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Abstract: Rhythmic and discrete movements are frequently considered separately in motor control,
probably because different techniques are commonly used to study, and model, them. Yet, an
increasing appeal for a comprehensive model of movement generation requires to bridge the different
perspectives arising from the study of those two types of movements.

In this article, we consider discrete and rhythmic movement within the framework of motor primitives,
that is of modular generation of movements. Doing so, we hope to get insights on the functional
relationships between discrete and rhythmic movements and therefore on suitable representations of
both rhythmic and discrete movements.

We start by reviewing some of the existing literature regarding discrete and rhythmic movement, that
we study from a functional view point. We then present some mathematical models found in the
literature for the generation of discrete and rhythmic movements.

Response to Reviewers: See attachment "response.pdf”
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Response to reviewers

First, we would like to thank both reviewers for their useful comments.

Reviewer 2: This review concerns the paper entitled ”Modeling Discrete
and Rhythmic Movement through Motor Primitives: A Review”, by S. Degallier
and A. Ijspeert. The manuscript was submitted to Biological Cybernetics.

My global comment is that this paper is well written and very clear. It would
need minor clarifications/corrections to be accepted. The paper gathers nice con-
cepts about motor control, motor primitives, and mathematical model. I enjoyed
reading it.

Here are first two general comments concerning the paper as a whole:

e You propose Bizzi’s view about equilibrium point as the control framework
for discrete movement. While Bizzi’s group obtained intriguing results
to validate this framework, some authors have also questioned this theory
(Hinder and Milner, J. Physiol. 549, 2003; or Liu and Todorov, J. Neu-
rosci. 27, 2007), suggesting that discrete movements might be generated
from optimization principles. Interestingly, the first paragraph of your in-
troduction refer to the modular organization of movement generation (a
correlate of Bizzi’s framework) as a mice ground to explain adaptation of
movements. Recently, Izawa et al. (J. Neurosci. 28, 2008) have instead
suggested that adaptation of discrete movements could result from reopti-
maization processes. It would be very interesting that you discuss the simi-
larities and dissimilarities between the two approaches, and to what extent
the equilibrium approach is really necessary to your contribution. For ex-
ample, de Rugy et al.’s model is not based on equilibrium-point hypothesis
(as far as I understand it).

Response. *** The term equilibrium point is here a bit misleading.
Indeed, when speaking of force fields we refer to an equilibrium position
in space (as used by Bizzi et al in for instance Neuroscientist, 2002), not
to muscles rest position (as used by Feldman).

We do not consider motor primitives at the planning level, but only at
the execution level, thus, to our point of view, there is no contradiction
with optimization-based approaches. Indeed motor primitives [taken as
functional neural and/or muscular units responsible for the generation of
a specific movement| are consistent with internal models and optimization-
based approaches; motor primitives are indeed believed to be used by the
CNS to solve the inverse dynamics problem of finding the motor command
corresponding to a planned limb movement (see for instance Mussa-Ivaldi,
1999, Current Opinion in Neurobiology). That is motor primitives provide
the CNS with built-in links between muscles and movement direction and
hence facilitate the resolution of the inverse problem of finding the muscles
commands generating the desired trajectory. We have tried to make this
point clearer in the introduction and in the following sections.

e You should be more cautious when generalizing results and concepts that
were obtained with animals (mainly if non-primates) to humans. This is


http://www.editorialmanager.com/bicy/download.aspx?id=15286&guid=55d4eb20-a62e-443c-9f18-b4aa8b23c8e7&scheme=1

clearly stated when you discuss the CPG work (for which only indirect ev-
idences exist for humans) but - in relation to my 1st remark - not when
you discuss the generation of discrete movements. It is very likely that
the complexity of discrete movements (and the repertoire of possible dis-
crete movements) correlates with the volume of some cortical areas across
species, suggesting that the mode of control is certainly more complex in
humans than in frogs.

Response. A paragraph presenting results concerning primates (includ-
ing humans) has been added; it has notably been shown that a finite set of
synergies could account for fast reaching movements in humans (d’Avella
et al., Jour. of Neurosci., 2006) providing evidences that the concept of
motor primitives mgiht be extendable to higher vertebrates. Note that
in the specific section that you are mentioning, we focus mainly on the
execution of the movement at the spinal level, not on the planning of the
movements in higher areas.

Here are some others remarks, listed as they appear in the text:

e p.2 left col., line 10: You propose to take a functional perspective. While
very central to your contribution, this terminology does look clear to me.
Please be more specific. What is a functional perspective? How does it
differ from previous work?

Response. We have defined more precisely what we mean by a functional
perspective:

By functional perspective, we mean that contrarily to other previous ap-
proaches, we focus on the processes underlying the generation of the move-
ments rather than on the kinematic outcomes of the movement.

e .4, section 4: I wondered why this section should not come first (after
introduction). This is very nice material and summary.

Response. This section has been moved after the introduction.

e .4, right col., line 8: please define "somatosensory information” (extra
footnote).

Response. The term has now been defined as a footnote as follows:
The term somatosensory information refers to different sensory signals
from all major parts of the body, namely proprioception (that is muscles
and joints position), touch, pressure, temperature and pain (see Kandel
et al., Principles of Neural Science (2000) for instance). Note that these
different signals do not all use the same pathway.

e pp.6-7, section 6.1: you nicely summarize the concept of internal models.
To what extent is this framework not in opposition with the equilibrium
point theory? In a recent paper (Exp Brain Res 194, 2009), Feldman (one
of the "popes” of the equilibrium-point theory) argue that efference copies
of motor commands in the brain (a necessary element of internal mod-
els) are not necessary if one adopts his view on the generation of discrete



movements. How do you conciliate Internal Models and Equilibrium Point
Theory in your paper?

ok

Response. See Response above.

e .7, left col., last par. of section 6.1: I do not understand this paragraph.
How do you conclude that internal models mean that the CSN represent
discrete movements as time-varying equilibrium-points? Please be more
explicit.

ok

Response. See Response above.

e pp.7-8, section 6.2: even if it gathers nice material, I do not see the in-
terest of this section for your paper. What does it bring to your message?
I believe that this section (at least for the part going to line 39 of p.8) can
be drastically reduced.

Response. This part has been reduced. The pertinence of what has been
kept has also been emphasized. Our aim is to link movement encoding with
the concept of motor primitives before introducing the existing literature
on discrete and rhythmic movements encoding per se.

e p.15, section 7.4: when citing de Rugy et al.’s model, please also refer to
Ronsse et al. (Neural Computation 21, 2009). These authors extended de
Rugy’s model to cope with reafferent signals, and to capture some biman-
ual coordination features.

Response. Thanks for the reference, it has been added.

Reviewer 3: Modeling Discrete and Rhythmic Movement through Motor
Primitives: A Review - Sarah Degallier and Auke Ijspeert

The aim of the paper is to review the existing studies and bridge between
different perspectives when approaching the studies of discrete versus rhythmic
movements using the motor primitives’ framework.

In general this is a research topic which is of major interest to Motor Control
researchers and generally the authors did quite a good work in compiling the
magor concepts that are in the scientific forefront when studying discrete versus
rhythmic movements. The paper reviews current neurophysiological literature
and surveys the many different existing approaches to the problem of controlling
such movements by looking at two levels- the level of command and the level of
generators, the reviewed models are divided into several groups : the so called
Two/Two, Two/One, One/One and One/Two schemes.

