference used in the
following of the paper to calculate wrist and and elbow
trajectories.



Intrans Norm Intrans Elb

Trans Norm Trans Elb

Fig. 5 Snapshots of the four gesture types. From left to right: Intransitive action with normal kinematics and with an
exaggerated elevation of the elbow. Transitive movement with normal kinematics and with an exaggerated elevation of the
elbow. One can see that for the “Elb” variant the elbow position is always higher than for movements performed with normal

kinematics for both the “Intrans” and “Trans” conditions.

Subjects

Repetitions

Recording sessions

8 5 X 4 gesture types 1

Table 1 Statistics of the database.

Z1

Shoulder,
X1

Elbow

Wrist

Fig. 6 Left: subject wearing markers on the right arm (markers are surrounded by red squares). Right: shoulder-centered

frame of reference.

Data analysis All analyzes were performed using the
Qualisys Track Manager (QUALISYS AB, Sweden) soft-

ware, plus some custom programs written in Matlab (Math-

works, Natick, MA). Analysis was done solely on the rea-
ching phase of each movement (from the rest position to
the target location in the case of transitive movements,
and from the rest position to the hand placement on the
table in front of the subject for intransitive movements).
Data were first segmented manually to remove any irrele-
vant movement prior to the onset of the reaching motion.
We used only unfiltered raw values. The curvature index
is computed as the ratio between the total arc length
of the path and the Euclidian distance between the ini-
tial and final positions. A curvature index of 1 indicates a
perfectly straight trajectory whereas a semi-circular path
would have a curvature index of CI = 7 /2. The values
of the model’s parameters were optimized for each trial
using 53 factorial experimental designs coupled with a lo-
cal search procedure (Neter et al 1996; Hoos and Stiitzle
2004).

3 Results
3.1 Movement statistics

We first assessed the general characteristics of the recorded
movements. For each movement type (Intrans Norm, In-
trans Elb, Trans Norm, and Trans Elb), we computed
the duration of the movement, path length and curva-
ture index of the wrist and elbow on average across the
8 subjects and 20 trials (Table2).

Consistent with (Bernstein 1967)’s observations of
substantial trial-to-trial variations, a three-way ANOVA
analysis across subjects (eight levels), conditions (intran-
sitive, transitive) and variants (elbow normal, elbow el-
evated) revealed a high inter-subject variability for both
the duration of the movements, the length of the wrist
path and the curvature index (p < 0.001), with a sig-
nificant interaction effect for the subject/condition and
subject/variant factors (p < 0.01 in each case, see Ta-
ble 2). This high across subjects variability in perform-
ing the same motion is illustrated in Figures 7 and 8.
Subject 9 tended to be very consistent across trials and



Duration (s)| Path length (cm) Curvature index Elbow elevation (cm)
Wrist Elbow Wrist Elbow
Intrans Norm 0.89 £ 0.28 |25.3 + 3.3|26.7 £ 3.5|1.16 £ 0.10|1.19 £+ 0.06 -15.0 £ 2.3
Intrans Elb 1.11 £0.28 |31.8 £5.7|37.2 £ 9.6|1.54 + 0.28 | 1.52 £+ 0.26 -7.0 £ 2.8
Trans Norm 0.84 £0.19 |22.5 £ 3.0{23.0 £3.1|1.16 £ 0.09|1.16 &£ 0.05 -159 £ 2.0
Trans Elb 1.14 £ 0.22 |31.8 £ 6.2|34.9 £ 81|1.61 + 0.45]1.47 = 0.26 -6.4 £24
p-value (sub.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond.) n.s. < 0.003 | <0.001 n.s. < 0.02 n.s.
p-value (var.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (sub*cond) | < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 < 0.001
p-value (sub*var) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond*var) < 0.006 < 0.002 n.s. n.s. n.s. < 0.001

Table 2 Duration, path length, curvature index and elbow elevation across trials and subjects. Three-way ANOVA showed
that the movements performed with an exaggerated elevation of the elbow lasted longer, had a longer path for both the
wrist and elbow and were significantly more curved than movements with normal kinematics. Furthermore, the recorded
movements differed significantly accross subjects in their duration, path length, curvature index, and elbow elevation. The
maximal height of the elbow during the movement was also significantly different accross the two motion variants.
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Fig. 7 Mean wrist trajectory (in black) and standard deviation envelope (in grey) for a transitive movement with an
abnormal elevation of the elbow (Trans Norm) showing a small intra-variability for Subject 9.

displayed a low across trials variability of the wrist’s mo-
tion (Figure 7), whereas Subject 5 displayed an overall
much higher variability for the same motion (Figure 8).
Given that the subjects had different arm lengths, the
length of the wrist path varied importantly across sub-
jects, especially in the intransitive case (see table 2).

All movements were curved (CI > 1). Most impor-
tantly for the argument of this paper, both the trajectory
of the wrist and of the elbow were curved. The curvature
is even more important for movements performed with
an exaggerated elevation of the elbow (CI > 1.6). As a
result, movements performed with an abnormal elevation
of the elbow in both conditions (Intrans versus Trans)
take significantly more time and are longer than move-
ments performed with normal kinematics. Moreover, in-
transitive motions were significantly longer than transi-
tive motions. This is likely due to the rotation of the wrist
that occurs during intransitive motions (to place the
palm down on the table), particularly when the move-
ment is performed with an exaggerated elevation of the
elbow (first two images in Figure 5).

3.2 Accuracy of the model

We measured the accuracy of the model to reproduce
each instance of each motion type. We computed the

mean deviation (MD) of the predicted wrist and elbow
trajectories compared to the wrist/elbow trajectories at
each time step, as well as the mean squared error (MSE)
for each condition and variant of the movements. Table 3
provides these values for each gesture type. We also per-
formed a three-way ANOVA analysis on these results for
the subject, condition and variant factors. These results
show no significant influence of either factor on the MSE
for the wrist. For the elbow, the ANOVA analysis reveals
a significant difference between the two motion variants
(F=4.52, p < 0.04). However, the error is small and can
be explained by the high variability of movements per-
formed with an exaggerated elevation of the elbow (Elb
variant).

Thus, overall, the model reproduces motions with
high accuracy. It encapsulates the generic shape of both
the trajectory in space and the speed profile of the wrist
and elbow (Figure 9). 81% of the data for the wrist and
79% of the observed data for the elbow are reproduced
by the model with a MSE inferior to the mean MSE. 3 to
4% of the errors are due to outlier data whereas another
53% are due to a poor reproduction of the start and/or
end of the trajectory (Figure 10).

This is due to the fact that, like the original VITE
model, the duo-EFF-VITE model, pre-supposes a smooth
and gradually increasing and decreasing speed profile at
the start and end of the movement, respectively. Because
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Fig. 8 Mean wrist trajectory (in black) and standard deviation envelope (in grey) for a transitive movement with an
abnormal elevation of the elbow (Trans Norm) showing a high intra-variability for Subject 5.

MD (cm) MSE (cm?)
Movement Wrist Elbow Wrist Elbow
All motions 1.1+£07 1.1 £0.7|] 1.26 £ 5.16 1.09 £ 3.23
Intrans Norm 0.9 £ 0.5 0.9 £ 04| 0.76 = 1.32 0.65 & 1.21
Intrans Elb 1.3+04 1.34+0.5] 1.22+0.86 1.15 4+ 1.04
Trans Norm 08+04 0.74+04]| 048 £0.86 0.46 + 1.05
Trans Elb 1.3+ 1.1 1.4+1.0([2.58 + 10.10 2.09 £ 6.08
p-value (sub.) < 0.02 <0.002 n.s. n.s.
p-value (cond.) n.s. n.s. n.s. n.s.
p-value (var.) < 0.001 < 0.001 n.s. < 0.04
p-value (sub*cond) n.s. n.s. n.s. n.s.
p-value (sub*var) n.s. n.s. n.s. n.s.
p-value (cond*var) n.s. n.s. n.s. n.s.

Table 3 Mean Deviation (MD) and Mean Squared Error (MSE) for the duo-EFF-VITE models on the trajectories of the
wrist and elbow for each gesture type. We also provide three-way ANOVA results across subjects, movement conditions,

variants, and interaction of these factors for each error type.
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Fig. 9 Examples of movements well reproduced by the duo-EFF-VITE model.The trajectory of the subject’s wrist (dotted

line) and the modeled trajectory (black) are presented on top.

data were segmented manually, the speed profile was
sometimes truncated and hence did not follow the typi-
cal pattern. Furthermore, some data present an atypical
curvature at the start or end of the movement, due to
hesitations on the subjects’ parts. Because these impre-
cisions were minor and did not affect the generic charac-
teristics of each motion (curvature and overall 3D spatial
displacement), which we wanted the model to encapsu-
late, we did not eliminate the data.

3.2.1 Statistics of the model’s parameters

A three-way ANOVA across subjects, conditions and vari-
ants, on the values taken by the force parameters of the
model reveals that, while for the same subject the pa-
rameters for the wrist and elbow motions are consistent
across conditions and variants, they vary importantly
across subjects (see Tables 5 and 6). An effect of the
variant (Norm versus Elb) is observed for the parameters
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Fig. 10 Examples of movements poorly reproduced by the duo-EFF-VITE model. The trajectory of the subject’s wrist
(dotted line) and the modeled trajectory (black) are presented on top.

driving the elbow and this accounts for the variability
with which subjects produced the required exaggerated
elevation of the elbow (variability is expected given that
the arm moved in an unconstrained manner).

We also computed the intra-subject variability of the
wrist controller for movements with normal kinematics
(Tables 8 and 9). We see that some subjects are more
consistent in their movements than others, for both the
force applied on the wrist and the parameters modulat-
ing the speed profile. This is particularly true for Sub-
jects 6 and 8. This confirms the information contained
in Figures 7 and 8, and is consistent with the general
observation of a high inter-subject and inter-trial vari-
ability when performing the same motion, as discussed
above and revealed in Table 2.

3.2.2 Meaning of the model’s parameters

The parameters 3, v and § in Equation 1 control the ve-
locity profile of the movement. A two-way ANOVA shows
that # and ~ are similar across conditions and subjects
(Table 4 in Annex) for the wrist controller. 8 controls the
asymmetry and peak value of the velocity profile and ~
determines the onset of the movements (Figure 2). As
any irrelevant movement prior to the onset of the rea-
ching motion has been manually removed, it is expected
that v takes a similar value across subjects and condi-
tions. ( is not significantly different across subjects, con-
ditions and variants. Trajectories of the wrist thus follow
the same velocity profile for both conditions (Intrans ver-
sus Trans) and variants (Norm versus Elb). § controls the
approaching speed of the movement. Together with 3, §
determines a trade-off between overshooting the target
and minimizing the execution time. Figure 11 presents
the distribution of the values for 4 and ¢ for all move-
ments. We see that the values are comprised within a
region that minimizes execution time while ensuring a
good precision of the movement.

3.2.8 Effect of the forces

We have already seen in Table 2 that the trajectories of
both the wrist and elbow are curved. This curvature is
accounted for by the values taken by the force parameters
of the model (Tables 5 and 7). For each condition and
variant of the movement, a non-null force is applied on
the wrist and elbow. While one could have performed a
straight-line motion in the normal condition, it is obvious
that a straight path controller could not be envisioned
for movements performed with an exaggerated elevation
of the elbow. And, as expected, we observed larger val-
ues for the force parameters in the Elb variant of the
movement.

The force applied along the x and y axes can also be
related to the environmental and geometric constraints
implied by the task. In our experiments, subjects sat on
a chair with the body close to the table, the forearm rest-
ing on the table (Figure 6). To perform the movement,
subjects needed to avoid the table (“table avoidance”
constraint). To satisfy this constraint, the arm had to be
placed above the table. Since the elbow is linked to the
trunk by the upper-arm, all the possible positions of the
elbow are located on a sphere centered on the shoulder
and of radius the length of the upper-arm. Thus when
the elbow tries to avoid the table, the elbow is also pulled
away from the body along the x- and y-directions. Forces
applied on the x- and y-axes are thus explained by the
geometry of the body as well as the environmental con-
straints (“table avoidance”).

The force along the z-axis (u, and v,) is close to zero
in the ”Norm” variant.However, in the "Elb” variant, the
force along the z-axis at the end of the movement (v,)
(Table 7) is significantly higher (F=254.3, p < 0.001),
with a mean value close to 1, so as to pull the elbow up
during the motion. This effect is illustrated in Figures 13
and 12.
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Fig. 12 Example of the force F. applied on the elbow for an intransitive movement with normal kinematics. From left to

right: projection in the xy-, xz- and yz-planes

Fig. 13 Example of the force F. applied on the elbow for an intransitive movement with an abnormal elevation of the elbow.

From left to right: projection in the xy-, xz- and yz-planes

8.2.4 Separate controllers for wrist and elbow

As the elbow and wrist are linked by the forearm, the
curvature of the hand path for movements performed
with normal or exaggerated elevation of the elbow can
be seen as a side effect of the elbow itself. Such correla-
tion is revealed by looking at the Pearson coeflicient be-
tween the forces ! F,, and F. (Equation (2)) applied on
the wrist and elbow. These coefficients are respectively:

1 The Pearson coefficient is the sum of the products of the
normalized values of the two measures divided by the degree
of freedom. The Pearson coefficient ranges from +1 to -1. If
p = 0, then there is no linear relationship between the two
variables. On the contrary, if |p| = 1, then there is a perfect
linear relationship between the two variables.

p(x) = 0.70, p(y) = 0.74, and p(z) = 0.18, where p(x),
p(y), and p(z) are the Pearson coefficients along the x-, y-
and z-axis, respectively. These results show that there ex-
ists a strong correlation between the force applied on the
wrist and elbow along the x- and y-axis. The curvature
of the wrist trajectories along the x- and y-axis is thus a
side-effect of the elbow motion, and would contribute to
confirm a view in which elbow and wrist are controlled
by a single controller. In contrast, the wrist and elbow
seem to be quasi-independent along the z-axis. This in-
dicates that for the Elb variant of the movements, an
exaggerated elevation of the elbow results in an increase
in the amplitude of the virtual force F. along the z-axis
of the elbow controller only, and thus speaks in favor of
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having two separate controllers for the wrist and elbow,
albeit correlated by geometrical constraints.

4 Discussion
4.1 Accuracy of the model

In this paper, we presented a model of reaching move-

ments, which we validated against kinematic data of known

motions in two conditions (intransitive versus transitive
motions) and for two variants (movements performed
with “naturally” versus movements performed with an
exaggerated elevation of the elbow). We proposed an
extension of the VITE model to account for both the
curvature of naturally reaching movements and for the
dual control of the wrist and elbow during unnatural rea-
ching movements. The model gave an accurate account
of the kinematics of the data for all the four movement
types (Intrans Norm, Intrans Elb, Trans Norm and Trans
Elb). Discrepancies between the model’s prediction and
the data for the velocity profiles at the start and end of
the movement were observed in about 10% of the data.
Closer analysis revealed that these errors were due to the
fact that manual segmentation led to abrupt speed pro-
files, but also to the fact that in some cases, especially
in transitive motions, the speed at the end of the rea-
ching motion was not null (as subjects were transiting
directly to a motion in which they grasped and lifted up
the object). By construction, the duo-EFF-VITE model,
like the VITE model, predicts a zero velocity at target.
In effect, when transiting across two motions, subjects
tend to displace the target of the reaching motion. One
way to simulate this would be to introduce a new target
position (corresponding to the final location of the sub-
ject’s arm one the object had been lifted) slightly before
the hand reached the original target point.

As expected, we observed significant inter-subjects
and inter-trials variability across motions. To avoid these,
we considered computing and modeling the mean trajec-
tories of the wrist and elbow to capture the nature in-
trinsic to each movement independently from the subject
and trial. This was ruled out as the mean movements of
the wrist and elbow could no longer be correlated (since
the correlations are not linear). Given that one of the
hypotheses of the duo-EFF-VITE model is that the po-
sition of the wrist and elbow are controlled via two sep-
arate controllers acting in parallel but linked through
biomechanical constraints, the effect of these biomechan-
ical constraints would have been lost if we had worked
with the mean trajectories. Besides, modeling each mo-
tion’s instance allowed us to demonstrate that the cur-
vature at the wrist level cannot be explained without
taking into account the movement of the elbow.

4.2 Interpretation of the Model’s Parameters

Parameters of the model are of two types. Three pa-
rameters (3, v, and 0 are used to modulate the speed
profile of the movement. They respectively control the
general form of the velocity profile (asymmetry and peak
value), enable the initiation of the movement and control
the final approaching phase of the movement. Although
the model’s parameters were optimized to model each
instance of the movements, we observed a consistency
across the values of the parameters and showed that the
parameter controlling the shape of the speed profile at
the end of the movement takes values that optimize a
trade-off between the precision and execution time of
the whole movement. This is in agreement with the ob-
servation of a correlation across speed and accuracy of
goal-directed movements (Plamondon and Alimi 1997;
Meyer et al 1988). (Meyer et al 1988) hypothesized that
this trade-off permits to cope optimally with noise in the
human system.

Most importantly, the model hypothesized the exis-
tence of virtual forces that encapsulate tasks constraints
to modulate a basic controller for reaching movements.
We showed that these forces could explain the curvature
of the movements of the wrist and elbow and could be in-
terpreted in relation to environmental and biomechanical
constraints. Further experiments should be conducted to
validate this hypothesis by varying the task constraints,
e.g. asking subjects to perform reaching motions by exag-
geratedly lowering the elbow, and showing how the forces
change as an effect of the context.

4.3 Separate Control of Wrist and Elbow

A second hypothesis inherent to the model is that el-
bow and wrist are driven by separate controllers, albeit
correlated through imagined biomechanical constraints.
Such a hypothesis corresponds to assuming that the ner-
vous system is able to plan the mechanical effects that
could arise from the motion of the arm segments (Gal-
loway and Koshland 2001). An analysis of the relation-
ship across the forces applied on the wrist and elbow at
each time step revealed a strong correlation along the
x- and y-axes. The forces along the z-axis were however
quasi-independent of the elbow’s elevation. The absence
of correlation along the z-direction suggests that the mo-
tions of the wrist and elbow are computed separately
by the brain. These conclusions are consistent with find-
ings on multi-joint arm movements and with the Leading
Joint Hypothesis (LJH) (Dounskaia et al 1998; Doun-
skaia 2005). The LJH states that there is one leading
joint that guides the motion of the entire limb. Muscles
of the secondary joints thus just play a regulatory role to
ensure that the end-effector performs the required task.
Interestingly, the LJH is applicable to our results if we
consider the elbow as the leading joint and the wrist as
the secondary joint.
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4.4 Neural Correlated to the Model’s Parameters

Similarly to the VITE model, the duo-EFF-VITE model
depends on knowing at all time the wrist and elbow posi-
tions and velocities. Evidence that the velocity and posi-
tion of the wrist may be explicitly computed and used for
motor control by the nervous system exists. For instance,
cells in the primary motor cortex (M1) of the monkey
showed a high correlation between their discharge and
the velocity profile of reaching movements (Moran and
Schwartz 1999). Moreover (Wang et al 2006) confirmed
the existence of a neural representation of the hand loca-
tion in the motor cortex during reaching. They showed
that position and velocity of the hand are simultane-
ously encoded by cortical motor neurons. Existence that
the position and velocity of the elbow are explicitly com-
puted is still questioned (Murphy et al 1982; Scott et al
1997; Reina et al 2001). While the duo-EFF-VITE model
proposes a solution to encapsulate environmental and
biomechanical constraints, it does not explain how the
brain computes such constraints. As they contribute in
several ways to the virtual forces, several brain areas may
be involved.

Finally, the duo-EFF-VITE model is based on the
idea that motions are not planned but unfold through
time as the result of the inherent dynamics of the con-
trollers. Such an approach is in line with the force-field
approach (Graziano et al 2005), where the target of the
motion acts as an attractor for the end-effector. More-
over, the model assumes that control is done in close-
loop, taking into account the current position of the arm
to correct the motion. This is supported by evidence that
the nervous system is able to estimate and anticipate the
state of the limb by integrating delayed sensory input
and motor output, through afferent and efferent internal
feedback loops (Desmurget et al 1997).

While the model exploits a representation of biome-
chanical constraints in the coupling of the elbow and
wrist controllers, it does not account for the way the com-
mand are translated into muscle activation of the upper
and lower arm limbs. While a complete understanding of
the neural control of movements would require a realistic
musculoskeletal model?, we omitted such complexity in
order to focus on explaining the gross dynamics of mo-
tor control. In particular, we aimed at explaining how
volitional control of one specific limb (upper arm) could
be done separately from that of the lower arm, as in the
exaggerated elbow elevation condition considered here.

Movements presented in this paper were unconstrained.

While this resulted in a high variability across trials and
subjects’ motions, it offered the opportunity to observe
features of motion that are inherent to natural reaching
motions. The duo-EFF-VITE model is however generic
and could also model constrained movements. To confirm

2 Such model is very complex and difficult to obtain due
to the numerous muscles and tendons present in the human
arm (Cheng and Loeb 2008).

the LJH hypothesis and the use of the duo-EFF-VITE
model in support of the latter, it would thus be inter-
esting to replicate the present study with movements
of the wrist constrained in the plane. The wrist would
then become the leading joint and the elbow the fol-
lower. Results of such a comparative study would con-
tribute to explaining the difference in the curvature of
the hand path found for constrained and unconstrained
movements (Desmurget et al 1997).
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£} v J
Intrans Norm | 2.04 + 1.94|0.010 £ 0.005|1.31 4 0.22
Intrans Elb 1.76 &+ 1.53|0.006 £ 0.005 | 1.30 £ 0.37
Trans Norm 2.33 £ 1.75]0.011 + 0.007 | 1.43 £ 0.30
Trans Elb 1.61 4+ 1.36|0.007 £ 0.004 | 1.21 + 0.39
p-value (sub.) n.s. n.s. < 0.001
p-value (cond.) n.s. n.s. n.s.
p-value (var.) n.s. < 0.001 < 0.009
p-value (sub*cond) n.s. < 0.001 n.s.
p-value (sub*var) n.s. n.s. < 0.008
p-value (cond*var) n.s. n.s. < 0.03

Table 4 Mean and standard deviation for the parameters modulating the speed profile for the movements of the wrist.
Three-way ANOVA results for each movement type across subjects, condition and variant have been provided for each of
these parameters, as well as interaction effects of the factors.

Uy Uy Uy Vg Uy Vs
Intrans Norm | 0.36 £ 0.23 |-0.36 + 0.24 [0.18 + 0.190.87 &+ 0.71 [-0.92 £ 0.65[0.96 + 0.47
Intrans Elb 0.68 £ 0.30 [-0.54 + 0.34 {0.35 £ 0.59|0.32 4+ 0.96 |-0.24 £+ 0.87|1.78 &+ 0.60
Trans Norm 0.41 + 0.26 [-0.39 + 0.26 [ 0.10 £ 0.18 | 1.28 4+ 0.56 |-0.88 4+ 0.72|0.77 &+ 0.51
Trans Elb 0.73 + 0.60 [-0.73 + 0.45|0.02 £+ 0.50 | 0.71 4+ 0.78 |-0.14 4+ 1.13|1.76 + 1.00
p-value (sub.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond.) n.s. < 0.001 < 0.001 < 0.001 n.s. n.s.
p-value (var.) < 0.001 < 0.001 n.s. < 0.001 < 0.001 < 0.001
p-value (sub*cond) < 0.001 < 0.005 < 0.03 n.s. n.s. < 0.001
p-value (sub*var) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond*var) n.s. < 0.02 < 0.001 n.s. n.s. n.s.

Table 5 Mean and standard deviation for each parameter v and v of the model describing the force at the start and end of
the movements of the wrist. Three-way ANOVA results for each movement type across subjects, condition and variant have
been provided for each of these parameters, as well as interaction effects of the factors.

B Y 0
Intrans Norm |1.73 & 0.66|0.011 4+ 0.005|1.34 £ 0.14
Intrans Elb 1.55 £ 0.85]0.009 + 0.004 | 1.22 4+ 0.34
Trans Norm 1.64 4+ 0.60|0.011 £+ 0.005|1.33 + 0.18
Trans Elb 1.40 4+ 0.79|0.010 £+ 0.005 | 1.27 + 0.28
p-value (sub.) < 0.001 < 0.001 < 0.001
p-value (cond.) n.s. n.s. n.s.
p-value (var.) < 0.03 n.s. < 0.004
p-value (sub*cond) n.s. n.s. n.s.
p-value (sub*var) n.s. < 0.002 < 0.001
p-value (cond*var) n.s. n.s. n.s.

Table 6 Mean and standard deviation for the parameters modulating the speed profile for the movements of the elbow.
Three-way ANOVA results for each movement type across subjects, condition and variant have been provided for each of
these parameters, as well as interaction effects of the factors.

Uy Uy Uy Vg Vy Vs
Intrans Norm |0.61 £ 0.17{-0.34 + 0.22|-0.08 £+ 0.14 | 1.50 + 0.033{-0.59 4+ 0.39 |-0.09 + 0.58
Intrans Elb 0.85 4+ 0.36|-0.63 + 0.22 |-0.06 £+ 0.38| 1.48 + 0.43 |-0.25 + 0.64 | 1.09 £+ 0.93
Trans Norm 0.50 + 0.11]-0.38 + 0.23|-0.03 £ 0.17| 1.57 + 0.38 |-0.82 + 0.55[-0.16 £ 0.35
Trans Elb 0.73 £ 0.36|-0.67 + 0.27|-0.21 £ 0.29| 1.44 + 0.44 |-0.56 + 0.70 | 1.21 £+ 1.05
p-value (sub.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond.) < 0.001 n.s. < 0.03 n.s. < 0.001 n.s.
p-value (var.) < 0.001 < 0.001 < 0.001 n.s. < 0.001 < 0.001
p-value (sub*cond) n.s. n.s. n.s. n.s. n.s. n.s.
p-value (sub*var) < 0.001 < 0.001 < 0.001 < 0.002 < 0.0001 < 0.001
p-value (cond*var) n.s. n.s. < 0.001 n.s. n.s. n.s.

Table 7 Mean and standard deviation for each parameter u and v of the model describing the force at the start and end
of the movements of the elbow. Three-way ANOVA results for each movement type across subjects, condition and variant
have been provided for each of these parameters, as well as interaction effects of the factors.
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Uy Uy Uz Vg Vy v,
Sub. 1 |Intrans Norm |-0.07 £ 0.20 | 0.03 £ 0.13 | 0.14 £+ 0.39 [-0.14 £ 0.41|0.11 £ 0.30|0.17 £ 0.45
Trans Norm |-0.05 £ 0.15| 0.02 £ 0.05 | 0.14 £ 0.39 |-0.13 £ 0.40|0.15 £ 0.42|0.16 + 0.44
Sub. 2 | Intrans Norm |-0.05 £ 0.13 | 0.04 £ 0.13 | 0.10 & 0.31 {-0.14 £ 0.38|0.15 £ 0.43 | 0.17 £ 0.44
Trans Norm |-0.06 £ 0.19] 0.04 £ 0.13 | 0.17 £ 0.46 |-0.15 + 0.44|0.09 £ 0.25|0.16 + 0.44
Sub. 3 | Intrans Norm |-0.07 £ 0.20 | 0.04 £ 0.11 |-0.03 £ 0.11|{-0.14 + 0.45|0.13 £ 0.35|0.17 £ 0.44
Trans Norm |-0.09 £ 0.25| 0.01 £ 0.03 | 0.05 £ 0.17 |-0.11 + 0.38 | 0.13 £ 0.35|0.21 + 0.59
Sub. 4 | Intrans Norm |-0.07 £ 0.20 | 0.03 £ 0.10 | 0.04 &+ 0.17 [-0.15 & 0.42|0.20 £ 0.55|0.16 £ 0.44
Trans Norm |-0.07 &£ 0.20| 0.03 £ 0.12 | 0.10 £ 0.30 |-0.13 + 0.40|0.18 £ 0.50 | 0.16 + 0.45
Sub. 5 | Intrans Norm |-0.05 £ 0.13 | 0.01 £ 0.04 | 0.21 £+ 0.55 |-0.13 £ 0.35|0.12 + 0.33]0.17 £ 0.44
Trans Norm |-0.05 £ 0.14|-0.01 4+ 0.04 | 0.23 £ 0.61 |-0.14 £ 0.39|0.04 £ 0.17|0.20 £ 0.54
Sub. 6 | Intrans Norm |-0.03 £ 0.09 | 0.00 & 0.01 | 0.14 £+ 0.43 |-0.12 £ 0.35|0.04 £ 0.13]0.14 £ 0.41
Trans Norm |-0.02 £ 0.05] 0.01 £ 0.03 | 0.23 £ 0.62 |-0.10 &+ 0.28 | 0.05 &= 0.16 | 0.17 & 0.45
Sub. 7 | Intrans Norm |-0.01 £ 0.08 | 0.01 & 0.05 | 0.12 £ 0.45 | 0.03 £ 0.26 | 0.16 £ 0.44 | 0.20 £ 0.55
Trans Norm |-0.03 £ 0.11] 0.00 £ 0.01 | 0.18 £ 0.52 | 0.07 £ 0.21 | 0.06 £ 0.23|0.20 & 0.55
Sub. 8 | Intrans Norm |-0.01 £ 0.04 | 0.01 & 0.04 | 0.15 £+ 0.41 |-0.15 £ 0.41|0.04 & 0.12]0.14 £ 0.38
Trans Norm |-0.03 £ 0.09| 0.01 £ 0.03 | 0.18 £ 0.49 |-0.18 + 0.48 | 0.08 = 0.24 | 0.16 + 0.43

Table 8 Mean and standard deviation for each parameter

of the model describing the force for Intrans Norm and Trans

Norm movements of the wrist for each subject respectively.

B v 3
Sub. Intrans Norm | 0.43 4 1.60 | 0.001 4+ 0.002 | 0.04 + 0.12
Trans Norm |0.21 + 0.57|0.002 £ 0.005|0.04 £+ 0.12
Sub. Intrans Norm | 0.22 4 0.58 | 0.002 £ 0.005 | 0.06 4 0.17
Trans Norm |0.36 4= 1.24 {0.001 + 0.003|0.05 £ 0.15
Sub. 3 | Intrans Norm | 0.25 4+ 0.68 | 0.001 + 0.004 | 0.03 £ 0.08
Trans Norm |0.42 4 1.46 | 0.002 =+ 0.006 | 0.03 £ 0.08
Sub. 4 | Intrans Norm | 0.36 4+ 1.57|{0.001 + 0.003 | 0.03 £ 0.09
Trans Norm |0.29 4 1.13|0.001 &+ 0.004 | 0.02 £ 0.08
Sub. 5 | Intrans Norm | 0.22 4 0.59 | 0.001 + 0.003 | 0.04 £ 0.12
Trans Norm |0.32 & 1.01{0.001 &+ 0.002 | 0.07 £ 0.20
Sub. 6 | Intrans Norm | 0.15 4 0.46 | 0.001 &+ 0.004 | 0.03 £ 0.08
Trans Norm |0.23 + 0.64 | 0.001 £ 0.002|0.04 £+ 0.11
Sub. Intrans Norm | 0.24 4 0.94 | 0.001 4+ 0.004 | 0.10 £ 0.29
Trans Norm |0.29 + 0.94|0.002 £ 0.006 | 0.12 £+ 0.31
Sub. 8 [ Intrans Norm | 0.17 & 0.45{0.001 =+ 0.003 [ 0.03 £ 0.09
Trans Norm |0.21 + 0.57|0.001 £ 0.003|0.04 £+ 0.11

Table 9 Mean and standard deviation for each parameter of the model describing the force for Intrans Norm and Trans
Norm movements of the wrist and for each subject respectively.
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ABSTRACT

Visual responses in the monkey ventral premotor cortex have been explored since long time. Area
F5 has been shown to contain grasping neurons that visually discharge either to 3D-object
presentation (canonical neurons) or to the observation of actions performed by other individuals
(mirror neurons). It has been suggested that the mirror response results from the progressive
generalization to others’ actions of a visuomotor link which, during action execution , associates the
vision of the own acting effector with the motor program selected for the ongoing action. To start
tackling this hypothesis, we specifically asked whether area F5 contains neurons responding to the
observation of one’s own grasping movement. A specially-designed experimental apparatus was
used to test F5 neuronal discharge while monkeys were engaged in a reach-to-grasp task and either
continuous or transient visual information on the ongoing movement was made available. Single-
unit activity was additionally recorded from the hand region of the primary motor cortex (area F1).
Neuronal responses evoked by the vision of the own entire grasping action or of brief meaningful
phases of it were detected in both areas. However, F5 modulation was overall more strong and
specific. The finding that neurons in area F5 exhibit discharge properties that are common to both
purely motor and mirror neurons allows the formulation of important assumptions about the critical

role of online visual information during grasping and the nature of the mirror discharge.