Hence, the authors provide quite a useful roadmap to researchers becoming in-
terested in this topic and such readers may find the review as providing an
illuminating entry point. Still, the paper should undergo revision since there are
several important aspects of the review that should be dealt with as follows.

General comments:



e [t is said in the introduction that experiments have shown that motor prim-
itives seem to be present at the planning and execution levels. Still the
paper reviews mainly dynamical systems based models and approaches and
the review does mot seem to adequately review the topic of the existing of
motion primitives for discrete and rhythmic movements at the kinematic
level. While given that the paper covers a large number of issues and topic,
this confinement to these aspects is quite well understood, the fact that the
paper focuses on certain aspects of this general topic and not others should
be clearly stated in the introduction.

Response. This comment is related to the one of Reviewer 2 who required
more explanation on the term functional (please see above). Indeed we
meant by that the we focus on the generation process more than on the
outcome of the movement (even if both are obviously tightly linked), no-
tably because Hogan and Sternad (Exp. Brain Research, 2007) did an
excellent work in analyzing the kinematics of discrete and rhythmic move-
ments. The present review thus aims at being a complement to such
analyses. To clarify this, the following footnote has been added in the
introduction:

In this review, by motor primitive we mean a functional neural and/or
muscular unit responsible for the generation of a specific movement. As
such a topic is already dense, we do not consider motor primitives in
trajectory planning or more generally in the kinematic outcome of the
movement. The reader is referred to Hogan and Sternad (Exp. Brain Re-
search, 2007) for a thorough kinematic analysis of discrete and rhythmic
movements.

o A review, I believe, should be as impartial as possible. Whereas a research

paper has an agenda to promote, a review paper should not choose sides
and should represent the various existing view points on the subject.
In that respect, there is still a great debate revolving the existence or even
the justification for the meed of internal models in the community. Of
course, here primitives provide a framework for the current review and
the link between primitives and internal models is natural. Nevertheless,
the authors should also present in more details other alternative views (e.g.
Equilibrium point hypothesis). Thus, while the equilibrium point control is
mentioned briefly from the perspective of force fields this is not sufficiently
detailed from the perspective of equilibrium trajectory models.

Response. We do not want to enter the debate as it is not our topic here:
the section dealing with internal models has thus been renamed ”Motor
primitives in movement planning”. The text on internal models has been
reduced so to only keep the part relevant to this review. Moreover we have
added a paragraph mentioning that the existence on internal models was
still debated and the major objections to their existence. We also now
present the approach by Latash et al, Motor Control, 2007, as it presents
an alternative view that is also based on muscles synergies.

e Fven though there is a separate discussion of planning versus execution
there is mot sufficient distinction between representations at different hi-



erarchical levels, e.g. joint kinematics versus muscle activation. This is
especially evident when reviewing the existing models.

Response. The review of existing model has been extensively revised
and more details on each model has been given, in particular on the rep-
resentations. We have tried to clearly specified the type of representation
that was discussed throughout the article.

The term ”Synergy” is used quite often in the manuscript but it is not
even once defined. Since, there is some debate revolving this term, it is
desirable that the authors briefly define what Synergies are.

Response. The term synergy has now been clearly defined in a footnote
in the following way:

By synergy, we mean a set of muscles activated in a coordinated way so to
execute a specific movement, that is a group of muscles defined relatively
to the movement they produced when they are activated together.

While the authors review current literature about motor neurophysiology
and neural representations they should make greater effort to clearly focus
on the literature that is especially pertinent to the distinct neural represen-
tations of discrete versus rhythmic movements and not of motor behaviors
in general as is currently done. To the best of my understanding the cur-
rently available knowledge about such representations at the cortical level
is quite limited, perhaps to a few fMRI and/or single cell studies.

Response. This part has been reduced. The pertinence of what has been
kept has also been emphasized. Our aim is to link movement encoding with
the concept of motor primitives before introducing the existing literature
on discrete and rhythmic movements encoding per se.

In Section 7, the discussion of the mathematical models should be exten-
sively revised. The choice of models is fine. However, each model is very
briefly described while the mathematical equations are fully given (and
there are 7 models descriptions). This even makes things more compli-
cated since it is impossible to really understand the models as presented by
the mathematical equations (moreover, even not all the models’ parame-
ters are fully explained). I believe it will be better to give a better intuition
of these models and discuss them at a more conceptual level by presenting
a more integrated discussion and description of the issues and problems
they address and how they fit the different concepts presented in the pa-
per. In the current situation, the interested reader cannot find this part of
the review educating enough nor useful and anyway the reader will have
to refer to the original paper. Therefore, since it is a review which has
to discuss the different approaches, their advantages and shortcomings, as
well as open issues, there is no much good in providing too many details
which only add clutter and confusion rather than strengthen the concepts
behind these models.



Response. The mathematical section has been revised accordingly to
the given suggestions. The parameters and the level of representation are
clearly stated and the models are explained in details. The major aspects
of the models are now illustrated by figures linking the control parameters
and the corresponding output.

The equations have however been kept as we think that for some people
equations are clearer than any text. Moreover, we will provide the mat-
lab code we use for generating the figures to the interested readers upon
demand, as stated in the text.
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23 Abstract Rhythmic and discrete movements are frequentiyiuscles across the body, only a couple of synergies of mus-
24 considered separately in motor control, probably becaudes need to be controlled. Here, the tesymergydesigns

25 different techniques are commonly used to study and moa@eset of muscles activated in a coordinated way so to exe-
26 them. Yet, an increasing appeal for a comprehensive modate a specific movement, that is a group of muscles defined
27 for movement generation requires to bridge the different peelatively to the movement they produced when they are ac-
28 spectives arising from the study of those two types of movivated together. Strong evidence, notably through the con
29 ments. cepts of central pattern generators and force fields (see res
30 In this article, we consider discrete and rhythmic moveeviews by Grillner (2006) and Bizzi et al (2008)), supports
31 ment within the framework of motor primitives, that is othe assumption that such functional modules of movements
32 modular generation of movements. Doing so, we hope to gae located at the spinal level.

33 insights on the functional relationships between discaate Indeed, neurological studies have provided evidence that
34 rhythmic movements and therefore on suitable represerntd@e spinal cord produces many behaviors in a modular way.
35 tions for both of them. Bizzi and colleagues have brought to light such synergies of
36 We start by reviewing some of the existing literature ranuscles in the frog (Bizzi et al (1991)); they have identi-

37 garding discrete and rhythmic movement, that we study frofled small functional sets of modules related to the directio
38 afunctional view point. We then present some mathematieslmovements at the spinal level. Furthermore, it has been
39 models found in the literature for the generation of disereshown by Mussa-Ivaldi et al (1994) that by simply combin-

40 and rhythmic movements. ing these modules, a wider range of stable movements could
41 be produced. Finally, Kargo and Giszter (2000) have shown

42 that such synergies could account for the natural whipping

43 1 Introduction reflex in the frog, showing that the CNS could use such prim-

44 itives to produce behaviors.