INTRODUCTION

Visual responses in the premotor cortex have been extensively studied in the last two
decades. Thereby, ventral premotor area F5, residing in the posterior bank and convexity of the
inferior arcuate sulcus (iAS), has turned out to be particularly important for the visuomotor
transformations it carries out in the domain of visually-guided grasping movements (Rizzolatti et al.
1988; Murata et al. 1997; Raos et al. 2006). Grasping is one of the most evolved types of primate
behavior, resulting from a complex visuomotor process that transforms the object’s three-
dimensional structure into specific motor commands to select the optimal finger configuration for
grasping. During pre-shaping, fingers progressively open and straighten up to reach a point of
maximum grip aperture, which is followed by closure of the grip with gradual finger flexion as the
hand approaches the object (Jeannerod et al. 1995).

Intracortical microstimulation and single-unit recordings in the macaque monkey have
demonstrated that grasping relies on a fronto-parietal visuomotor circuit including, besides area F5,
the inferior intraparietal area AIP (Murata et al. 1996; Murata et al. 2000), the ventro-rostral part of
area F2 in the dorsal premotor cortex (Raos et al. 2004) and the primary motor cortex F1 (Dum and
Strick 2005; Umilta et al. 2007). Successful execution of grasping much depends on the integrity of
area F1, which directly controls finger muscles and is known to be crucial for skilled hand function.
Lesions or inactivation of this area produce a severe deficit of individual finger movements and,
consequently, of normal grasping (Liu and Rouiller 1999; Fogassi et al. 2001). F5, which
represents, through cortico-cortical connections, one of the major inputs to the hand field of area F1
(Matelli et al. 1986), is the motor region most critically involved in pre-configuring the hand
according to the visual properties of the object. After inactivation of area F5, hand shaping is
markedly impaired, with fingers position not properly matching the size and shape of the object,
thus causing grasping failure (Fogassi et al. 2001).

In addition to purely motor grasping neurons, specifying types of hand shaping (e.g.,
precision or whole-hand grip), or timing the action discharging during different grasping phases,
two main categories of F5 visuomotor neurons have been described so far. On the basis of their

visual properties they have been named canonical and mirror visuomotor neurons.

Canonical neurons, mainly located on the posterior bank of the i1AS (F5ab sector), display a
3D object-related visual selectivity that is almost congruent with the grip-specificity of their motor
discharge. Area F5ab represents the main target of projections originating from area AIP, which, in

turn, has been shown to contain three main classes of neurons (Taira et al. 1990; Murata et al. 2000;
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Sakata et al. 1995), all of them contributing to the visuomotor transformation from object
description to hand shaping selection. AIP visual-dominant neurons respond during object
presentation and grasping only when full visual information on the movement is available (they do
not discharge when grasping is performed in dark); motor-dominant neurons are active during
grasping, independently of whether the movement is visible or not, and do not fire during object
observation; visual-motor neurons are similar to the visual-dominant ones but they also respond
during grasping in dark, though the discharge is much weaker than that displayed in full light. This
latter neuronal class resembles that represented by F5 canonical neurons, suggesting that the motor
activity observed in AIP may reflect a corollary discharge initiating in F5ab and maintained through
a F5-AIP reverberating circuit, active during the whole grasping period (Taira et al. 1990).

It is worth mentioning that in the study by Murata et al. (2000) a particular class of AIP
visuomotor neurons, devoid of any object-related visual selectivity but exhibiting a grasping motor
response that was stronger in light than in dark, was additionally described. These nonobject-type
neurons, whose discharge properties can be considered as intermediate between the motor-dominant
and the visual-motor classes, have been thought to respond to handgrip selectivity or, more
importantly for the purposes of the present work, to a combined view of handgrip and object.
Indeed, although contradictory arm/hand kinematics results have been reported about the effects of
removing online vision on the control of reach-to-grasp movements (Winges et al. 2003; Rand et al.
2007), visual feedback signals are of unquestionable importance in goal-directed hand movements,
especially for the formation of finger grip during prehension (Jeannerod et al. 1995; Jeannerod
1986). An alternative account for the functional properties of these nonobject-type AIP neurons is

that they might reflect mirror-neuron-like characteristics (see below).

Mirror neurons, mainly sited on the F5 cortical convexity (F5c), are visually triggered by
the observation of a biological agent performing a given goal-directed action (e.g. grasping),
typically mirroring the motor response normally recorded from the same neurons during the actual
execution of a similar action (di Pellegrino et al. 1992; Rizzolatti et al. 1996; Gallese et al. 1996).
The matching between the observed and the executed action encoded by a single mirror neuron
response has been shown to encompass different levels of congruence, ranging from a very strict to
a broader visuomotor correspondence. For example, neurons whose motor discharge is selective for
a precision grip can either only respond to the observation of actions involving the same precision
grip or can be visually triggered by any type of hand grasping. Broadly congruent mirror neurons
are of particular interest since they generalize the goal of the observed action over many instances

of it. A recent fMRI study performed on monkeys (Nelissen et al. 2005) demonstrated that the
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ventral premotor cortex hosts at least two main distinct representations of others’ actions. Besides
area F5c, which was found to be active only when the observed acting person was in full view,
hence displaying a highly specific context-related action representation, the anterior sector of area
F5 (area F5a), located in the depth of the iAS, appeared to encode actions in a more abstract way:
visual stimuli such as mimicked actions, the view of the only grasping hand or actions performed by
a robotic arm were all as effective as an acting human being in triggering F5a activation.

The existence of mirror neurons in area F5 that generalize the goal of a specific observed
action to many other examples of it, thus suggesting the association of different visual information
to a common goal-related motor-invariant signal, and the fact that these cells are part of a neuronal
circuit, additionally including the PF/PFG complex in the inferior parietal lobule (Petrides and
Pandya 1984; Matelli et al. 1986; Fogassi et al. 2005; Fogassi and Luppino 2005) and the superior
temporal sulcus (STS) (Perrett et al. 1989), which describes actions also in purely visual terms, have
led to the formulation of a sensory feedback-based theory accounting for the generation of mirror
neurons (Rizzolatti and Fadiga 1998). According to this theory, the mirror discharge develops from
the observation of one’s own acting effector, seen from slightly different perspectives, performing
repetitively the same action. Through the visual feedback system normally guiding action
execution, motor invariance is extracted from the different visual perspectives, thus initially
creating a matching between the action and the vision, by the agent performing the action, of his/her
own ongoing movement. Once this visuomotor link is established, it will then be progressively
generalized to the observation of actions executed by other individuals. Very recent results,
achieved by applying this model to an acting artificial system, showed that this could be the case
(Metta et al. 2006; Craighero et al. 2007).

At present, there is no evidence in favour of the existence, in area F5, of neurons showing
visuomotor responses that couple the execution with the observation of one’s own actions. The
presence of such neurons is a necessary prerequisite to demonstrate the validity of the sensory

feedback-based theory mentioned above.

The aim of the present study was to start clarifying this issue. As a first step along this
direction, we specifically investigated the presence, in area F5, of neurons similar to the non-object
visually-responsive neurons previously described in area AIP (Murata et al. 2000), whose grasping-
related activity is significantly strengthened when the monkey observes its own hand action (i.e.,
under full light conditions), with respect to a condition during which it cannot (i.e., in darkness).
These discharge properties, which could be considered as transitional to those of purely motor and

mirror neurons, would represent a conceivable neuronal indicator of the visuomotor matching
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proposed by the aforementioned theory. However, such a modulation could also be the neuronal
counterpart of the efficacy of the online visual information in properly guiding the hand during
object grasping. Therefore, to better identify neurons showing activity specifically evoked by the
observation of the own grasping action, we explored the influence on the F5 single-neuron
responses of very brief motor-relevant visual feedbacks (i.e., light flashes delivered at precise
instants during critical grasping phases) that do not modify arm/hand kinematics, though providing
the system with strategically useful visual information. As a control, the activity of neurons in the

hand representation of area F1 was recorded as well.



METHODS

Surgery

Single-unit activity was recorded from both ventral premotor area F5 and primary motor
cortex F1 in three hemispheres (contralateral to the moving forelimb) of two awake behaving
monkeys (Macaca fascicularis). The monkeys (one female and one male, respectively weighing 5.7
kg 4.9 kg and referred as to MK1 and MK2) were specifically trained to perform a behavioral task
(see following text), while seating on a primate chair. After training, a recording chamber and head-
restraint device were surgically implanted. All experimental protocols were approved by the
Veterinarian Animal Care and Use Committee of the University of Ferrara, by the Italian Ministry
of Health and complied with the European laws on the use of laboratory animals.

Structural CT and MRI images were respectively used in MK1 and MK2 to stereotactically
place the recording chamber over the cortical region including the posterior bank of the inferior
arcuate sulcus and central sulcus, where areas F5 and F1 are located. In MK1, the cortical surface
was indirectly rendered after Computer Assisted Tomography (CAT) acquisition, through reversal
of inner skull surface, and 3D-recontructed by wusing ETDIPS (NIH, NUS,
http://www.cc.nih.gov/cip/software/etdips/) and Rhinoceros® 2.0 (Robert McNeel & Associates,

USA) softwares. The coordinate system of the obtained 3D-images of the brain was then adjusted to
the standard stereotaxic coordinates system based on the orbitomeatal plane and with a custom-

designed software (Virtax, http://web.unife.it/progetti/neurolab/, Gesierich et al., in preparation) we

determined the position of the target cortices by using as references both the sulcal pattern
impressed on the internal surface of the skull and the stereotaxic atlas by Szabo and Cowan (Szabo
and Cowan 1984). The inferior surface of the titanium recording chamber cylinders (height 20 mm,
inner & 24 mm, out & 30 mm) was virtually modeled through Rhinoceros® 2.0 software, so to
perfectly fit the skull curvature of the monkeys, maximizing adhesion between the implant and the
bone. The chamber models were then manufactured by a MAXNC 15 computer-driven 3D milling
machine (MAXNC inc., Arizona, U.S.A.) by using the MillWizard software (Delcam Artcam,
U.K)).

All surgical implantations were carried out under aseptic procedures and general anesthesia.
Monkeys were pre-medicated with atropine sulfate (0.1 mg/Kg, IM, MONICO S.p.A., Italy) and
tiletamine-zolazepam (20 mg/Kg, IM, Zoletil, VIRBAC, S.A., France), and anesthetized by
isoflurane (Abbott S.p.A., Illinois, U.S.A.) for the whole duration of surgery. Antibiotics and
analgesics were administered postoperatively and experiments were started at least two weeks after

the surgery.



Electrophysiology

Single-unit recordings were performed by using varnish-insulated tungsten microelectrodes
with impedance 0.15-1.5MQ (measured at 1 kHz). Electrodes were obtained repetitively passing
the tip of tungsten rods (<& 250 pm, A-M Systems, inc. WA, U.S.A.) through a KOH (10% in
distilled water) etching solution by means of a metal electrode etcher (BAK Electronics, inc., MD,
U.S.A.)), and covering them with multiple layers of varnish (SIVAMID 595/38M, ELANTAS
Electrical Insulation, Germany) that were oven-dried at high temperature (400°C). This procedure
has the advantage of providing microelectrodes with the desired tip and highly resistant insulation.

During each experimental session, the microelectrode was inserted perpendicular to the
cortical surface (i.e., with an angle of 32-40° with respect to sagittal plane) and was slowly
advanced through the cortex by means of a hydraulic microdrive (Kopf Instruments, CA, U.S.A.;
step resolution, 10 um).The recorded signal was amplified x10000 (BAK Electronics, Germantown
MD, USA), filtered by a dual variable filter (VBF-8, KEMO Ltd., Backenham, UK) (300-5000 Hz
bandwidth), digitized (PCI-6071E, National Instruments, USA) at a sampling rate of 10 kHz and
stored for further off-line analysis. Action potentials were on-line discriminated by a dual voltage-
time window discriminator (BAK Electronics, Germantown MD, USA) and fed to an Audio
monitor (Grass Instruments, USA) to give the experimenter an auditory feedback on the neuron
discharge during testing. Data analysis was performed after off-line discrimination of single-units
from multi-spike recordings carried out by means of a custom-made LabView-based software
(Olyinik et al., in preparation).

The recording microelectrodes were also used for intracortical microstimulation (ICMS,
train duration, 50-100 ms; pulse duration, 0.2 ms; frequency, 330 Hz; current intensity, 3—40 pA).
The current strength was controlled on an oscilloscope by measuring the voltage drop across a

10k resistor in series with the stimulating electrode.

Recording sites

The chamber rostro-caudal and medio-lateral axis dimension was such as to allow to record
from a brain region spanning area F1, the whole ventral premotor cortex and the caudal part of the
Frontal Eye Fields (FEF). The ventral part of the agranular frontal cortex was functionally explored
through single unit recordings and ICMS to assess the location of areas F1, F4 and F5. Criteria and
functional characteristics described by Umilta et al. (2001) were used to distinguish motor and
premotor areas as well as regions within area F5 characterized by a high density of neurons

exhibiting hand-related activity during goal-directed actions.



Naturalistic testing

Naturalistic testing was used to select neurons to be then thoroughly examined through the
experimental paradigm. Single-neuron activity was studied with reference to the execution of
different hand/arm movements, selected to elicit different grip types or to the application of
different sensory stimuli, according to procedures described in other previous studies (Rizzolatti et
al. 1990; Rizzolatti et al. 1988; Gallese et al. 1996). For example, the presentation of a small piece
of food placed inside a slot required the monkey to perform a precision grip, by opposing the first
phalanx of the thumb to the first phalanx of the index finger, while a syringe filled with juice
evoked a power grip, with the fingers wrapped around the object and the palm in contact with it.
Visual canonical properties were tested by presenting the monkey with 3D objects of different size,
shape and orientation. Visual mirror properties were tested by performing a series of hand actions
(grasping holding, manipulating) in front of the monkey. This functional characterization, together
with the ICMS data, allowed us to select hand-related neurons predominantly selective for precision
grasping. Particular attention was paid so to discard cells showing canonical or mirror visual

properties and include just those showing motor discharge only.

Behavioral apparatus and paradigm

The pre-selected grasping neurons were studied by means of a behavioral apparatus
specifically designed to make the animals perform a reach-to-grasp task, which naturally implied
the execution of a precision grip to open the door of a container and get a piece of food which was
hidden inside (Fig. 1A). The container was mounted on a vertical rack at reaching distance
(approximately 30 cm) in front of the primate chair, so that, in case, the monkeys were forced to
watch their own grasping trajectory. The precision grip had to be performed on a small plastic cube
(0.8 x 0.8 x 0.8 mm) embedded in a groove, serving as the door handle (Fig. 1B). To ensure that the
movement was accurately executed even under dark conditions, the cube was translucent and dimly
back-illuminated by a red LED. The LED intensity was kept very low and did not allow the vision
of the approaching hand. Each trial started with the monkey’s right (or left) hand positioned close to
the body, on the hip board of the primate chair. An external sliding door, overlying the target door
for the animal, was opened at distance by the experimenter, giving the monkey a go-signal to start
the reach-to-grasp movement (Fig. 1C). As the monkey touched the handle correctly, with both the
thumb and index fingers, a TTL signal was sent via an electronic circuit to the acquisition PC to
synchronize the neuronal data. Data included one second before and two seconds after handle

grasping were stored for each trial.



The task was performed under four different conditions:
1) Light (L) condition: grasping was executed with continuous vision of the own hand movement
(i.e., in full light).
2) Dark (D) condition: grasping was executed in absence of any visual information on the own
movement (i.e., in darkness).
3) Pre-touch (PT) flash condition: grasping was executed in dark with instantaneous visual
feedback before touching, during the handgrip shaping phase. The scene was briefly illuminated by
a 20 ps xenon light flash triggered by the signal of the hand crossing an infrared barrier built by a
pyroelectric sensor located 10 cm in front of the food container.
4) Touch (T) flash condition: grasping was executed in dark with instantaneous visual feedback at
hand-object contact. The scene was briefly illuminated by a 20 ps xenon light flash delivered as
both the thumb and index finger touched the target handle.

Experimental conditions were presented in blocks of twelve trials and administered with the
above temporal order in all sessions. The Light condition was repeated at the end of each recording

session just to confirm the stability of neuronal activity (Light 2 condition).

Figure 1. Experimental setup. A: Lateral view of the behavioral apparatus, requiring the monkey to perform a reach-to-
grasp task. B: Demonstration of the precision grip the monkey had to execute in order to open the door of the food
container. C: The target door was covered by an outer sliding door that the experimenter opened at each trial onset,

giving the monkey a go-signal to start moving the hand from the resting position.

Hand kinematics acquisition

In a preliminary session, the behavioral task was administered to MK 1 and kinematics of the
arm/hand was recorded to ensure that it was comparable in the different grasping conditions,
including Light 2 condition. Markers were placed on the wrist of the monkey's hand to evaluate the
transport component of the movement and on the last phalanx of the thumb and index finger to
measure grip aperture during hand shaping. The markers were fixated on plastic strings, adjustable
in length, that were tightened around the wrist and relevant fingers. After a first brief period of

familiarization with the markers, the monkey was able to execute the experimental task naturally.
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Twelve kinematics recordings were collected for each experimental condition. The three-
dimensional trajectories of each marker were acquired (240 frames/sec) by an infrared-sensitive
motion tracking system (ProReflex/Qualisys Track Manager, Qualisys AB, Sweden). The same
signal used for triggering the neuronal data acquisition (hand-handle contact) was also acquired to

temporally align kinematics recordings.

Spike sorting

The isolation of single neurons from multispike recordings was performed off-line by using
Singular Value Decomposition of the data matrix containing the different spike waveforms,
followed by Fuzzy C-mean clustering analysis of Principal Components in the multi-dimensional
space (Oliynyk et al., in preparation). The good quality of the discrimination was confirmed by
evaluating the single-unit interspike interval histograms and the main quantitative parameters of
cluster quality, including L,.,, measures (Lewicki 1998; Schmitzer-Torbert et al. 2005; Bezdek et al.
1984). A custom-made software was created for this purpose and all implemented algorithms were
entirely realized by LabVIEW 7.0 software (National Instruments, U.S.A.). A part of the
DataEngine V.i library (MIT GmbH, Germany) for LabVIEW was used for the programming and

implementation of the spike sorting algorithm.

Analysis
Kinematics analysis

The 3D position over time of the wrist, thumb and index finger markers was off-line
reconstructed by using a position prediction algorithm provided by Qualisys Track Manager
software (Qualisys AB, Sweden) and the following kinematic parameters of interest were extracted
for each condition: maximal wrist velocity, maximal grip aperture, deceleration time, defined as the
interval between the time of wrist peak velocity and handle touch instant, and aperture-closure time,
defined as the interval between the time of maximal grip aperture and handle touch instant.A non-
parametric one-way ANOVA (Kruskal-Wallis test, 5% alpha level) was performed to compare
Light, Dark, PT flash, T flash and Light 2 conditions for each of these parameters.

Single-neuron analyses

To ensure that the motor response of the selected neurons was related to hand grasping and
thus was modulated by the task, the difference in activity between a baseline epoch (epoch 1) and a
movement-related epoch (epoch 2) was statistically assessed in all conditions for each neuron by

means of a two-way repeated-measure analysis of variance (ANOVA, 5% alpha level) with epoch
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(epoch I and epoch 2) and condition (D, L, PT flash and T flash) as factors. Epoch I corresponded
to a pre-movement period, during which the hand was about to initiate the movement from the
starting position (first 500 ms in the trial); epoch 2 corresponded to a 500-ms grasping-related
period including both the hand shaping and finger closure phases, going from 250 ms before the
instant at which the hand touched the target handle (pre-touch sub-epoch) to 250 ms after it (post-
touch sub-epoch).

Neurons which did not show any significant difference in firing rates between epoch I and
epoch 2 in any condition (i.e., conjunct lack of epoch main effect and of significant differences
between epochs for one particular condition, as resulting from the Tukey’s Least Significant
Difference (LSD) post-hoc tests performed on significant epoch x condition interactions) were
discarded from further analyses. To assess whether the activity of the neurons was modulated by the
vision of the acting hand, data analyses were first focused on detecting differences in activity
between D and L conditions in epoch 2 (significant epoch x condition interactions, with D different
from L condition in epoch 2 at the LSD post-hoc tests). In order to better appreciate even subtle
effects on the single-neuron activity, a two-tail paired Student’s t-test (5% alpha level) comparing D
vs. L mean firing rates was additionally performed on a 100-ms bin, which was stepped through the
trial by 20-ms increments. Figure 5D shows the output of this analysis performed on the D and L-
related activity of two single cells taken from the F5 and F1 recorded samples (Fig. 5C). A neuron
was considered as significantly modulated if it displayed a statistically significant difference in
activity between the two conditions in at least two consecutive time bins. According to the direction
of the effect shown in the pre- and post-touch sub-epochs of epoch 2, each neuron was then
classified as positively or negatively modulated by light in both or either of the two sub-epochs.

To investigate the effect of the light flashes on grasping-related neuronal activity, a similar
approach was employed. In view of the fact that PT flash and T flash were transient visual
manipulations and represented hybrid situations with respect to the D and L conditions as for both
physical and functional aspects, direct comparisons between activity during flashes and D (or L)
were avoided at the first-level analysis. This choice was also driven by the purpose of getting rid of
any unspecific arousal-related flash effect. Thus, as a first step, the above described running ¢-test
analysis was used to contrast single-neuron discharge in PT flash and T flash conditions, with the
aim to primarily identify neurons firing preferentially when a light flash was delivered at a specific
relevant instant in the trial. In particular, we were interested in any firing difference observed
between the two flash conditions within epoch 2, with the idea that, even a very short-lived visual
information, if relevant for the ongoing hand movement, should modulate the grasping-related

activity of the neuron. Once flash-selective neurons, if any, were detected, their flash-related
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activity was then compared with the activity they exhibited in the D and L condition and thoroughly
studied at the population level.

Estimation of neuronal response latency and peak. Response latency was calculated using a
version of the time to half-height of the peak nonparametric technique (Gawne et al. 1996), which
detects the midpoint between the minimum and maximum values of the single-neuron firing rate
histogram, smoothed with the optimal bandwidth. We chose to implement this technique because it
gives a latency measure which is less susceptible to noise than the one obtained through other
methods computing latency at the onset of the neuronal response, when the rate of change in
activity is quite low and therefore characterized by an unfavorable signal-to-noise ratio. By
definition, the maximum firing value in the histogram is the peak of neuronal discharge. The single-
neuron spike train, averaged and aligned with respect to the handle touch instant (time 0) for each
condition, was convolved with a smooth Gaussian kernel function with window width set to 20 ms,
to obtain a spike density function (SDF) providing a continuous and fine (1-ms binned) time-
dependent measure of the firing pattern. The first time this SDF exceeded the average of the
minimum and peak values in the period including the grasping movement (first 1250 ms in the trial)

was regarded as the estimated response latency of the neuron in one given experimental condition.

Population analyses

Normalization was achieved for each neuron composing a population through ms-by-ms
dividing the smoothed SDF relative to one given experimental condition by the highest discharge
value (peak of activity) observed across all four conditions. Population plots were obtained by
simply averaging the normalized smoothed SDF of the included neurons.

Statistical analyses on latency or peak firing rates were performed assigning to each entry in
a given pre-selected population, the normalized activity values respectively corresponding to the
time of half-maximum or maximum activity (see above) for each single unit.

Weighted average (WA) latency and peak firing rates of one single neuron in a group were
computed according to the following formula:
WA, = (Zxi*f)/2if:
where x; is the discharge of the neuron # at the latency (or peak) time of each neuron i in the group
and f; is the latency (or peak) time of each neuron 7 in the group.

Analyses on the activity recorded within a specific trial period (e.g., epoch 2) during one
particular condition were carried out on the single-neuron mean raw firing rates in the target period,

normalized to the maximum activity across all four conditions, as just described.
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Estimation of neuronal latency of light- and flash-selectivity. The same method used for
computing single-neuron motor response latency was employed to calculate the neuronal latency of
light and flash selectivity expressed at the population level. In this case, latency was defined as the
time at which firing in L vs. D (or in PT flash vs. T flash) trials differed from one another in a
relevant way. Therefore, we compared the time at which the difference in the population activity
between the two conditions under investigation reached half of the maximum value, considering the
normalized mean firing rate differences computed on a sliding 100-ms bin (sliding step, 20 ms).
This method was used to have an additional measure for expressing the latency of neuronal
selectivity, besides the one given by the running #-test analysis (see above), returning the time
course of the selectivity of the neuronal population.

Estimation of magnitude of light- and flash-selectivity. The strength of light- and flash-
selectivity was evaluated by using a Receiver Operating Characteristic (ROC) analysis (Metz 1978),
which measures the degree of overlap between two response distributions. Hence, given for
instance the two distributions of neuronal activity L (i.e., Light-related) and D (i.e., Dark-related),
for each observed single-neuron firing rate, the proportion of L against the proportion of D response
distribution exceeding that firing rate was plotted and the area under the plotted curve (ROC area)
was computed, yielding a single value for that comparison. This method has several advantages.
First, it provides an assumption-free estimate of the degree of overlap between L and D
distributions: values near 0.5 indicate large overlap between the distributions, whereas values close
to 0 or 1 indicate small or no overlap, with every value drawn from one distribution exceeded by the
other entire distribution and vice versa. Second, it can be conveniently interpreted as the
performance of an ideal observer in a two-way forced choice task. Third, it is independent of the
firing rate of the neuron and can thus be used to compare the activity of neurons with widely
different baseline and dynamic firing rates.

Population ROC area values, comparing L vs. D (or PT flash vs. T flash) distributions, were
either computed every 20-ms step in a 100-ms bin covering all the trial period, or averaged within

selected grasping epochs.
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RESULTS

Kinematics results

Arm/hand kinematics parameters acquired from MK1 were analyzed. Figure 2B shows the
temporal trajectories of wrist velocity and grip size for each of the five conditions considered: L, D,
PT flash, T flash and L2.

Statistical analysis (Kruskal-Wallis test, 5% alpha level) on the transport component of the
movement revealed that the maximal wrist velocity was significantly higher during the Light
conditions (L and L2) than during PT flash (P < 0.02) and T flash (t = 12.7, P < 0.05) conditions
(Fig. 2A, Maximal velocity plot). Accordingly, a significant faster deceleration time was observed
in full light (L and L2) with respect to all dark conditions, including D, PT flash and T flash (P <
0.0001) (Fig. 2A, Deceleration time plot). Importantly, maximal wrist velocity and arm deceleration
phase were not different in the two flash conditions and in the dark.

As far as the grip parameters are concerned, maximal grip aperture was considerably greater
in the dark and flash conditions than in the light, especially if considering differences with the L2
condition (P < 0.03) (Fig. 2A, Maximal grip aperture plot). This specific result may be explained in
terms of a rebound effect: after repetitively grasping in the dark over the previous three consecutive
blocks of trials (in which D, PT flash and T flash conditions were administered), in the L2 condition
the monkey assumed a peak grip size even less large than the one adopted in the first L condition.
Conversely, the wider finger aperture observed under dark conditions suggests that, in absence of
any visual information, the monkey was enlarging the grip size safety margin to increase the
chances of successfully grasping the door handle. To this purpose, after maximal aperture was
reached, fingers also closed more slowly in the dark and flash conditions than in the light (P < 0.02)
(Fig. 2A, Aperture-closure time plot). Again, there was no significant difference among the dark

and flash conditions, in neither grasping parameter.
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Figure 2. A: Average kinematic parameters (maximal velocity, maximal grip aperture, deceleration time, aperture-
closure time) recorded for each condition during the behavioral experiment conducted with MK1. Deceleration and
aperture closure times are respectively measured as the intervals from the time of maximal velocity and from the time of
maximal grip aperture to handle touch instant. B: Wrist velocity (dashed lines) and grip aperture (solid lines) recorded
over time for each condition(Light 2 condition is also included). Asterisks within each plot represent significant
differences (Kruskal-Wallis test, 5% alpha level) of D, PT flash or T flash condition with respect to either or both light

conditions.

Overall, these findings confirm the results of previous kinematics studies on humans,
reporting an increase in the duration of wrist deceleration and fingers closure phases when visual
feedback was entirely or partially blocked during movement (Jackson et al. 1995; Schettino et al.
2003; Winges et al. 2003) or when vision of the own hand was prevented (Gentilucci et al. 1994;
Churchill et al. 2000; Schettino et al. 2003; Rand et al. 2007). Also the adoption of a wider maximal
grip aperture in absence of any visual feedback (Jakobson and Goodale 1991; Jackson et al. 1995)
or without vision of the hand (Churchill et al. 2000) has been already previously observed.

Notably, the fact that no substantial kinematics dissimilarity was found between the two
flash conditions (both resembling the dark condition) suggests that the present behavioral task
represented a valuable tool to explore the effect of the vision of the own acting hand on the response

of grasping neurons in cortical motor areas, without necessarily invoking kinematics variables.
Microstimulation data

We performed 149 penetrations in the three hemispheres of the two monkeys (see Table 1).

The respective functional maps are illustrated in Figure 3 (A, B, C). Figure 3D displays the three-
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Figure 3. Penetration sites. A, B: Surface location of the electrode penetrations in both hemispheres of MK1. C:
Penetrations in the left hemisphere of MK2. (D) Lateral view of the brain surface reconstruction of MK2. Encircled
region shows the position of the recording chamber. Filled symbols indicate sites where intracortical microstimulation
(ICMS) elicited hand movements at different current intensity thresholds. The size of the circles is correlated with the
value of the lowest threshold found in each penetration, as indicated in the key of the figure. Unfilled symbols indicate
sites not tested with ICMS. Each color refers to the specific body part controlled by the neurons encountered in each
penetration. AS, arcuate sulcus; CS, central sulcus. Grey regions highlight penetrations where neurons were recorded

while the monkeys were performing the reach-to-grasp task.

dimensional reconstruction of the brain surface of MK2 that was used to position the recording
chamber on the skull. Penetrations are marked according to the specific body-part movements

associated with the neuronal responses and the current intensity threshold at which those
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movements were evoked through ICMS. As threshold, we defined the minimal current intensity at
which visually detectable movements were evoked in 50% of stimulation trials.