45 Humans are able to adapt their movements to almost any In this review, bymotor primitivewe mean a synergy re-
46 new situations in a very robust, seemingly effortless way. Bponsible for the generation of a specific movement. As such
47 explain both this adaptivity and robustness, a very promigtopic is already dense, we do not consider motor primitives
48 ing perspective is the modular approach to movement gemvolved in trajectory planning or more generally present i
49 eration: Movements results from combinations of a finite sete kinematic outcome of the movement. The reader is re-
50 of stablemotor primitivesorganized at the spinal level (sederred to Hogan and Sternad (2007) for a thorough kinematic
51 Bizzi et al (2008) for a review). analysis of discrete and rhythmic movements.

52 In terms of control, the modularity assumption is attrac- In summary, motor primitives are here taken as neu-
53 tive because it drastically reduces the dimensionalityhef tral/motor building blocks of movements that are used by
54 problem: instead of a complex activation of a vast number tife CNS to execute a particular movement. In this article,
55 we propose to consider discrete and rhythmic movements

56 This work was supported by the European Commission’s Cimgnit ,, 1 ; ; . ;
= Unit, project no. IST-2004-004370: RobotCub and by the Swis- within this modularity framework; more precisely, we take

tional Science Foundation. what we call afunctional perspectivéo the generation of
58 - . these movements. More precisely, here we focus on the pro-
59 S.Degallier A. lispeert cesses underlying the generation of the movements rather
60 Biologically Inspired Robotic Group (BIRG) . - -

School of Engineering than on the kinematic outcomes of the movement, as this
61  Ecole polytechnique fedérale de Lausanne subject as already been addressed in the past. Indeed, most
62 1015 Lausanne of the studies on discrete and rhythmic movements are ei-
63 E-mail: sarah.degallier@epfi.ch ther based on EMG analyzes of the generated movements
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Cerebral Cortex
Definition of the motor plan
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Brain Stem
Selection of the motor program

(Hogan and Sternad (2007), van Mourik and Beek (2004)) or

on fMRI analysis (Schaal et al (2004)) as it will be reviewed ~__ =~
in Section 3. While those studies have provided insightful r
sults on the nature of discrete and rhythmic movements, we °

think that taking a functional perspective is a useful, clanp

Basal Ganglia
Posture and selection
of behavior

mentary step to understand how such movements are gener- ¢ T
ated, and also to provide more understanding on how brain Spinal Cord
and EMG studies can be bridged. | Spetiotemporal sequence of <&

After a brief recall on some basic notions on movement
generation (Section 2), we present several studies onthe Hig. 1 Hierarchical organization of the three motor structuretsth&

ferences between discrete and rhythmic movements (Secﬁlﬂé‘eSt level, the cerebral cortex projects directly to spinal cord
and the brain stem. The spinal cord also receives input frenbtain

3). We then introduce some of the literature on the COMGgm Tiwo independent entities (in green), the cerebelhohtlize basal
bination of these movements in Section 4. Albeit we agnglia have be proved necessary for smooth movements ahdes
well aware that movement generation is a dynamic proced®y interact with both the cerebral cortex and the braimste
involving the whole motor system, we discuss separately
movement execution and movement planning as we believe
that in this way properties pertaining to those two phases@ird; the primary motor cortex and some other premotor ar-
movement can be brought to light, as it will be discussed @#s project directly to the spinal cord (corticospinal frac
Sections 5and 6. We furthermore present in Section 7 sofi regulate motor tract from the brain stem.
existing mathematical models for the generation of digscret Observations on patients with lesions in the cerebellum
and rhythmic movement, as such models provide discerniaigd basal ganglia have shown that the cerebellum is involved
information on the generation of these movements. in timing and coordination of movements, as well as in learn-
ing of new motor programs, whereas basal ganglia is be-
lieved to be involved in the motivation and selection of ap-
propriate behavioral responses.
Thesomatosensory informatios crucial for movement
grecution as it provides the representation of the space in
nWﬁiCh the task has to be performed and also of the state and
posture of the body. A constant update of this information is
needed to ensure smooth movements. The somatosensory in-
formation is also used to control the movement which is ex-

motor task; (b) thédrain stem which elaborates the motorecuted. This control can be feedback or feed-forward. Feed-
’ ! back control is used by the spinal cord to maintain a given

plan to execute the motor task; and (c) ipenal cord which sition and to modulate the force needed to perform the

generates the spatiotemporal sequence of muscles eanﬂvaqﬁ%k_ A feed-forward control, based on experience, is used

to execute the task. In addition, the cerebral cortex and R, ;

brain stem are influenced by tlerebellumand thebasal oF anticipation; it can also modify the feedback response.

ganglia which can be considered as feedback circuits, &hne|der and Sh|ffr|n.(1977_) d'St'nngh the controlled a

cerebellum being also linked with the spinal cord. Figuret € automatic processing o_f_lnformatlon, the_controllem}p_r
ss is relatively slow, volitional and attention demagdin

represents a schematic view of the motor structures of the™" . . ; .
in obstacle avoidance, for instance, where the visual in
a

2 Overview on movement generation

According to textbooks (see for instance Kandel et
(2000)), movement generation is achieved through three
tor structures organized hierarchically and correspanttin
different levels of abstraction. Namely, those structumes
(a) thecerebral cortexwhich is responsible for defining the

central nervous system (CNS). Note that the cerebellum mation has to be processed), whereas the automatic one is

the basal ganglia act on the cerebral cortex through the t Lt not volitional a?nd often r’1a oidable (Underwood and

lamus, which is not represented on the figure for clarity reg— ’ vou ( unavol - ( wo

sons. veratt (1996))) _and demands_no attention (as f_or instance
More precisely, the spinal cord is responsible for t céontact information of a foot with the ground which is fed

activation of motoneurons through networks of spinal ne ack into the_ CPGsin Iocomotlon)._
Along this three-layered architecture, three types of

rons, those circuits being modulated by higher areas. Then AN .
in the middle, the brain stem receives input from the Cerg]_évement are distinguished relatively to the way there are

bral cortex and projects into the spinal cord. It contrilsutfmducgd S?ﬁ’ for intstanti_e, n@l;anddel et all (%000)):rea)
to the control of posture by integrating visual, vestibula exes (b) rhythmic automatisnts and (c)voluntary move-

and somatosenscrynformation. It can also control more ments Reflexes and rhythmic automatisms are spontaneous,

distal limb muscles involved in goal directed movementy/N€reas voluntary movements are the result of a (motor)
mgp. Thus, higher cortical areas are required for volyntar

movements. Automatisms are mainly generated at the spinal

1 The termsomatosensory informatiorefers to different sensory
signals from all major parts of the body, namely propriozep{(that 2 Rhythmic automatisms (as motor generation processes)f@me o
is muscles and joints position), touch, pressure, temperatnd pain referred to as rhythmic movements in the literature. Howeweeavoid
(see Kandel et al (2000) for instance). Note these diffes@grals do confusion with rhythmic movements as kinematic outcomek®mo-
not all use the same pathway. tor system, we will rather use the term automatisms.
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cord and the brain stem levels whereas the generation of yadrent differences between discrete and rhythmic movement
untary movement also involves areas of the cerebral corteate artifacts due to different scientific approaches or ihbo
Now that some of the basics notion have been definedpvements are in fact produced independently. Indeed, as
we can start reviewing the existing literature on discreig aproposed by Schaal et al (2004) and van Mourik and Beek
rhythmic movements. (2004), three possibilities need to be addressed: (a) mrigth
movements are repeated discrete movementsfatenation
hypothesiy (b) discrete movements correspond to half a cy-
cle of a rhythmic behaviorh@lf-cycle hypothesjsand (c)
discrete and rhythmic movements results from different pro