All sites in the rostral bank of the central sulcus (area F1) were excitable with low-threshold
currents (MK1, 9.8 + 0.8 pA; MK2, 11.4 + 2.2 pA, mean £ S.E.M.) evoking hand or finger
movements. Microstimulation of the penetration sites rostral to F1 hand representation (estimated to
be located in area F4) evoked face and axial movements at higher thresholds (MK1, 21.1 + 5.9 pA;
MKZ2, 27.9 + 3.2 pA). Neurons in this region appeared to show large somatosensory receptive fields
on the face and body and visual receptive fields in register with the somatosensory ones. The hand
representation in area F5 was identified further rostrally, in the posterior bank of the iAS, on the
basis of distal movements evoked by stimulation at the following thresholds: MK1, 24.2 &+ 2.8 nA;
MK2, 28.2 + 2.3 pA. The discharge of the neurons in this region was often related to goal-directed
actions, mainly including grasping. The presence of microstimulation-induced eye movements
(current intensity thresholds: MK1, 25.9 + 4.6; MK2, 24.2 + 5.7) and the recording of saccade-
related activity in a region anterior to area F5 and to the iAS, were considered as functional markers
of the FEF.

Grey regions highlight penetrations where grasping motor neurons were recorded while the
monkeys were engaged in performing the behavioral task. Overall, the grasping-related activity of
the neuronal samples recorded from the three monkey hemispheres during the task was congruent

with the functional characterization obtained through ICMS and naturalistic testing.

Neurons database

A total number of 295 and 236 grasping motor neurons were respectively isolated from F5
and F1 areas of MK1 and MK2 during 271 recording sessions. Of these neurons, 169 of area F5 and
129 of area F1 survived the selection criteria (stability of the recording throughout the duration of
the task and sufficient number of trials recorded per each condition). One F1 neuron was
subsequently discarded since, as revealed by the two-way epoch x condition ANOVA, its activity
during grasping was not significantly different from that displayed during the pre-movement period.
Therefore, the database for the present study consisted of 169 F5 neurons (102 recorded from the
two hemispheres of MK1 and 67 recorded from the left hemisphere of MK2) and 128 F1 neurons
(106 and 22 recorded from the left hemispheres of MK1 and MK2, respectively). Details

concerning all recording sessions are reported in Table 1.
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Table 1. Summary of the database.

Monkey 1 Monkey 2
F5 F1 F5 F1
LH RH LH RH LH RH LH RH
Right hand Left hand Right hand Right hand Right hand
Penetrations 41 32 21 -- 45 -- 10 -
Recording sessions 52 62 67 - 67 -- 23
Isolated units 67 116 204 -- 112 - 32
Analyzed database
S: session S=23 S=32 S =67 S=49 S=17
N: neurons N =38 N =64 N =106 - N=67 ) N=22 N
PT flash delivery -169 ms -200 ms -126 ms =215 ms -190 ms
(median (IOR))* (225/-107)  (-242/-133)  (-178/-93) B (-252/-167) ’ (-251/-135) B

* Median and inter-quartile range (IQR) of times of PT flash delivery, according to the instant when the hand (right or
left, depending on the recorded hemisphere) crossed the IR barrier before touching the door handle (temporal values are

aligned to handle touch).

Dark vs. light conditions: types of neuronal modulations

By looking at the results of the 2-way ANOVA, post-hoc tests performed on significant
epoch x condition interactions revealed that within epoch 2 14% of F5 neurons and 9% of F1
neurons showed higher activity during L than D condition, while 19% (F5) and 23% (F1) of
neurons exhibited the opposite modulation. The amount of F5 and F1 neurons which did not fire
differently in the two conditions (non-modulated neurons) was comparable (67% and 68%,
respectively).

The running #-test comparing D vs. L activity throughout epoch 2 confirmed this pattern of
results, though revealing a larger amount of effects due to the less restricted significance criteria of
the analysis (see Methods). According to the period in which the neuronal modulation was
observed, neurons were classified as showing one particular effect (L>D or D>L) in the pre-touch
sub-epoch, in the post-touch sub-epoch, at the instant when the hand touched the handle, or through
whole epoch 2 (Tab. 2; Fig. 4). The number of modulated neurons was comparable in the two areas
(61% in F5 and 54% in F1); more precisely, the portions of F5 neurons strengthening (22%) or
diminishing (39%) their activity due to full vision of the ongoing movement, mostly reflected those
of F1 (22% and 32%, respectively). However, and more interestingly, in both areas, the majority of
L-sensitive effects were clustered in the pre-touch sub-epoch (14% in F5 and 13% in F1), while the
opposite modulations principally emerged in the post-touch sub-epoch (22% in F5 and 20% in F1).
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Figure 4. Distribution of F5 and F1 neurons with /D modulation across the different grasping-related sub-epochs, as

summarized in table 1.
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Table 2. Summary of results from the running paired #-fest analysis comparing single-neuron activity in L vs. D

condition in a 100-ms bin shifted through the trial by 20 ms steps.

Pre-touch Touch Post-touch Pre- +
(-250 ms — 0 ms) (around 0 ms) (0 ms - 250 ms) Post-touch Sub-total
MK1 MK2 MK1 MK2 MK1 MK2 MK1 MK2
F5
L>D 13 11 5 4 -- 25 13
24 (14%) 4 (2%) 5(3%) 4 (2%) 37 (22%)
D>L 4 7 23 14 10 7 35 32
11 (7%) 2 (1%) 37 (22%) 17 (10%) 67 (39%)
Modulated 35 6 42 21 104 (61%)
Spurious 20 10
30 (18%)
L=D 22 13
35(21%)
Total 169 (100%)
F1
L>D 13 3 6 3 - 25 3
16 (13%) 3 (2%) 6 (5%) 3 (2%) 28 (22%)
D>L 4 2 21 4 10 1 35 7
6 (5%) 25 (20%) 11 (9%) 42 (32%)
Modulated 22 3 31 14 70 (54%)
Spurious 28 6
34(27%)
L=D 18 6
24 (19%)
Total 128 (100%)

Neurons are divided according to the monkey from which they were recorded (MK1 or MK2) and the specific sub-

epoch within epoch 2 (going from 250 ms before to 250 ms after handle touch) in which they showed the D/L

modulation. The entry “Spurious” indicates neurons showing opposite D/L modulations within epoch 2. The percentage

values always refer to the entire sample of recorded neurons.

Figures 5 and 6 show single-neuron examples of the most significant neuronal categories

just described. Spike density plots and respective rasters are aligned to the instant at which the hand

touched the door handle and describe the single-unit activity during the whole grasping period (first

1500 ms in the trial). For descriptive purposes, plots in Figure 6C also include the subsequent food-

grasping neuronal response, not examined in the current work. The most relevant effects of light on
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Figure 5. Single units exemplifying the most significant F5 and F1 neuronal categories determined by the running ¢-test
analysis. The first 1500 ms of activity aligned to time of handle touch (solid line) are shown. Spike density plots are
obtained by first smoothing each trial firing rate (spikes/sec, 5-ms bin width) by a Gaussian kernel function (20-ms
window width) and then averaging across trials within each condition. Ribbons represent mean single-neuron response +

1 S.E.M. in the L (grey) and D (black) condition. Symbols on top indicate trial bins where #-test result was significant
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(5% alpha level). Top raster plots represent the respective spike trains recorded from the neuron in the 12 trials of the L
and D conditions. A: Neurons showing L>D modulation in the pre-touch sub-epoch (shaded area). B: L-modulated
neurons around the instant at which the hand touched the handle. C: Neurons expressing L-selectivity in both pre- and
post-touch sub-epochs (shaded areas). D: Stem plots exemplifying the running ¢-test analysis performed on the L- and D-
related activity of the neurons shown in (C). The activity of the neurons in the two conditions is represented by the index
(D-L)/(D+L); lines extending from the baseline (index = 0) upward and downward respectively represent D>L and L>D
modulations computed at each 100-ms bin. Red and black lines indicate significant and non-significant modulations,
respectively. A given neuron was considered as L- or D-selective if it displayed the same significant modulation in at

least two consecutive bins. The same analysis was performed also to detect PT flash/T flash-selective neurons.
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Figure 6. Single units exemplifying other significant F5 and F1 neuronal categories determined by the running #-fest
analysis. A: Neurons showing a D>L modulation in the post-fouch sub-epoch (shaded area). B: Neurons with higher
firing rates in the D condition throughout epoch 2 (shaded areas). C: Neurons with spurious effect, exhibiting opposite

modulations within epoch 2, as a result of a shift in activity between L and D conditions. Conventions as in Fig. 5.

the grasping activity of three different units of F5 and of F1 are illustrated in Figure 5. Full vision of
the ongoing action made these neurons discharge more, compared to the full dark condition, either

during the hand shaping phase of grasping (Fig. 5A), or at the contact time between the hand and
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the door handle (Fig. 5B) or throughout all epoch 2, including the very final phase of grasping (Fig.
5C). It is worth noting that these light-induced modulations were mainly expressed as additive
effects to the basic motor activity of the neurons recorded in the dark; indeed, the decaying part of
the discharge profile of both F5 and F1 units in Figure 5A overlapped in the two conditions and so
did the ascending and descending phases of the grasping activity of the other single-neuron
examples in Figure 5.

In contrast, the modulated activity of neurons in Figure 6A was of a rather different kind;
these units exemplify the firing behavior of a large fraction of neurons showing a significant D>L
effect which was actually the result of a more prolonged post-touch D-related response, likely
associated with hand tactile/proprioceptive adjustments after the monkey’s hand reached the handle
under full dark conditions. In contrast, the response recorded in the L condition rapidly decayed
after touch. The same observation holds for neurons in Figure 6B, displaying an overall more
spread-out grasping activity in the D than in the L condition (with no difference at the peak
activity). Single neurons in Figure 6C were largely represented both in F5 (16%) and F1 (23%) and
showed a clear rightward temporal shift in the grasping response recorded in the dark, compared to
that observed in the light. This was particularly evident at the discharge peak and resembled that
often recorded during the following grasping of the food (see last 1500 ms of plots in Fig. 6C),
when no experimental control was imposed to ensure that the movement in the dark could be
performed by the monkey as accurately as the movement in the light. Statistical analysis run on
these neurons returned a L>D (or, to a lesser extent, D>L) effect in the pre-touch sub-epoch
followed by the reverse modulation in the post-touch sub-epoch (see “Spurious” entry in Table 1).
Since we were mainly interested in identifying neurons showing a true L-related potentiation
(amplitude increase) of motor activity and one can hypothesize that the timing difference just
described might be strictly related to a difference in D/L hand kinematics, neurons of this kind were
considered as a separate class, thus not influencing neither the number of cells showing a pre-touch
L>D modulation, nor the group displaying higher activity in the dark during the post-touch sub-
epoch.

Pre-touch light-responsive neurons in areas F5 and F1

Of all the cells which were light-responsive in the different temporal phases of grasping, the
neuronal subset discharging more in L than D condition during the pre-touch sub-epoch was the
largest one (see Fig. 4). This result is of remarkable interest for the purpose of the current work,

since it suggests that, although visual information on the ongoing movement was continuously
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available in the L condition, the activity of both F5 and F1 grasping neurons was particularly
modulated just in the period when the shaping of the hand preceding grasping was taking place.

In the following paragraphs this particular class of cells will be analyzed in detail.

F5 and F1 pre-touch light-modulations had similar time course and strength

Figure 7A shows the time course of normalized L and D average activity of pre-touch light-
responsive cells in areas F5 and F1. If one considers the temporal build-up of the light-effect, these
two populations did not show any substantial difference. In both cases, the curves depicting L- and
D-related grasping activity started separating in a statistically significant way (two-tail paired
Student’s t-test, 5% alpha level) at the 100-ms bin centered at 270 ms before handle touch. This
similarity in the latency of light-selectivity was also confirmed by the time to half-maximum
divergence in activity computed on the normalized mean firing rate differences in the sliding 100-
ms window. This method returned a peak of L vs. D discharge difference in the bin centered at 80
ms prior to touch in both areas, with the half-value of this peak achieved by F5 and F1 neurons at

210 and 190 ms before touch, respectively (Fig. 7B).
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Figure 7. A: Average activity of pre-touch light-responsive neurons in area F5 and F1. The first 1500 ms of activity
aligned to time of handle touch (solid line) are shown. Population spike density plots are obtained by first normalizing
the single-neuron smoothed data (Gaussian kernel function with window width set to 30 ms) to the absolute maximum
level of activity observed across all 4 different conditions and then averaging the result across all units in the
populations. Traces represent the population L- (grey) and D- (black) related average response + 1 S.E.M.. Symbols on
top indicate trial bins where the running #-fest result was significant (5% alpha level). B: Time course of the respective
F5 and F1 population normalized L-D discharge differences, computed on a sliding 100-ms bin, shifted by 20-ms steps.
Temporal peak and latency of light-selectivity (calculated as the times to maximum and to half-maximum difference in
activity) are respectively represented by the P- and L-labeled dashed lines within each plot. F5 and F1 populations
reached the latency (bin centered at 210 and 190 ms before touch, respectively) and peak (bin centered at 80 ms before
touch, in both plots) of selectivity almost at the same time. C (left): Time course of ROC values for the pre-touch light-
selective neurons in area F5 and in area F1. The first 1500 ms of activity aligned to time of handle touch (solid line) are
shown. Traces are obtained averaging across neurons the area under the ROC curve, computed every 20-ms step and
comparing L and D firing rates in a sliding 100-ms bin. C (right): Histograms showing the distribution of F5 and F1
single-neuron ROC area values in the pre-fouch sub-epoch (corresponding shaded area in the upper plot A). ROC areas
greater than 0.5 (grey) indicate neurons conveying more light- than dark-related information; ROC values less than 0.5
(black) represent neurons expressing higher activation in the D than in the L condition. Note that the presence of black
bars is due to the criterion used for selecting light-responsive neurons, requiring selectivity in at least 2 consecutive

100-ms bins of pre-touch sub-epoch.

In addition, the strength of light-responsiveness displayed by the two neuronal subgroups,
aside from some minor differences, was almost comparable. The magnitude of the L-effect over
time was measured by computing the population mean ROC area for the two conditions on each
100-ms bin stepped on the trial. Figure 7C (left) shows that F5 and F1 light-responsiveness
developed in a similar way around the handle grasping period, though F1 selectivity was overall
stronger. However, F5 light-modulation was slightly higher at the peak. The distribution of pre-
touch ROC area values across neurons in the F5 and F1 subgroups (Fig. 7C, right) confirmed that,
even though statistically similar (Student’s t-test, n.s.), the light-sensitivity level during the hand
shaping phase of grasping was on average higher in F1 (0.799 £ 0.023) than in F5 (0.746 + 0.032).

Unlike F1 neurons, F5 neurons showed significantly different response profiles under light and
dark conditions

Although numerically equivalent and showing a L-modulation with comparable time course
and magnitude, F5 and F1 populations differed substantially one from the other in regard to the
discharge profile displayed during the L and D conditions. In particular, despite the fact that the L-

and D-related activity profiles started diverging at the same time in the two areas, in the F1 recorded
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population L and D profiles grew up and reached the peak almost in parallel, while in area F5 they
developed with clearly different slopes.