. - . : imiti hypothes)s
Math tically, def hvth dd t %essestho primitives hyp
athematicall, gefining rhythmic and discrete movements If hypotheses (b) and (c) are still left open, several stud-

i task. Rhythmic refers t iodic signals, di ; ; -
I an casy 'as yinmic refers 7o periodic signa's, cIscre s have shown that hypothesis (a) is unlikely to be true.

to aperiodic ones. However, when considering moveme di ' and K h
that we actually perform, the task starts being tricky, thee mf ccording to van Mourik and Beek (2004), the concatena-

jor problem being that movements are finite in time and thipn hypothesis is mainly a consequence of trajectory plan-
the formal, mathematical definition of periodicity is thus u MNg theory where itis often supposed that discrete segsment
usable. Moreover inner variability of movements and mod@€ Used as building blocks for the movement. It has been
lations by the environment (contacts for instance) change {Uled 0ut by several studies comparing discrete and rhyth-
basic nature of the actual trajectory, so that it is impdesigNic movements (van Mourik and Beek (2004); Hogan and
to perform a perfectly periodic trajectory for instance. Sternad (2007)) where the key kinematic features of rhyth-

The attempt by Hogan and Sternad (2007) to develoﬂrﬂc movements are significantly different from those of the

taxonomy to classify discrete and rhythmic movements Cow_screte_movem_ents. S_chaal etal (2004). obtained sim'_Har re
Its using fMRI techniques: some cortical areas activated

firms the inherent difficulty of the task. A discrete movemen}” " . . i
is defined as a movement which occurs between two p fring discrete movements where not active dynng rhyth-
c ones. In addition, as reported by van Mourik and Beek

tures, where postures stand for a non zero interval of ti . \ :
where (almost) no movement occur. Rhythmic moveme 004), Guiard (1993) argued against the concatenation as-

are categorized in four subsets, going from strictly pédodsumption that it would involve a waste of elastic energy (in-

movements to movements with recurrent patterns. Howeﬁféed at the end of a reaching movement, the energy has to be

as the authors point out in the article, those two definitioff&>SiPated, whereas for rhythmic movement, the energy can
are not exclusive. The so-called rhythmic movements occlff Stored as potential energy for the remaining half-cycle)
in between postures (and thus enter the definition of dis- It is however important to point here that those compar-
crete), and discrete movements can be repeated so to becl§@fes are always made between a reaching movement and
periodic. its corresponding back and forth rhythmic movements: Thus
Another difficulty comes from the fact that rhythmic andhe difference observed may be due to the characteristics of
discrete movements have mainly been studied separaf€gching itself rather than due to the fact that reaching is
in the literature, although some interesting (relativedy r @ discrete movement. For instance, in the experiment con-
cent) articles on their combinations exist. This distioti ducted by Schaal etal (2004), the subjects had to eithee cycl
is mainly due, from our point of view, to two interlinkegaround arestposition at a self—cho_sen amplitude or to dtop a
factors. First, rhythmic and discrete movements have rfdghosen position, to wait for a while and then to start again.
been studied per se in general, but mainly as outcomesRI recordings of this experiments have shown that some
some specific processes in trajectory generation, fomnetacomcal_ areas active during the_dlscrete movements were
central pattern generators (CPGs) in locomotion and sen86t activated during the rhythmic movements, leading to
rimotor transformations in reaching. Second, rhythmic a@e conclusion that rhythmic movements cannot be concate-
discrete movements are representative of two different Id1ated discrete movements. However, as it has been pointed
els of movement generation, i.e. the automatic and volyntut, notably by Miall and Ivry (2004), the discrete move-
levels. This implies different investigation techniquesyst Ments required more processing, namely choosing where to
of the studies on rhythmic movements have focused on P and when to start again, which could also explain the
spinal cord-brain stem system in deafferented or spindlizdifference observed in the fMRI recordings.
animals, whereas discrete movement is usually studied us-Another non negligible phenomenon is the onset and the
ing brain imaging techniques or kinematic data on awakending of a rhythmic movement: indeed, border conditions
behaving animals. Overcoming these differences in perspebanges the kinematic properties of the cycles (compared to
tive is a necessary step to understand movement in genefi@rmal, in-between cycles), making them closer to those of
These two issues make a review of rhythmic and digiscrete movements. Indeed, when a discrete movement is
crete movements difficult in the sense that any comparisp@rformed, the initial and final accelerations are null ehil
between the numerous studies on the subject is laboriduis not the case during in-between cycles. However, in the
due to the fact that the methods, the point of view and tfigst and final half-cycles, a similar feature can be observed
physiological level of investigation are different. It is-i van Mourik and Beek (2004) have studied separately
teresting to question if, in terms of motor control, the aghe in between cycles and first and last half-cycles. They

3 Defining discrete and rhythmic movements
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came to the conclusion that, whereas the in between ¢g-be higher after the discrete movement. In addition, they
cles were significantly different from the discrete movesbserved that (d) once the discrete movement is initiated, i
ments, the first and last half cycles were kinematicallyeloss performed independently from the rhythmic one, in the
to discrete movements. If their results do not rule out tleense that the discrete trajectory is not influenced by the
half-cycle hypothesis, it speaks more for the two primgiverhythmic movement. Basing themselves on the monotonic
hypothesis: the performed cyclical movements could be liypothesis (St-Onge et al (1993)), i.e. an hypothesis decor
fact a sequence of a discrete, onsetting movement, followiad to which the command of the discrete movement stops at
by rhythmic movements and terminated again by a discrete time of its peak velocity, they conclude that discretg an
movement. A model by Schoner and Santos (2001) basedbythmic movements are excluding each other at the neural
this latter hypothesis will be presented in the last parhisf t level, in the sense that they cannot co-occur. However, thei
review. kinematic outcome outlasts them and overlap.

The questions on the nature of discrete and rhythmic Performing the same experiment at lower frequencies (2-
movements remains thus open, even if strong evider@idz instead of 5-7Hz), Sternad et al (2000) came to a differ-
seems to rule out the concatenation hypothesis. In the nert conclusion concerning the interdependence of the two
section, we present some work on the interaction of discret@vements. Indeed, they observed a significant influence of
and rhythmic movements in tasks involving their combindhe rhythmic movement on the discrete movement (lower
tion. frequencies of oscillations lead to longer discrete move-
ments), which is in contradiction with the result (d) obtadn
by Adamovich et al (1994). Moreover, the higher frequency
observed by Adamovich et al. after a discrete movement (ob-
servation (c)) appeared to be a transient phenomenon. Ac-
cording to these observations, Sternad et al (2000) propose
gﬁat both movements co-occur and that the attenuation of the
cillations during discrete movements is due to inhilgitor
enomena.