Figure 8A shows the average temporal peak and latency of the F5 and F1 motor response
(detailed values are reported in Table 3). It is important to point out that latency, since computed as
the time to half the discharge peak, is more associated to the rise time to the peak of activity, rather
than just to the onset of the grasping response. In contrast to the F1 population, showing no timing
difference in the grasping activity between the two conditions (two-tail paired Student’s t-tests, not
significant at 5% alpha level), the mean peak and latency times of the F5 neuronal response in the L
condition were significantly shorter than those observed in the D condition. Overall, F5 pre-touch
L-sensitive neurons peaked much earlier in full light (-94 + 25 ms, mean = S.E.M.), than in full dark
(-47 £ 29 ms) (¢t = 2.3, P = 0.03). They also displayed a much faster ramping activity to the peak in
full light (-135 £ 27 ms) than in full dark (-81 + 30 ms) (¢t = 2.7, P = 0.01), as revealed by the time-
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Figure 8. A: Mean latency and peak times for the L- (grey) and D- (black) related responses of F5 and F1 pre-touch L-
selective populations. Note that latency is computed as the time to half the peak of discharge, meaning that it is more
related to the rise time of activity to the peak, rather than to the actual onset of the neuronal response. Asterisks on top
indicate statistically significant differences (Student’s t-test, 5% alpha level). B: Line fitting of the L- and D-related
response of F5 and F1 pre-touch L-selective neurons in the 300-ms window prior to touch. The regression analysis
returned similar slope-intercept L and D functions for the F1 population, while F5 population displayed very different
ramping activities: the median slope of the L and D response profiles was respectively 57.1° and 40° for F5 neurons and
63.7° and 49.4° for F1 neurons. C: Average activity of F5 and F1 pre-touch L-responsive neurons during pre-touch sub-
epoch in the four experimental conditions. Asterisks on top of bar plots indicate main significant differences among

conditions (P < 0.05, LSD post-hoc tests, subsequent to significant one-way ANOVA condition main effect).
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Table 3. Average timing parameters of the D- and L-related response profiles of F5 and F1 pre-touch L-selective

populations.
Latency (ms) Peak (ms)

F5

Light 135+27 94+ 25
Dark -81+30 -47+29
F1

Light -96 £23 -39+£26
Dark -87+ 39 -38+41

Values are mean times from handle touch (ms) + 1 S.E.M.

The half-peak timing difference could not be explained by the amount of L-selectivity of the
F5 neurons: in addition to the fact that F5 neurons were as L-selective as F1 neurons (see above),
the discharging difference between the two conditions in the pre-fouch sub-epoch did not
significantly correlate with the difference in latency (» = 0.2; P = 0.2). The difference found in the
peaking times between the two conditions well supports this observation, since it could not be at all
related to the significant pre-touch divergence between the L and D discharge profiles.

To better describe this temporal profile difference, a linear regression function interpolating
the activity of each cell of the F5 and F1 pre-touch L-selective populations in a 300-ms window
prior to touch (i.e., going from -300 to 0 ms and representing the most significant portion of the pre-
touch neuronal response) was computed for each of the L and D condition. Neurons showing a
negative slope regression parameter m (i.e., the first derivative) in both conditions, thus
characterized by a substantially different response profile, were discarded from average. Whereas in
the F1 population (n = 13) the slope regression parameter of the L (median m = 63.7°, Inter-Quartile
Range, IQR = 11.4°) and D (m = 49.4°, IQR = 16.4°) ramping activities was approximately
comparable (Wilcoxon signed ranks test, W* = 1.6, n.s.), in the F5 population (n = 20) it
substantially changed (L, m = 57.1°, IQR = 33.8°; D, m = 40°, IQR = 31.7°, W= 2.8, P = 0.003).
Figure 8B shows population fitting line plots for the average D and L response profiles of F5 and F1
pre-touch L-selective neurons.

Importantly, none of the F5 and F1 neurons which were L-responsive in either of the other
considered sub-epochs displayed such a significant timing difference between the L and D response
profiles, indicating that this result was highly specific for the pre-fouch L-selective neuronal
population recorded from area F5. In addition, the motor discharge of the F1 pre-touch neurons in
the L condition was consistently, though not significantly (Student’s t-test, 5% alpha level), delayed
(39 and 55 ms at the latency and peak, respectively; see Table 3) with respect to that of the F5

population, suggesting a functional interplay between the two areas.
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Taken together, these results strongly indicate that the L-modulation of the pre-touch L-
responsive F5 neurons, in contrast to that of F1 neurons, mainly consisted in a temporal gain of the
L-related response over the D-related response. This was achieved through a faster increase of the
pre-touch activity when the monkeys could observe their own hand during the shaping phase of
grasping compared to when they could not.

F5 and F1 pre-touch light-responsive neurons were overall not modulated by flash conditions

Multiple LSD post-hoc comparisons performed on the significant main effect (P < 0.05) of a
one-way (condition) ANOVA computed on the pre-touch sub-epoch activity of each neuron were
used to test whether F5 and F1 pre-touch L-responsive neurons were also modulated by the
transient visual feedback of the flash conditions. Only 2 out of the 24 F5 pre-touch L-selective
neurons (1% of the total number of F5 neurons) displayed a significantly different response in the
two flash conditions and the activity recorded in the flash condition for which they expressed
selectivity was higher than that observed in full dark. None of the F1 pre-fouch L-selective neurons
showed such a combined effect. Instead, the firing rate displayed by the majority of F5 (79%) and
F1 (63%) pre-touch L-responsive neurons in the flash conditions was as high as that recorded in the
D condition, and for all neurons the activity exhibited during the L condition was significantly
higher than that measured during flash and D conditions. Figure 8C shows the average discharge of
the F5 and F1 pre-touch L-responsive populations in the pre-fouch sub-epoch during the four
different conditions: for both populations, the activity in the L condition was significantly higher
than that observed in D, PT flash and T flash conditions (P < 0.01) and no difference was detected
between flashes.

These last results suggest that in both areas, the transient visual information available at
flash presentation was not as effective as the continuous vision of the own ongoing grasping

movement in enhancing the activity of the pre-fouch L-responsive neurons.

PT flash vs. T flash conditions: selectivity for specific transient visual feedbacks

To identify neurons showing selectivity for either of the two transient visual feedback
conditions, the activity recorded during the PT flash condition was directly contrasted with that
observed during the T flash condition. The running t-test analysis (see Methods) revealed a large
portion of both F5 (48%) and F1 (43%) neurons selectively modulated by the transitory vision of
the own ongoing action during specific grasping phases, namely hand shaping (F5: 19%; F1: 22%)
or hand-object contact (F5: 29%; F1: 21%) (Table 4). Neurons significantly increasing their activity
in response to both PT flash and T flash presentation within epoch 2 were very few (4% in area F5

and 1% in area F1) and were not taken into consideration for the analyses. Figure 9 shows examples
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of single flash-responsive neurons drawn from the F5 and F1 populations. These neurons
specifically increased their activity during the grasping period of PT flash (Fig. 9A) or T flash (Fig.

9B) condition, respectively.

Table 4. Summary of results from the running paired ¢-test analysis comparing single-neuron activity in PT flash vs. T

flash condition in a 100-ms bin shifted through the trial by 20 ms steps.

Epoch 2 Pre-touch Touch Post-touch Pre- + Post-
(-250 ms — 250 ms) touch Sub-total
Intersection with L-selective neurons
MK1 MK2

F5
PT flash-selective 23 9

32 (19%) 4 - - - 4(2%)
T flash-selective 29 20

49 (29%) 5 - 4 1 10 (6%)
Modulated 81 (48%)
Non-selective 50 38

88 (52%)
Total 169 (100%)
F1
PT flash-selective 24 5

29 (22%) 1 - 1 1 3(2%)
T flash-selective 23 4

27 (21%) 6 - 1 -- 7 (5%)
Modulated 56 (43%)
Non-selective 72 (57%)
Total 128 (100%)

Neurons are divided according to the monkey from which they were recorded (MK1 or MK2) and the specific flash-
selectivity they showed in epoch 2. Intersection of each flash-selective neuronal group with L-selective neurons in the
different time epochs (see table 1) is also shown. The percentage values always refer to the entire sample of recorded

neurons.
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Figure 9. Examples of F5 and F1 flash-responsive single neurons, as returned by the running #-fest analysis. A: Neurons
showing significantly higher firing rates during epoch 2 of the PT flash condition (red) than during epoch 2 of the T
flash condition (blue). B: neurons specifically responding to 7 flash. Red and blue dashed lines represent the time of PT
flash (-91 ms in the F5 neuron and -96 ms in the F1 neuron) and 7 flash (always at 0 ms) occurrence. Other conventions

as in Fig. 5.

F5 and F1 flash-modulations were displayed according to the grasping phase at which the transient
visual information was delivered

Figure 10 shows the time course of PT flash and T flash average activity of the specific
flash-responsive F5 and F1 populations. For both areas, the temporal build-up of the flash effect
varied consistently between the PT and T flash-responsive groups, in accordance with the different
grasping time at which the flash was delivered. Specifically, the two flash-related activity curves
began diverging much earlier in the P7 than in the T flash-selective neuronal groups: F5 and F1 PT
flash-responsive neurons started firing significantly higher (two-tail paired Student’s t-tests, 5%

alpha level) in the PT flash condition at the 100-ms bin centered respectively at -430 and -410 ms
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Figure 10. Average activity of flash-responsive neurons in area F5 and F1. Activity in PT flash (red) is plotted vs.
activity in 7 flash (blue) condition. A: PT flash-selective populations. Red dashed lines and red shaded areas
respectively represent the median time of PT flash occurrence and respective interquartile range (-201 m, IQR = 115 ms
in the F5 population; -133 ms, IQR = 113 ms in the F1 population). B: T flash-selective populations. Blue dashed lines
represent the time of T flash occurrence (always at 0 ms). Other conventions as in Fig. 7A.

Inset plots show time course of population normalized flash-related discharge differences, computed on a sliding 100-
ms bin, shifted through the first 1500 ms in the trial by 20-ms steps. Latency of flash-selectivity (calculated as the time
to half-maximum difference in activity) is represented by the L-labeled dashed line within each plot. Flash-selectivity
latency of both F5 and F1 PT flash-responsive populations (bin centered at 210 and 170 ms before touch, respectively)
was shorter than that of F5 and F1 T flash-responsive populations (bin centered at 130 ms before touch, in both plots).

X- and y-axis scales as in Fig. 7B.

before handle touch, even well in advance of flash delivery, respectively occurring at around -201
ms and -133 ms. This latter difference in flash presentation was related to the fact that F5 neurons
were recorded from both hemispheres of the same monkey, forced to reach and grasp first with the
right and then with the left hand, and that left-hand movements were much slower than the right-
hand ones (details concerning the time of PT flash presentation are reported in Table 1). In contrast,
the first time window in which both the F5 and F1 T flash-responsive groups showed significantly
enhanced T flash activity was respectively centered at -170 and -150 ms. In this case, flash
selectivity was observed much later than in the PT flash-selective populations, though again clearly
before the hand-handle contact, triggering 7T flash presentation (occurring at 0 ms). This anticipatory
flash-related response of the neurons was likely dependent on the experimental design, implying a
blocked presentation of conditions, so that the time of flash presentation within one specific flash

trial block could be expected, and thus predicted. The difference in latency of the two specific flash-

32



related modulations was confirmed by computing the time to half-maximum divergence in activity
between the two flash conditions, which was shorter for the PT flash-responsive neurons (F5: -210
ms; F1: -170 ms, see inset plots in Figure 10A) than for those specifically sensitive to T flash (F5: -
130 ms; F1: -130 ms, see inset plots in Figure 10B).
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Figure 11. A: Time course of ROC values for PT (red) and T (blue) flash-selective neuronal groups in area F5 and F1.
The first 1500 ms of activity aligned to time of handle touch (solid line) are shown. Traces are obtained averaging
across neurons the area under the ROC curve, computed every 20-ms step and comparing PT flash and T flash firing
rates in a 100-ms bin covering all the trial. Both traces are represented with positive ROC values to better contrast them.
B: Same traces as in (A) but grouped according to type of flash selectivity (left plot: PT flash-responsive neurons; right
plot: T flash-responsive neurons), to emphasize differences between areas. C: Histograms showing the distribution of
single-neuron ROC area values in both pre-fouch (dark blue and dark red) and post-touch (pale blue and pale red) sub-
epochs within PT flash- and T flash-responsive groups recorded from the two brain regions. ROC areas greater than 0.5
(blue) indicate neurons conveying more 7 flash- than PT flash-related information; ROC values less than 0.5 (red)
represent neurons expressing the opposite effect. Note that the presence of bars of the opposite color within each plot is
due to the criterion used for selecting flash-responsive neurons, not requiring selectivity through all epoch 2 but at least

in 2 consecutive 100-ms bins of it.
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Close examination of the time course of the modulations, as processed by the ROC analysis
(Fig. 11A), revealed a clear-cut temporal shift of the flash effects in area F5, specifically depending
on the time of flash presentation (Fig. 11A: compare ROC for F5 PT flash-selective neurons, in red,
and ROC for F5 T flash-selective neurons, in blue). The time course of PT flash-related selectivity
was characterized by a gradual increase during the pre-shaping phase of grasping, followed by a fast
decay immediately after touch. Conversely, T flash-related selectivity increased rapidly before
touch, reached the highest value at the hand-handle contact and declined slowly in the post-fouch
sub-epoch, persisting throughout the final phase of grasping. According to the running #-test
analysis, the PT flash effect became manifest 260 ms earlier than the 7 flash effect; likewise, it also
disappeared 200 ms earlier (the PT and T flash last significant bins were respectively centered at
190 ms and 390 ms after touch, see Fig. 10A).

The latencies of PT and T flash signals in area F1 showed a time lag (200 ms) comparable to
that observed in the activity of F5 flash-responsive neurons. However, in contrast to F5, F1 T flash
effect was more temporally locked to the handle touch instant, decaying 60 ms earlier than the PT

flash effect (see Fig. 10B and Fig. 11A).

Flash-related signals were stronger in area F'5 than in area F1

Flash-related information conveyed by F5 neurons within epoch 2 was overall higher than
that of F1 neurons, especially considering T flash selectivity. This was visible when comparing the
time course of ROC values of the flash-responsive groups recorded from the two brain regions (Fig.
11B).

PT flash-selectivity in F5 was overlapping in strength that of F1 during the pre-movement
period (epoch 1); then, around 250 ms before handle touch, it reached a higher level which was
maintained for all the pre-touch sub-epoch and till about 100 ms after touch. Even more evidently,
T flash-selectivity in F5 started increasing approximately at the same time (-250 ms) as the one
observed in F1, nevertheless diverging considerably from it around 100 ms prior to hand-object
contact. This ROC area difference then remained through all touch and post-touch sub-epochs, only
decaying after the grasping movement was concluded (at around 450 ms after touch). Accordingly,
although overall not statistically different (Student’s t-test, 5% alpha level), the ROC area values
expressed by F5 T flash-selective single neurons were higher than those measured in the T flash-
responsive population of F1, both during the pre-fouch (F5, 0.623 + 0.028; F1, 0.594 + 0.034) and
the post-touch (F5, 0.644 + 0.019; F1, 0.616 + 0.03) sub-epochs (Fig. 11C). Seemingly, average
ROC area measured in PT flash neurons was higher in area F5 (pre-touch sub-epoch: 0.364 + 0.025;
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post-touch sub-epoch: 0.354 + 0.032) than in area F1 (pre-touch sub-epoch: 0.376 + 0.029; post-
touch sub-epoch: 0.36 + 0.027).

F5 and F1 flash-selective neurons were overall not light-responsive

The majority of both F5 and F1 flash-selective neurons did not show any significant light
responsiveness. Only a small fraction of PT flash-responsive neurons (2% in both F5 and F1 area)
and T flash-responsive neurons (5% in F5 and 6% in F1) displayed significantly higher firing rates
in full light than in full dark and mainly during the pre-fouch sub-epoch (see Table 4). Therefore,
flash-selective neurons formed relatively mixed populations with regard to the behavior they
expressed in L and D conditions, with a relevant portion of them pertaining to non-selective or D>L
populations (overall, 21% and 11% in F5 and F1, respectively). Figure 12 shows the average
activity of each flash-selective population in all four experimental conditions along the trial.