4 Discrete and rhythmic movements and their
combination

Most of the EMG and movement studies on the combinati
of rhythmic and discrete movements are built on the saf}
scheme: a particular joint (the finger or the elbow gene)all9

has to be moved from an initial to a target position (discret u('j\logeht:v?]ti:f;?:g\;;erﬂgﬁtgfirTrOa\f[grBen;;;“gﬁggi%\%g
movement) while oscillating (rhythmic movement). The os: y y

cillationis either physiological (Goodman and Kelso (1983 2005), where it has been found that rhythmic and non rhyth-

Adamovich et al (1994): Michaels and Bongers (1994); Stéﬁic movements can be evoked through two different areas

nad et al (2000)) or pathological (Wierzbicka et al (1993 f the primary motor cortex. Indeed, it has been shown in

. . ddition that simultaneous activation of both areas redult
tEolbsktae?:]Z:j((l;:(??)S %?g%igt ﬁ:ég?g&i)e)\'lvthe readeris reder in a shift of the offset of the whisker oscillations, thatiis i

In all these experiments, an entrainment effect was o combination of both movements. This experiment will be

served, that is the discrete movement is phase-coupled |lﬁ(i;\j/ssed n&(_)re in details in S_ectllo?hG. i £ di ¢
the rhythmic movement, in the sense that the onset of thed ﬁ'}ﬁw. ISCUSS mor? prgciie){ the generat_lon 0 d'sctrfhe
discrete movement occurs preferably (though not alwa rmythmic movements, both at the execution and at the
during a specific phase window of the oscillations. Good-anning levels.

man and Kelso (1983) showed that this phase window cor-

respond to the peak of momentum of the oscillations in the

direction of the discrete movement. Interestingly, it isgllw 5 Discrete and rhythmic movement in movement

known fact that professional pistol shooters press thgérig execution

in phase with their involuntary tremor, while beginners try

to immobilize themselves before shooting. We present movement execution through two fundamental

In terms of EMG, the burst initiating the discrete moveconceptscentral pattern generatorandforce fieldsthat we
ment occurs approximately at the time where the EMG adevelop in the following.
tivity for the rhythmic movement would have been expected Central pattern generator§CPGs), that is spinal net-
without this perturbation. This effect is thus referred & avorks involved in many behaviors in vertebrates and inverte
"burst synchronization” by De Rugy and Sternad (2003prates, is a seminal concept in the generation of (rhythmic)
Performing the same experiment, although at different frexovements (Grillner (1985), Delcomyn (1980)). Although
quencies, Adamovich et al (1994) and De Rugy and Stermadst work on CPGs were originally dedicated to rhythmic
(2003) came to different conclusion on movement combinaovements, Grillner (2006) for instance now enlarges it to
tion. discrete movements.

Indeed, Adamovich et al (1994) observed the three fol- Another primary discovery in movement generation is
lowing feature: (a) the oscillations rapidly attenuateiniyr the concept oforce fields which has been brought to light
the discrete movement and resume after the peak velocityogfBizzi's group (Bizzi et al (1991)). As we will see, forces
the discrete movement; (b) there is a phase resetting of fledds provide evidence for a modular organization of the
oscillations after its attenuation; and (c) the frequeraydt spinal cord circuitry.
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In the following we present these two notions more ito be modulated by the sensory-motor information so that it
details, as well as their relationship to discrete and ntmgh  stays coordinated with body movements.
movements. Sensory feedback is also involved in the mechanisms un-
derlying short-term and long-term adaptation of CPGs ac-
cording to Pearson (2000). He postulates that the long-term
phenomenon are driven by the body and limbs propriocep-
tors together with central commands and neuromodulators.
%;glwato (1996) also proposed that persistent errors detecte

5.1 Central pattern generators

One century ago, two discrepant explanations for the rhy
micity presents in locomotion were competing: one sugge
ing that sensory feedback was the main trigger of the d 1e feed fqrward command._ .

ferent phases of locomotion (Sherrington (1910)), and an- | N€ existence of CPGs in the human system is well ac-
other one suggesting the existence of central neural neswor€Pted nowadays, even if the identification of such spinal

; ; ; ks has not been possible yet. Strong evidence is in-
capable of generating rhythms without any sensory inpJEtWOrks I . . :
(Brown (1912)), such neural networks being now called cefi€éed provided by studies on infants (Thelen (2000); Yang

tral pattern generators (CPGs). Since then, this lattesttyp etal (1_998); Lamb and Yang (20.00))‘ Stepping_ re_flexes, just
esis has been strengthen by experiments on both vertebrfi& birth, have been observed in anencephalic infanos, pr
and invertebrates (see Stein et al (1997) or ljspeert (200N evidence that circuits responsible for this beheare
for more comprehensive reviews). ocated at t.he splna_l and/or_ at the bral_n stem level.

Actually, there is now very clear evidence that rhythms In addition, studies of disabled patients have shown that

are generated centrally without requiring sensory informi{l the absence of sensory information, gross movement con-
tion. Experiments on lampreys (Cohen and Wallen (1982%9I is preserved, even if peripheral information is neaegs
Grillner (1985)), on salamanders Delvolvé et al (1999) af@l Precise movement organization and control (see Jean-
on frog embryos (Soffe and Roberts (1982)) have shown thgr0d (1988) or Gandevia and Burke (1992)).

when the spinal cord is isolated from its body, electrical or Finally, even though itis believed thatin humans the role
chemical stimulations activate patterns of activity, eaffic- °f deéscending signals is more crucial for movement genera-

tive locomotion, very similar to the one observed during ifion and thus that the spinal cord system may be less able
tact locomotion. to function after spinal cord injuries (SCI), it was shown

; ; dmill exercises for patients with SCI improvedrthe
Grillner (1985) proposed that CPGs are organized Hittrea \ .
coupled unit-burst elements with at least one unit per d¥a/king pattern (Barbeau and Rossignol (1994); Dietz and

ticulation (i.e. per degree of freedom) in the body. Cheraarkema (2004); Edgerton et al (2004); Rossignol et al

et al (1998) report experiments where these units can be @007); Wolpaw and Tennissen (2001)). This may be ac-

vided even further with independent oscillatory centers fgountéd by the fact that CPGs can be trained to function

flexor and extensor muscles. Furthermore, several expdiependently from descending signals (Stein (2008)).-Dim

ments show that CPGs are distributed networks made $§€Vic et al (1998) have shown that non rhythmic stimula-

multiple coupled oscillatory centers (ljspeert (2008)).  tons of the spinal cord of patients with complete SCI could
According to Marder and Bucher (2001), two typeg1duce patterr_led, Iocomptor-hke activity. . . .

of CPGs networks can be distinguished: the so-called In conclusion, the existence of CPGs in animals is now

pacemaker-driven networks and networks with emergefjtondly endorsed, while the role of CPGs in humans is not
rhythms. Pace maker-driven networks, which are usuaffff" yet, notably because movement generation in humans

networks that are always active, as in breathing, consistfondly depends on the descending signals (MacKay-Lyons
a subnetwork of intrinsically oscillating neurons thaves (¢002)). However, there are strong evidences that adapta-

non-bursting neurons into a cyclic pattern, while in netgor 10N Processes occur in the spinal cord, in particular throu
ri[lgmlsmg clinical treatments after SCI that appear to expl

proprioceptors are used to recalibrate the magnitude of

with emergent rhythms, the most commonly found, the o
cillatory pattern comes from couplings between the neyro
for instance by mutual inhibition of two reciprocal neurons _ Most of early work on CPGs were focused on rhyth-
A mathematical model by Matsuoka (1985) of such a systéf{C movements, however the discovery of functional mus-
will be presented in Section 7. cles synergies in the frog responsible for discrete movésnen

While sensory feedback is not needed for generating {iave lead to an extension of the term, as we will see in the

rhythms, it has been shown that some important featured &<t Section.

the actual motor pattern are not present in the fictive mo-

tor pattern (Stein and Smith (2001)). For instance, in the ca

scratching movement, the rhythmic alternation between dg2 Motor primitives and forces fields

onist and antagonist muscles is already present in the fic-

tive motor pattern, whereas the relative duration of exteBizzi’s group provided some evidence for the concept of
sor activity observed during actual scratching is gredt@nt motor primitives. Indeed, they brought to light that move-
the one observed in the immobilized preparation (fictive pahents were generated in a modular way by the spinal cord
tern). The motor pattern generated by the CPGs thus seémfsogs (for a comprehensive review, see Bizzi et al (2008))
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More precisely, stimulating specific interneuronal arehs @PGs could be organized such that tonic modules provides
the spinal cord, they observed that the limb was moved in ttiee orientation of the oscillations while the timing featsir
direction of the same end point (equilibrium point) whateveomes from the network.
the initial position of the limb was. They called the set agfth It is not known yet if the concept of force fields can
vectors corresponding to the directions obtained by tine-stibe extended to higher vertebrates, but it has been shown
ulationforce fields Surprisingly, only 3-4 directions, corre-that a finite set of (time-variant) synergies of muscles doul
sponding to different areas in the spinal cord, were idenéiecount for the movement generation in humans during
fied (Bizzi et al (1991)), furthermore, they were sufficierflast reaching movements d’Avella et al (2006) as well as in
to account for natural limb trajectories (Kargo and Giszt@rimate grasping Overduin et al (2008), providing evidence
(2000)). for the existence of motor primitives.
Indeed Mussa-Ivaldi et al (1994) found that stimulating
two areas simultaneously was almost equivalent to a sim- The difference between discrete and rhythmic move-
ple linear combination of the vector of the force fields pronents, at least at the spinal level, may thus be due to dif-
portional to the intensity of stimulation. Since the intiéns ferences in the topology of the network of motor primitives
of stimulation does not change the pattern of force orie(PGs, in the broad sense) rather than to completely distinc
tation (Giszter et al (1993)), this results provide an ediiti pathways. Indeed, discrete networks need to encode a target
way to span the space of possible end-effector target positposition and possible a time onset, while rhythmic networks
through the weighted sum of the basic force fields. Similatso need to be endowed with a frequency and a phase. As re-
results were obtained with rats (Tresch et al (1999)) ansl catewed by Marder and Bucher (2001), such features seem to
(Krouchev et al (2006); Ting and Macpherson (2005)).  simply emerge from the intrinsic and synaptic properties of
Such findings endorse the hypothesis that movements B} neurons constituting these particular (rhythmic) CPGs
produced through the combination of motor primitives pro- In summary, there is strong evidence that basic build-
duced by spinal functional units, which can be charactdfg blocks of movements are present at the spinal level and
ized by a force field acting on the end-effector of the limtshat they are used by the CNS to create behaviors by com-
This seminal result provides a powerful tool for explainingination. It seems reasonable to postulate that discrete an
how the CNS can easily control the many muscles involvébythmic movements are both generated through the specifi-
in any movement. Indeed, instead of having to activate agdtion of respectively target equilibrium points or diieos
control the different muscles involved in the task, the CN&f oscillations through the activation of specific spinaldu
only has to define the level of activation of a small nuning blocks, while features pertaining to rhythmic movensent
ber of synergies. Furthermore, the combination being aim¢such as frequency and phase) may arise from the topologi-
linear, it provides an efficient way of bypassing the inhegal properties of the larger spinal networks eliciting tiee b
ent nonlinearities present in movement control using dirg@avior.
muscle activation. Tresch et al (1999) have developed a va-
riety of computational methods to extract muscles synergie— — -
involved in different movements. Indeed, identifying thos6 Discrete and rhythmic in movement planning
synergies is a difficult task, mainly because muscles can be- ] ) ) ]
long to more than one synergy at the time. We now question discrete anq rhythmic movement during
In an experiment using chemical stimulafioof in- Planning. We start by presenting the possible role of mo-
terneurons in the frog, Saltiel et al (1998) found out th&@r Primitives in movement planning; we then discuss move-
some regions were eliciting rhythmic behaviors. Force mg&ent encoding by the motor cortex.
surements of the limb show a finite number of synergies cor-
responding to the direction of oscillations. More pregisel
in rhythmic activation, the direction of the force field cigen
through time, leading to an oscillatory behavior. It is thes

6.1 Motor primitives in movement planning

X . . : ! A common hypothesis on how we choose to perform a given
lieved that by stimulating a particular area of the spinatico action is that the CNS uses internal models, thegjisesen-

a whole CPG network can be activated through connectiiinns of the sensorimotor system and the environment to

ity. Interesélr;glg/r,] th(? d|fft_erent ofrtlre]zntftlong ?f Itgefdmgn .select the next action that it is going to produce. An inverse
correspona 1o the directions of the forced Nelds Tound USliyd, 2 mic model is then required for movement initiationf tha

the same_mgthod. Furtherm_ore, the rhythmic_and t_onic to find the motor commands to be sent to the spinal cord
eas of activation corresponding to the same orientatioe WEL £ulfill the desired task
topographically close (Saltiel et al (2005)). This resalig- The question of how the CNS actually computes the in-

gest thatrhythms might arise from the temporal combinati%rse model is still open. Indeed, inverse dynamics problem
of simpler tonic modules. According to Saltiel et al (1998)are complex, in partFi)cuIar in syétems witk?/high dleees of

3 ; — freedom, that is with high redundancy. In addition, in lyin
Chemical activation, here through N-methyl-D-asparthiiélDA)

lontopheric, is more precise in the sense that it activatd somas systems, the dynamics of the bo_dy IS chang_lng through time,
and dendrites, whereas in electric stimulation axons aneertermi- @S Well as the external dynamics. According to some au-

nals can also be depolarized. thors, the existence of motor primitives might help the CNS
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to solve the inverse dynamics problem (Bizzi et al (1991grasping movements), this duration being longer than in tra
Mussa-Ivaldi (1999); Georgopoulos (1996)). Indeed, motditional studies. They found out that those simulationsawer
primitives could provide the CNS with built-in links betwee resulting in a complex movement ending in the same loca-
muscles and movement direction and hence facilitate the résn whatever the initial position of the limb was. They con-
olution of the inverse problem of finding the muscles conelude from this that instead of encoding regions of the body,
mands generating the desired trajectory (Mussa-lvaldi atit motor cortex was a representation of different complex
Bizzi (2000) ). postures.