To better weight the flash selectivity of these populations against the activity shown in D
and L conditions, a one-way ANOVA with condition (D, L, PT flash and T flash) as factor was
performed on the response of each flash-responsive neuron acquired during the epoch (epoch 2), in
relation to which flash-selectivity was determined. A large amount of both F5 (37/81: 46%) and F1
(31/56: 55%) flash-selective neurons showed significantly higher firing rates in the flash condition

for which they were selective than in both D and L condition, as well as than in the other flash

condition.
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Figure 12. Average activity of flash-responsive neurons in area F5 and in area F1. Activity is aligned to time of handle
touch (solid line). Population spike density plots are obtained by first normalizing the single-neuron smoothed data
(Gaussian kernel function with window width set to 100 ms, to better emphasize the neuronal response profile) to the

absolute maximum level of activity observed across all 4 different conditions and then averaging the result across all
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units in the populations. Average activity in PT flash (red), T flash (blue), L (grey) and D (black) conditions is plotted
for each group. A: PT flash-selective populations. Box plots on top indicate the temporal distribution of the discharge
peaks of the neurons within a population. The distance between left and right limits of the box define inter-quartile
range (IQR) of the sample, which is a robust estimate of the dispersion of the data. The line in the middle is the sample
median, whiskers represent the extent of the rest of the data and red crosses are outliers. Inset plots show the temporal
spread of the discharge peaks of each flash-selective group in the four conditions. IQR details are given in table 5.
Grey-shaded areas represent epoch 2 on which the one-way ANOVA (see main results in Fig. 13A) has been

performed.

The same analysis was performed also at the population level. Figure 13A illustrates the
main statistical results: PT flash-responsive neurons of both areas F5 and F1 (left bar groups in the
respective plots) showed the strongest grasping response during the PT flash condition (firing rates
recorded during the other experimental conditions were significantly lower; P < 0.05, ANOVA LSD
post-hoc tests). In addition, F5 PT flash-selective neurons fired significantly more in full dark than
in full light (¢ = 3.4, P = 0.002) or when a light flash was delivered at the handle touch (¢t = 2.6, P =
0.01). F1 PT flash-selective neurons showed a significant D>L effect (¢t = 2.1, P = 0.04) as well.
Similarly, T flash-related discharge of the F5 T flash-responsive population (Fig. 13A, F5 right bar
group) was much higher compared to the activity displayed by the same neurons in L, D and PT
flash conditions (P < 0.0001). Conversely, F1 T flash-selective neurons (Fig. 13A, F1 right bar
group) only showed a significant difference between the two flash conditions (¢ = 5.5, P <0.0001).

36



A I M Dark
e M Light
p= M PT flash
> B T flash
e e 19 = *
_g 1 % * T Ex #
=
&
=
=]
Z
0.5
PT flash T flash PT flash T flash
population population population population
Epoch 2 Epoch 2
B >
=
o
131
< = 1
=] ® *
1F]
N os} 2 0.5 *
= k| '- ¢
£
=
=] 3 4+
Z . s .
Latency Peak Latency Peak
PT flash population PT flash population
>
=
2
o *
< _*
= * *
g 4 I
— 0.5 T x 0.5
= *
o
=]
z L 0.5 L
Latency Peak Latency Peak
T flash population T flash population

Figure 13. Average activity of PT and T flash-responsive neurons in area F5 and F1, both during epoch 2 (A) and at the
time of maximum (Peak) and half-maximum (Latency) discharge (B) in the four experimental conditions. Asterisks on
top of bar plots indicate main significant differences among conditions (P < 0.05, LSD post-hoc tests, subsequent to

significant one-way ANOVA condition main effect).

Flash-related signals were more specific in area F5 than in area F1

When looking at the population plots of the flash-selective neurons in the two recorded areas
(Fig. 12), the following interrelated considerations can be drawn: first, the ANOVA results just
described do not exactly reflect the level of neuronal activation expressed by the different
populations in the grasping period of the four conditions, as it appears in the plots (see activity

within shaded areas in Fig. 12). More precisely, the mean neuronal discharge in epoch 2 (Fig. 13A)
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does not seem to be the appropriate measure to explain the differences among conditions in the
neurons’ grasping-related response profiles, particularly in the case of area F1.

Second, the average response profile of the neurons assigned to the different flash-
responsive groups varied a lot across areas and conditions. In particular, if considering the temporal
distribution of the neurons’ discharge peaks as an index of the population response profile
variability (see Table 5 and inset box plots in Fig. 12), flash-selective cells of area F5 exhibited, on
average, a rather spread-out grasping-related response (IQR = 144 ms), as opposed to the more
compact one of the F1 flash-selective neurons (IQR = 71.5 ms). A dispersion test (Ansari-Bradley
test, 5% alpha level) applied to F5 and F1 peak distributions revealed that the peaks dispersion was
significantly different in the two areas (W* = 5.8, P < 0.0001), particularly when contrasting the F5
and F1 PT flash-selective populations (IQR = 161 ms and 56 ms, respectively; W* = 7.3, P <
0.0001). In contrast, the temporal dispersion in the activity peaks of the non-flash-responsive
neurons was comparable in the two areas (F5 IQR = 125 ms; F1 IQR = 122.5 ms; W* = 1.1, n.s.).
Most importantly, the average response profile displayed by F5 flash-selective neurons across
conditions specifically varied according to the flash condition for which they expressed selectivity
(see inset box plots relative to area F5 in Fig. 12A and 12B). In particular, the firing dispersion
shown by the F5 PT flash-responsive neurons in the PT flash condition (IQR = 214 ms) was
significantly greater than that calculated in the same neurons during the D (IQR = 120 ms; W* =
2.1, P =0.04) and T flash (IQR = 78 ms; W* = 2.9, P = 0.003) conditions. Conversely, the
discharge peaks of the F5 T flash-selective neurons were consistently less dispersed in the T flash
condition (IQR = 114 ms) than in the D (IQR = 199 ms; W* = 1.9, P = 0.05) and PT flash
conditions (IQR = 144 ms; W* = [.1, n.s.). Importantly, in both PT and T flash-responsive
populations, the discharge peaks distribution observed during the flash condition for which the

neurons were selective approached that assumed in the L condition (IQR =199 ms and IQR = 112

Table 5. Temporal distribution of the discharge peaks of PT and T flash-selective populations in area F5 and F1.

Median and inter-quartile range (IQR) are reported for each condition.

Peak IQR
(ms)

F5 F1

Flash-selective neurons 144* 72

PT flash-selective 161 56
Dark 120%* T3HAAK

Light 199 34
PT flash 214 (Sl
T flash 7% 75k

T flash-selective 134 93
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Dark 199 108

Light [12%%* 79

PT flash 144 160****

T flash 1143 96
Non-selective neurons 125 123

* Significant difference (4nsari-Bradley test for samples with different dispersions, 5% alpha level) between F5 and F1
flash-selective neurons.

** Significant differences with respect to PT flash condition within the same neuronal population.

*** Significant differences with respect to Dark condition within the same neuronal population.

***% Significant differences with respect to Light condition within the same neuronal population.

ms, respectively), which, in turn, differed substantially from that measured in the D condition (for
details, see Tab. 5).

Opposite to what observed in area F5, the average response distribution of F1 flash-selective
neurons in the flash condition on which they conveyed information was not significantly different
from that of the D condition. Independently of the specific F1 flash-responsive population they
were assigned to, these neurons showed firing peaks with similar temporal dispersion in the PT
flash, T flash and D conditions. In all three conditions, a more spread-out neuronal response profile
was observed, compared to that measured under full light conditions (see inset box plots relative to
area F1 in Fig. 12A and 12B and Table 5).

Given these remarks, in order to have a more detailed picture of the grasping-related
behavior of each specific neuronal population during the different experimental conditions, the
following additional analyses were carried out: first, a one-way repeated-measure ANOVA was
used to reveal differences in the absolute peak discharge values reached by the neurons within each
condition. Main results are summarized in Figure 13B. For completion, firing rate differences
among conditions assessed at the time to half-maximum activity (referred to as the latency) of the
neurons are also reported for each population. As far as the F5 flash-selective populations are
concerned, this analysis confirmed the ANOVA results obtained considering all epoch 2 (Fig. 13A).
In addition, it revealed a significant L>PT flash effect in the mean latency (¢ = 2.4, P = 0.02) and
peak (¢t = 2.4, P = 0.02) activity of the T flash-selective neurons, emphasizing the strong T flash
information carried by this population, also due to the suppression of the PT flash-related signal. On
the contrary, the F1 flash-responsive groups did not show any distinct peak predominance of the
specific flash condition for which they showed selectivity over all the other conditions, especially in
the case of PT flash-selective neurons. Touch flash maximum activity of F1 T flash-responsive
neurons was higher than that of PT flash and D conditions (P < 0.01), but not significantly different
from that measured in the L condition (¢ = 1.4, P =0.2).
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Second, to evaluate the average peak response in each condition also taking into account the
corresponding population temporal peak distribution, the peak discharge of each neuron was
weighed to the peak times of all the other neurons belonging to the same population (see Methods).
A further one-way ANOVA was then used to test the differences among the new peak-related
weighed values calculated for each condition. Main results are illustrated by bar plots in Figure 14.
This analysis returned an important result regarding the PT flash-responsive neurons in FS5.
Contrary to what was obtained in the previous statistical analyses, the average weighted maximum
response computed in the PT flash condition was not significantly higher than that measured in the
D condition (see Fig. 14, Latency and Peak of the F5 PT flash population). However, as reported
above, this neuronal group was the only one to show an increase, rather than a decrease, in the
temporal dispersion of the firing peaks during the flash condition for which selectivity was
conveyed. This evidence, besides suggesting that the appearance of a light flash during the hand
F5 Fl

*

i

Normalized weighted activity

Latency  Latency’ Peak Peak’ Latency Peak

PT flash population PT flash population

Normalized weighted activity

=
o

Latency  Peak Latency - ek
T flash population T flash population
Figure 14. Average normalized activity of PT and T flash-responsive neurons of area F5 and F1, weighted to the time
of maximum (Peak) and half-maximum (Latency) discharge displayed by all the neurons in the population in the four
experimental conditions. Asterisks on top of bar plots indicate main significant differences among conditions (P < 0.05,

LSD post-hoc tests, subsequent to significant one-way ANOVA condition main effect). Latency’ and Peak’:. average
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discharge latency and peak of F5 PT flash-selective population, after that the firing temporal distribution within each

condition has been leveled to that of PT flash condition, i.c., the most dispersed one.

shaping phase of grasping principally affected F5 recorded cells inducing a larger discharge timing
variability (that can thus be considered a hallmark of the response of area F5 to PT flash), implied
that the average peak discharge of the F5 PT flash-selective neurons was particularly lowered in the
PT flash condition, where the highest data dispersion was detected. Indeed, by making the
population homogeneous from the aspect of the firing temporal dispersion (i.e., by leveling the
peaks distribution exhibited in each condition to the largest observed, that of PT flash condition), a
strong PT flash-selectivity came out (see Fig. 14, Latency’ and Peak’ of the F5 PT flash
population).

To summarize the results obtained with the last described analyses, the presence of a
transient visual feedback on the own ongoing action strongly influenced the response of F5 neurons
(and much more than that of F1 neurons) in the following ways: (1) the activity recorded during the
delivery of the relevant light flash for a given flash-selective population was consistently higher
compared to that expressed in all the other experimental conditions, including full light (on the
whole, F1 flash-related firing rates did not rise above L-related discharge in neither population).(2)
This strong flash-selectivity was evident both when comparing the absolute peak discharge reached
by the neurons in each condition and the single-unit maximum activity counted against the time of
peak discharge of all the neurons in a given population. (3) On average, F5 neurons, as opposed to
F1 neurons, maintained their flash-selectivity well before and after arriving at the peak activity, as
shown by the analysis carried out contrasting the mean firing rates during all the 500-ms grasping
window of each condition. (4) F5 PT flash-selective neuronal group reacted to PT flash presentation
rearranging their grasping-related response in a more distributed way (see difference between
temporal peak IQR of these neurons and that measured for all the other F5 and F1 flash- and non-

flash-selective populations in Tab. 5).
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DISCUSSION

The present study investigates whether ventral premotor area F5 contains visuomotor
neurons which do not show any visual response associated to the observation of 3D objects
(canonical neurons) or to actions performed by other individuals (mirror neurons), but rather, are
sensitive to the observation of the monkey’s own hand during an ongoing grasping movement.
These neurons, which we proved to be present, exhibit visuomotor properties that are common to
both purely motor and mirror neurons, hence allowing new speculations on the critical role of
online visual information during grasping execution and on the nature/genesis of the mirror neuron
visual response. Indeed, both in area F5 and in primary motor cortex (area F1) a significant
percentage of neurons modulate their grasping-related activity as a function of the duration
(continuous or transient) and of the instant (hand preshaping- or hand-object contact) of the hand-
related visual feedback. The effects observed in these two motor areas present some important
differences, suggesting a distinct functional contribution of the ventral premotor and primary motor

cortices to the analysis of motor-relevant visual feedback.

Both F5 and F1 neurons potentiate their motor activity during hand shaping in light, but F5
neurons show a faster increase of light-related responses

By comparing the grasping-related activity of the neurons during light and dark conditions, a
variety of neuronal categories could be distinguished, both in area F5 and in area F1, depending on
the time course of their modulation. The main modulation was mostly due to a more prolonged
activity when the monkey was grasping in dark, with respect to full vision condition. For example,
while a large amount of neurons in both areas displayed overlapping pre-touch responses both in
light and dark, they differentiated their response in the post-touch phase, mainly because of the
contrast between the rapid firing decay observed in light and the more long-lasting activity
characterizing the post-touch phase in dark. This neuronal behavior, that statistically produced a
post-touch D>L effect, was rather likely related to finger posture corrections ensuing proprioceptive
feedbacks from the hand-object contact in the dark, as we observed in some pilot kinematics
experiments. However, being the aim of our study the detection of neurons sensitive to the vision of
the own grasping hand, we concentrated on neurons that, in full light, potentiated their discharge
within the period preceding the contact with the to-be-grasped object. This neuronal class was the
most represented one, both in area F5 (14%) and in area F1 (13%). This result is particularly
relevant since, although visual information on the own ongoing action was continuously achievable

in the light condition, the activity of the majority of light-responsive recorded neurons was mainly
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affected by it during hand pre-shaping and landing onto the object. We will therefore comment now
in detail some properties of these pre-touch light-responsive neurons.

While the percentage of these neurons was similar in the two motor areas, both in terms of
time course and in terms of light-responsiveness, an important timing difference characterized the
grasping-related response of the F5 sub-population in the light condition. When the reach-to-grasp
task was performed under constant online visual feedback, the latency and peak times of the
discharge were significantly shorter than those observed during the execution of the same task in
absence of any visual information. Conversely, F1 neurons did not show any anticipation of the
grasping response recorded in light with respect to that recorded in the dark. These visuomotor
neurons resemble those previously described in area AIP (Murata et al. 2000; Sakata et al. 1995)
which have been suggested to play some role in encoding the pattern of hand movements during
handgrip formation. The light-sensitive neurons reported in the present work, as well as the AIP
“nonobject-type” neurons, did not respond to object presentation, as shown by the naturalistic
testing and by the absence of any response to the mere observation of the to-be-grasped object
during the formal testing.

The present findings concerning pre-touch light-dependent neuronal effects can be actually
subjected to more than one specific interpretation, including, first of all, the critical influence that
the online visual feedback may exert on grasping kinematics. Indeed, although the experimental
apparatus was designed so as to minimize at best hand movement variations between light and dark
conditions (the to-be-grasped object was made visible also in the dark), analyses carried out on the
kinematic trajectories recorded during the behavioral experiment revealed some crucial, though
subtle, differences between the two conditions. As reported in literature (Churchill et al. 2000;
Schettino et al. 2003; Winges et al. 2003), an increase in the duration of the deceleration phase and
of finger closing was found when grasping was performed in the dark. Moreover, maximum grip
aperture became wider, indexing that, without vision, the monkey tended to increase the grip size
safety margin for grasping the door handle successfully (Rand et al. 2007).