More precisely, we have seen in Section 5 that motor Such a finding support the hypothesis according to which
primitives, at least in frogs, can be combined linearly, bysome primary motor cortex neurons are connected in a
passing the high nonlinearity of muscles. It can be thuse-to-one relationship with spinal motor synergies (Ashe
imagined that instead of solving an inverse problem so (R005)); Georgopoulos (1996) has proposed a model for
control each of the needed muscles to follow the desiratbvement control where level of activations of motor corti-
trajectory, the CNS choose a combination of motor primgéal neurons control the weights of different motor prinesv
tives that best fit this trajectory. In this case the CNS onbt the spinal level, that is that cortical neurons elicit bdm
task is to optimize the activation of each motor primitiveation of preprogrammed basic trajectories rather than en-
S0 to minimize the error between the desired and the aode the complexity of a particular desired trajectory.sThi
tual trajectories. According to what was postulated in Seceuld mean that the invariant observed in movement execu-
tion 5, such an hypothesis could mean that discrete movien are the results of the usage by the CNS of a small set
ments are represented during planning by the CNS byofmotor primitives defined at the spinal level rather than to
(possibly time-varying) equilibrium point in space, whase a kinematic plan or to optimization processes in the supra-
rhythmic movements would be represented by a (possildginal structures.
time-varying) direction of oscillation. In particular, Haiss and Schwarz (2005) have studied the

Note that the existence and also the need for interrgéctric stimulation of different types of whisker movertgen
models is still strongly debated. Basically, the opponenis the rat, that is rhythmic movement (used for tactile ex-
of internal models mainly doubt that the brain is able qfloration) and whisker retraction (used to sense an object
imitating the natural laws, which seems to be required & a specific location). They found that both movements, al-
solve the inverse problem of finding the motor commartlough performed by the same set of muscles, where elicited
that gives the desired natural consequence (for instamce by different but adjacent regions of the primary motor cor-
torque needed to accelerate a limb). The reader is referreddx. At this point it is difficult to conclude if this is due the
articles by Bridgeman (2007) and Feldman (2009) for morature of movement (rhythmic or discrete) or simply to the
details. Note that the concept of motor primitives as we takgct that the motor cortex encodes behaviors (as postulated
it here is not in opposition with these models, as for instanpy Graziano et al (2002)), however the extension of such
proposed by Latash et al (2007). From their perspectiveaa experiment to broader range of movements and animals
synergy is a set of muscles that are involved in the contr@buld possibly provide further insights on the differenites
of a variable relevant for the achievement of a particulsk tadiscrete and rhythmic movement generation.
and which influence each other so to ensure stability. In the same experiment, Haiss and Schwarz (2005) found

We now present some results on the movement encefdat eliciting both “discrete” and “rhythmic” areas of the-p
ing that are relevant for the control of discrete and rhythmimary motor cortex resulted in a simple combination of the
movements. two behaviors: the resulting movements was the oscillation
expected when only the rhythmic area is activated but with
an offset corresponding to the discrete movement resulting
from the activation of the discrete area. This results is im-

The motor cortex can be subdivided in two areas. the ortant in the sense that it shows that, even if discrete and
! pfhythmic motor primitives result from different processes

mary motor cortex and the premoor cortex (M1). The IaWhiCh is unknown, the combination of those primitives still
ter is formed of the lateral (dorsal and ventral) premoter Fesults in a coherent, meaningful behavior. We will present
eas (PMd_and PMV) and qf the sgpplementary motor arkido models, by De Rugy and Sternad (2003) and Degallier
(SMA) which are involved in learning sequences of move-,

R X ; X et al (2008), representing complex movements as oscilla-
ment, in timing, in the processing of_sensorlmotor mformz?i-ons around time-varying offset in the next section
tion as well as in the selection of actions. '

The primary motor cortex is involved in the control of
movement parameters.According to a study by Graziano
et al (2002), if the motor cortex is indeed organized somaté-Mathematical models for the generation of discrete
topically, its seems that the parameter that is encodeckein #nd rhythmic movements
primary cortex is the location in space to which the move-
ment is directed. Indeed, in their experiments, regiongef tin this section, we present a set of mathematical models of
primary motor and premotor cortex of monkeys were stingdiscrete and rhythmic movements: such modelings provide
ulated for 500 ms (the time scale of normal reaching ardunctional, qualitative description of movement gerierat

6.2 Movement encoding by the motor cortex
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that can be tested against experimental results. We focustloose stable solutions. Several examples of such modeling
the assumptions underlying them, both at the planning aack presented in the following.
execution level. We have distinguished four categories of As a side note, combinations of stable modules are not
models (Fig.2): necessarily stable themselves. Now, Slotine and Lohmiller
() Two/Two. Two independent processes exist for mov 2001) have shown that a certain forrr_\ of stability, called
. X ) . ontractiorf, ensures that any combination of such contract-

ment generation, with both different motor representﬁi svstems is also contractin

tions and generators (Subsection 7.1); gsy 9
(b) One/Two. A similar motor command is sent to two dif-

ferent generators (Subsection 7.2); .
(c) One/One.The same motor encoding and the same ge|71'—1 TwofTwo hypothesis

erator are used to generate both discrete and rhythmigye Tyo/Two hypothesis (Fig.2(a)), it is assumed that two

movements (Su_bsectlon 7.3); different, independent processes are involved in the gener
(d) Two/One.Two different motor commands are sent to th[Efon of discrete and rhythmic movements. This hypothesis is

same generator (Subsection 7.4). convenient for modeling, because each process can be opti-
mized so to finely reproduce the characteristics of both dis-
crete and rhythmic movements. Yet, the question of the com-

- - bination and of the mutual influence of the movements is left
Discrete Rhythmic Unique open.
command) - command command We start by presenting two independent models for
discrete and rhythmic generation, developed respectively
Y by Bullock and Grossberg (1988) and by Matsuoka (1985).
Discrete | |Rhythmic Discrete | | Rhythmic These seminal models, or extensions of them, have been
generator| generator generator| |generator extensively used in the literature (Schaal et al (2000), De
Rugy and Sternad (2003), Degallier et al (2008),...).
(a) Two/Two (b) One/Two
Unique Discrete | |Rhythmic e The VITE Model: A Ne_ural Comm_and C_:ircuit for
command command| |command Generating Arm and Articulator Trajectories
D. Bullock and S. Grossberg,
Y Y in Dynamic Patterns in Complex Systerh888.
Unique U:i‘r*“ter The VITE (VectorIntegrationTo Endpoint) model was
generator generato originally developed by Bullock and Grossberg (1988) to
(c) One/One (d) TwolOne simulate planned and passive arm movements. The limb po-

sition is controlled through a neural command that modi-
fies the respective lengths of a pair of agonist and antaggonis
muscles according to a desired target position. The final po-
sition of the limb is then computed according to the length
These four categories of models are discussed moreofithe muscles.
details in the following; we illustrate them with fitting ntat The model thus represents a motor primitive that, given
ematical models found in the literatdre a volitional target position, controls in an automatic way a
All the mathematical models that we present here asgnergy of muscles so that the limb moves to the desired
based on the dynamical system theory, that is on sets of difate. More precisely, here the brain does not encode a+raje
ferential equations that define the evolution of a compléary, but a desired state; the actual trajectory emerges fro
system through time. As we will see, such an approachtig dynamics of the motor primitive.
powerful to study the qualitative time course of a system as The target of the trajectory of each muscle is encoded
well as the interconnections between its parts through adifference vectari.e. a population of neurons
Furthermore, dynamical systems are particularly wellepresenting the difference between the desired length of
suited for modeling of discrete and rhythmic movements, tt&2 muscle T and its actual lengthp). The movement is
they have two characteristic typesstablesolutions - thatis produced by modifying the length of the muscle at a rate
solutions robust against perturbations - which corresgond(called theactivity) that depends on the difference vector.
discrete and rhythmic signals. Hence a natural solution fdhe whole process is gated bygop command(G) that
modeling discrete and rhythmic motor primitives is usingan also modulate the speed of the movement. There are
thus two control parameters, the target lengthnd the go

Fig. 2 Schematic of the four different categories of models.