Consistent with these findings might be the evidence that neurons of both areas enhanced
their activity just in the pre-shaping phase of the light condition. Even more relevant could be the
temporal gain that pre-touch light-selective F5 neurons showed in their motor response, when the
sight of the ongoing movement was allowed, compared to when it was not. This facilitation was
mainly expressed as a faster rate of ramping activity of these neurons in full light, as opposed to the
slow, gradually increasing firing rates during the pre-touch phase in dark. Accordingly, a 50-ms
anticipation of the light over dark was measured both at the latency and peak of the grasping-related

neuronal response. These F5 light-dependent timing effects, which most likely finally ended with
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the strengthening of the pre-touch discharge shown by F1 neurons during light, well inversely
correlate with the longer grasping approach, adopted by the monkey in the final part of reaching-
grasping in absence of any visual feedback. The behavior expressed by many neurons in
anticipating their motor response under full light condition (16% in F5 and 23% in F1), possibly
associated with modifications of movement velocity, would well support the hypothesis that these
data mostly relate to hand kinematics differences, than to observation-evoked responses. Even more
generally, the finding that a higher percentage of neurons were strengthening (31%, including both
areas), rather than diminishing (13%), their activity in the most critical period of the grasping
movement (pre-touch/touch period) during light, appears to favor this interpretation. It is thus
arguable that, these visuomotor cells could be present in both F5 and AIP, two strongly
interconnected areas, and might form a sub-circuit specifically relevant to visual feedback-based
adjustments of the handgrip during movement. More direct evidence is however required to support
this hypothesis, based on systematic studies of the correlation between hand kinematics and
neuronal activity.

Another possible account for the light-modulated grasping response of these neurons is that
it may represent one of the many instances of the observation-evoked motor activation that is
typical of mirror neurons. Indeed, it has been demonstrated that the F5 mirror visual discharge can
reflect the neuron’s motor selectivity at several degrees of abstraction (Nelissen et al. 2005; Gallese
et al. 1996; di Pellegrino et al. 1992). Recently, also single-neuron activity in area F1 has been
shown to be similar during both execution and passive observation of a familiar task. Interestingly,
in the observation condition, F1 neurons fired in response to the view of a reliable surrogate of the
monkey’s own hand (a visual cursor projected on a screen), moving in an abstract workspace
(Tkach et al. 2007).

In our study, monkeys were observing their own, as opposed to others’ (co-specific or
human), active movements. In this particular case, the action which the cells contribute to generate,
perfectly matches the one potentially evoking a neuronal response in the same cells through
observation. Hence, because mapped on the same active movement, the discharge elicited by
observation is not easily dissociable from the one related to execution. It is thus plausible that, to be
appreciated, any neuronal activation potentially induced by the vision of the own grasping
movement, must be almost exclusively represented by an increase (or decrease) in light, of the
activity recorded during grasping execution in dark, as in the case of the light-responsive neurons
described here. However, the observation-related meaning of such a modulation cannot be

distinguishable from a kinematics effect
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Both F5 and F1 neurons selectively respond to motor-relevant transient visual feedbacks, but area
F5 shows a higher specificity for the type of grasping-related information they bring

To exclude any influence of kinematics on the observation-dependent responses of the
recorded neurons, two light flash conditions were introduced in our experiment. No substantial hand
kinematic difference was indeed found between the two flash and the full dark conditions.
Conversely, several recorded neurons displayed specific selectivity for either of the two light flash
conditions, suggesting that the behavioral paradigm succeeded in revealing neuronal effects
dependent on the vision of brief fragments of the own grasping action. Specifically, a large number
of both F5 (48%) and F1 (43%) cells statistically showed a difference in the grasping-related
activity, dependently of whether transient visual information was fed back from the handgrip
configuration period or hand-object contact instant. Importantly, the latency of flash-selectivity
displayed by these neuronal populations tightly reflected the point in time of flash occurrence, that
is, earlier in the trial when visual feedback was given during pre-shaping, with respect to when it
was delivered at the handle touch. One possible criticism may be that the found neuronal
modulations rather depended on an arousal effect, time-locked to flash presentation. Our results
show that this was not the case.

First, since the analysis consisted in directly contrasting the activity displayed by the same
cell in the two flash conditions, all neurons showing a significant response to both flashes (that
could be indicative of an arousal reaction in the monkey) were automatically not taken into
consideration. Second, the flash selectivity of the neurons did not generally emerge immediately
after one given flash was delivered (that would suggest the existence of a strict temporal
relationship between the arrival of a transitory visual event and the onset of the neuronal response);
rather, it appeared at different times around flash presentation and, in some cases, even in advance
of it, meaning that neurons were not only online signaling, but also ‘expecting’, the availability of
the flashed motor-relevant visual information (the experiment was performed in blocks). Moreover,
particularly in area F5, cells continued conveying this information well after flash offset, denoting
that this was somehow a meaningful event, rather than simply a startling stimulus, for the animal
engaged in performing the grasping movement.

It is also to note that the degree of overlap between any of the light-sensitive neuronal
classes and flash-selective neurons was poor in both areas, supporting the assumption that the
neuronal modulations due to continuous vision of the movement were, in all probability, of a
different kind with respect to those observed during brief illumination of the motor action scene. In

particular, since kinematics and arousal are not to be considered important confounding variables,
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the hypothesis that flash-related sensitivity represented the selective response of the neurons to the
observation by the monkey of its own ongoing grasping at specific time windows (when the view of
the movement was briefly made accessible), can be strongly put forward.

The fact that observation-evoked responses were recorded also in the primary motor cortex
is not surprising. Significant changes in M1 cortical activity during action observation have been
reported by several human studies, using different techniques (Fadiga et al. 1995;
Muthukumaraswamy and Johnson 2004; Caetano et al. 2007; Cheng et al. 2007). In addition, the
study mentioned above (Tkach et al. 2007) has tackled the issue of observation-related M1
activation at the single-unit level, describing neuronal discharge and local field potentials associated
with the passive view of own movements.

However, the detailed analysis of the visually-modulated activity of the neurons recorded in
the present research revealed that F1 flash-evoked neuronal effects differed from those found in F5
as far as some critical features are concerned. First, the level of flash selectivity, defined as the
relative difference in the neuron’s grasping activity between the two flash conditions, was lower in
area F1 than in area F5. More relevant, the signal related to transient action observation brought by
F1 neurons was in general not significantly stronger than the one they showed under continuous
visual feedback conditions. In contrast, F5 neurons exhibited the maximal discharge in response to
the delivery of the light flash which they were sensitive for, both at the peak and during the whole
grasping time, suggesting that the visual information conveyed by the brief enlightenment of the
hand movement was extremely efficient in strengthening the ongoing motor activity of these
neurons.

Moreover, population analyses showed that the pattern of activation of F5 neurons was
highly specific for the type of visual feedback received. In particular, the transient observation by
the animal of its own movement during the handgrip configuration phase of grasping, besides
augmenting considerably the motor response of the neurons, specifically increased the temporal
dispersion of the discharge peaks compared to the dark condition. Conversely, the F5 population
selectively active in the final period of grasping, when the monkey could briefly look at its own
hand contacting the door handle, displayed a more temporally compact distribution of the neurons’
firing peaks. Interestingly, a comparable firing dispersion was displayed by these populations
during grasping performed in full light, whereas in the flash condition for which no selectivity was
shown, the behavior of the same neurons moved towards the opposite distribution trend,
approaching that taken on in absence of any visual feedback. Hence, the same visual stimulus,
presented at different critical stages of the grasping action, differentially affected F5 neuronal

response. This suggests that the possibility of transitorily access the view of meaningful bits of the
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own ongoing action, online specifically reinforced the motor program used to execute that particular
action. The computational study of motor control has provided important working principles
concerning the relationship between sensory signals and motor commands. It is currently thought
that the motor system is governed by two main internal processing models, also called predictors,
which control the causal link between actions and their consequences (Wolpert and Ghahramani
2000). Inverse models implement the transformation from the desired consequences (i.e., the goal)
of an action to the motor commands necessary to execute that action. Any form of motor pre-
programming, as in the case of the present reach-to-grasp task, implicitly involves this inverse
relationship. Forward models, instead, monitor the state of the current motor commands by
continuously predicting the consequences of them, through sensory feedback from the periphery.
Thereby, forward models can support sensorimotor control by minimizing sensory and motor noise
in many ways, including integrating, invalidating or anticipating the kind of sensory inflow that
constantly update predictions (Miall 2003; Bays and Wolpert 2007).

In the context of the present experiment, for instance, estimation of the state of the system
could have supplemented noisy or absent visual information during grasping in full dark, or
generated the appropriate adjustment signals for online grip control after, or in advance of, a visual
reafference from the transient observation of the action during flash delivery. Indeed, the
enhancement of motor activity in the flash-selective populations in response to the brief
illumination of the grasping hand might be the result of forward predictions, intervening over the
ongoing inverse sensorimotor transformation for handle grasping. In addition, the increased timing
variability in the firing peaks of the neurons (measured during the brief view of the own hand
before the contact with the handle) might be directly reflecting the uncertainty of handgrip
estimation and thus be related to the error signal produced to fast rearrange the posture of the
fingers with respect to the target. Conversely, the compacted strengthened discharge of the neurons,
in response to the sight of the handle touch instant (a grasping event that is perceptually and
temporally more defined than pre-shaping and hence, more easily predictable) might be indicative
of a reinforcement signal, confirming the correct forward estimation of the state of the system at
that point of grasping.

Taken together, these results confirm that area F5 contains visuomotor neurons which are
specifically activated by the transitory observation of meaningful phases of the own grasping
movement. Moreover, to a minor extent, similar effects are shown to be present also in area F1.
Turning to the issue, initially addressed, of the nature of the visuomotor coupling at the basis of the
mirror response, what then might be the role of these F5 neurons, showing these peculiar

visuomotor properties? How can these findings be interpreted in the framework of a theory
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supposed to explain the development of mirror neurons? Finally, what might be the functional
interplay between F5 and F1 neurons displaying observation-evoked motor responses of the kind
described by our work?

Interpretational issues

It has been suggested that mirror cells, originally described in area F5, lie at a crucial
interface between inverse and forward models (Iacoboni et al. 2005; Carr et al. 2003). Connections
from STS to PF, and frontward to mirror neurons in F5, would represent an inverse model mapping
the visual description of actions onto the motor commands that are needed to execute them. The
reverse projections from F5 to PF and backward to STS would instead correspond to a forward
model translating the actual motor plan into a predicted sensory representation of it. This two-way
model could be responsible for the activation of mirror neurons during both action execution and
observation. However, though very elegant, this scheme presents some contradictory points.

First, the predictions made by forward models are, by definition, very specific, as they are to
provide the motor system with helpful information to constantly control movement outcome. On the
other hand, F5 observation-related mirror responses are characterized by different levels of
generality. Second, forward models originally imply that estimations about the current state of the
motor system mainly involve our own actions, whereas the mirror visual discharge has never been
described as concerning first-person motor action observation. The hyper-MOSAIC computational
model developed by Wolpert et al. (2003) takes into account the former argument, proposing that
multiple paired forward/inverse models act in parallel to estimate and control motor states at
different hierarchical levels of abstraction (Wolpert et al. 2003). Whereas lowest levels would imply
an extremely congruent matching between executed and observed actions, the highest layers would
represent the behavioral goal of actions, unbounded from the specific motor effector or kinematic
details of the action. Intermediate stages would progressively receive from previous layers, coding
actions at increasingly more abstract levels. How the lowest layers of this architecture can be
neuronally generated is not yet well understood. The visuomotor neurons described in the present
study, for the fact that they receive facilitatory inputs activated by the sight of specific phases of the
own action, thus showing perfectly matched execution- and observation-related activity, could be
the most appropriate elements to underpin the lowest-level forward/inverse models. In addition,
given that superior layers develop from these basic models, the discharge properties of these
neurons might play a critical role in the generation of the mirror visual response. This gives support
to the theory which asserts that the observation of the agent’s own acting effector is a fundamental
step in the biological process leading to neuronal activation associated to the observation of actions

performed by others (Rizzolatti and Fadiga, 1998).
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The hypothesis hereby proposed is that, through the forward models normally guiding action
execution, the motor system progressively extracts motor-invariant (goal-related) visual signals
from the repetitive experience of performing one given action from slightly different perspectives or
under conditions implying variability in the availability of the visual information relevant to the
action. These visual signals that continuously change, for instance, depending on the relative
position of the head and the eye with respect to the acting hand or the target object, would be
generalized by virtue of the fact that they are generated by very similar motor programs, all issued
to achieved the same goal. Once this generalization process, that is supposed to play a relevant part
not only during development but also during learning of new motor acts in adults, is sufficiently
established, it would be then gradually transferred also to actions performed by others. In so doing,
the visual representation of a given observed action would gain access to the corresponding motor
representation due to the coherent action description that the observer has previously acquired
through the visuomotor link concerning his/her own movements. In computational terms, the more
similar the observer’s hyper-MOSAIC is to the actor’s hyper-MOSAIC, the easier it will be to make
associations between them. These associations would be at the basis of the recognition operations
played by F5 mirror neurons and the flash-related effects found in this study, confirming that in area
F5 there exist neurons that specifically respond when the agent observes his/her own movement,
would represent the mechanismthrough which visual signals mapped on the own motor programs
are progressively acquired.

Additional experiments are required to more deeply explore this complex topic, such as
studying the response of these neurons when visual information about the ongoing movement is
disrupted and extending the testing to F5 mirror neurons. It is interesting to note that experiments
performed in artificial robotic systems aiming at simulating the development of mirror neurons
through the observation of one’s own hand during execution of grasping (Metta et al. 2006;

Craighero et al. 2007) seem to confirm this hypothesis.

Despite that many studies, principally conducted on humans, have reported observation-
evoked responses also in primary motor cortex, there is to date no evidence about the existence of
mirror neurons in this area. These F1 modulations have been proposed to be not functional but
simply a reflection of the strong cortico-cortical interconnections with area F5 (Fadiga et al. 1995,
Kilner and Frith 2007). It is well known that F5 can influence hand muscles via its dense
projections to F1 (Dum and Strick 2005). Conditioning F5 stimulation results in significant
facilitation of F1 corticospinal activity and, consequently, of responses in hand motoneurons (Cerri

et al. 2003; Shimazu et al. 2004; Schmidlin et al. 2008). Hence, according to this interpretation, F1
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modulation during action observation could be considered as an effect of the simultaneous strong
activation of area F5. An alternative hypothesis is that F1 neurons might play a specific functional
role, by representing the observed actions in a different coordinate system with respect to that used
by F5. In particular, it might be that whereas F5 decodes the extrinsic features of the observed
action (i.e., the relative positions of the hand and of the target in space), F1 describes the intrinsic
pattern of muscle activation involved in the action, similarly to what is coded by the two areas
during the actual action execution (Kakei et al. 2001). Specific experiments should be carried out to
test both hypotheses. However, the poor action observation-related activation of F1 found in the
present study, strongly suggests that it may be rather the reflective result of the highly significant

modulation characterizing neuronal responses in F5.

Conclusions

By this work we demonstrate that ventral premotor area F5 contains visuomotor neurons
selectively strengthening their motor response during continuous or transient vision of the
monkey’s own grasping movement. These findings confirm that F5, as well as area AIP in the
parietal lobe, is crucial for the visual control of handgrip formation during grasping. Furthermore,
our results lay the ground for a visuomotor theory about the generation of mirror neurons. The
specific observation-evoked motor responses described here can be thought of as the key step for
transferring the meaning attributed to our own movements to actions performed by other

individuals, both during development and learning of new actions.
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