4 The matlab code for the different models is available uponate
to the authors. 6 Contracting systems are defined as nonlinear dynamicatragst

5 For an excellent introduction to dynamical systems, pleses= in which “initial conditions or temporary disturbances are forgatte
Strogatz (2001). exponentially fast(Slotine and Lohmiller (2001), p.138).
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9
commandgG, the output of the system being the length of
the musclep.
Go Command
Mathematical model. The following set of differential equations ' et i
generate, for each muscle, a trajectory converging to ttgetgosi- 1 H
tion T, at a speed controlled by the difference vedior p and the go ! s k|
commandG: 3.5 4
v=a(T-p—-V) .
p = Gmax(0,v) g
where a is a constant controlling the rate of convergence of tk s 7
auxiliary variablev. Velocity '
4f o7 *»‘. l- ' ]
ol P |
Ol nnnnn P o
0 0.5 1 15 2 25 3 3.5 4
Position
8 ‘ ‘ T Fig. 4 VITE model. Trajectory with three different go commarta
6 IRt L G=1, in black, plain lineG=2 in red, dash-dotted line ar@=1 from
) - - e t=1 s and O before in blue, dotted line (top graph). For theetlsses-
_____ e tems, the target is constarit & 3). In the middle graph, it is shown
2r ,_,;.’f-“' that the onset of the movement can be postponed thanks to teng
0 et s ‘ s s s mand and that the duration of the speed of convergence tatbett
0 05 ! 15 2 25 8 85 can also be modulated. In the bottom graph, it can be seeimtnaas-
Velocity ing the amplitude of the go command also increases the pdagitye
A, ‘ Herea = 10.
4’,'.,-"' - \\.
25‘ el u.... modeled by simple step function. Note that more complex
e s e s e functions can be chosen as go command, so to modify (and
0 05 1 15 2 25 3 35 4 in particular smoothen) the velocity profile for instanceita

will be shown when presenting the model of Degallier et al
Fig. 3 VITE model. Trajectory for three different target&€=1, in (2008).
black, plain line,T=5 in red, dash-dotted line affd=7 in blue, dotted In summary the VITE model is a very simple model for
'(iﬁgr)i-z 'é nCtZ? |ki)r?e§?ea? mgtégfn té‘rt?riér?{ﬁcwT:Shﬁogx(?r?rﬁ"éaégﬁts generating discrete movements with open target position
peak is proportional to the displacemeﬂt?i.ep.) to the diffiee vectz;r and speed, that allows for synchronized and.delayed .CoerI
(bottom graph). Here, for all the systen®x 1 anda = 10. of several dofs. It has been extended many times to different
applications, as for instance for visually guided reaching
movements (AVITE model, see Gaudiano and Grossberg
As it can be seen in the equations, the activityf the (1992)) or for modeling the interaction with the spino-
population depends proportionally on the difference vect@uscular system to generate the torque needed to follow a
(the bigger the distance, the higher the activity and thas tdpecific trajectory (VITE-FLETE model, see Bullock and
speed of contraction of the muscle). In other words, the d@rossberg (1989)).
ration of the movement does not depend on the amount of
contraction needed to reach the target length, but is con-
stant, as it is shown in Fig.3. Such a feature is very inter® >->" ) :
esting when doing synchronized movements: indeed all the Nibiting Neurons with Adaptation
muscles automatically converges to their target lengtheat t K Matsuoka,
same time, whatever the difference between the target and!n Biol- Cybern 1985.
the actual muscle length was. Moreover this system is con-
sistent with the observation that human pointing moveme[gg

Eﬁndhto give 'E[he same dur?Uo_n, ?O ma't\;er the dlsltggfe n observed that oscillatory behaviors can emerge from
€ hand has to cover (see for instance Morasso ( )): networks of mutually inhibiting neurons (see for instance
The go command controls both the onset of the move ;- -qor and Bucher (2001))

ment and its speed profile. Indeed once the target lefigth In Matsuoka’s model, the activity of each neurons is

is known, nothing prevents the movement to start but the A deled by a simple continuous-variable neuron model

command (if itis set to zero). It thus allows movements to l?)‘?iginally developed by Morishita and Yajima (1972). An

primed before being actually executed. In addition, the a%’puts7 to the system increases the membrane potexial

plitude of the go comman@ allows for a modulation of the e b
speed defined by the difference vector. Thus the CNS can x\c/)tgen the membrane potential is bigger than the threshold

only control the target of the movement, but also its speed Note that we take a single val@as the input to the system, but
These features are illustrated on Fig.4 with go commanidsan be the weighted sum of different inputs.

Sustained Oscillations Generated by Mutually In-

In this article, Matsuoka (1985) proposes a modeling for
illating network of neurons. As discussed in Sec.5,st ha
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value of the membrané, the neuron starts to fire (witht=1.
firing ratey;).
Matsuoka (1985) has derived sufficient conditions for an
Mathematical model. Here are the equations for one neuron:  gscillatory behavior to emerge for different types of net-
_ works. The output firing rates for two mutually inhibiting
{x. =1(S —x) neurons are shown in Fig.6.
yi = max0,x — 6) Fi 4 I
ig.7 show two possible oscillating networks of three
whereT is a parameter controlling the rate of convergencr andg neurons: one where all the neurons mutually inhibit each
is the membrane threshold. other and another one where the neurons unilaterally inhibi
each other, that is neuron 1 is for instance only inhibited by
neuron 2 and only inhibits neuron 3.

Step response

1,
Two mutually inhibiting neurons
0.8r L oamioan,,, q T T T
Rt

0.6 TR, B FaRtSE &,
0.4f T 8 Jf kY s i <
0.2 Tt 1

0 L L Nt memsmamaaa /\

0 5 10 15 1 . . . |

0 10 20 30 40 50 60

Fig. 5 Matsuoka Oscillator. Three typical step responses of a singlgjg g Mastuoka oscillator. The fire rate for two neurons that inhibits

neuron (i.eS =1 in each case). In black, plain link,is set to zero  gach other for a constant inp8t= 1. The parameters here ag —
(no adaptation) and the output converges monotonicalijéoiriput a1 =25,T=1,0=0,b=25andr’ = 12/2.5

value. In blue, dash-dotted, lifee= 2.5, the output raises but decrease
after a while, showing a adaptation effect. Finally in redfted line,

b =10 and it can be seen that the fire rate almost return to zeriatfwh
is the case wheh — ). In all the case, we tootau=1, 6 = 0 and

T/ = 12b/2.5 (this value being chosen so that no damped oscillation
occurs, see Matsuoka (1985))

Three mutually inhibiting neurons

0 T T
. , . . o, A
In this model, the fire rate increases monotonically ar N Pt Do
converges to a stationary state, which is not the behav 3 : : i : $ i
observed in neurons. Matsuoka (1985) thus extends - N -~
model to take in account the adaptatigh (also called HER HEA NY [ \.,‘
fatigue) of the neurons, that is the fact that when receivii  ,..; i : . g :
a step input, the firing rate increases rapidly at first ai
then gradually decreases, as it is shown in Fig.5. Adaptati \ /\ /\ /\
has indeed been shown to be essential for the generatior ‘ ‘ ‘ ‘
oscillations. 0 20 40 60 80 100
Mathematical model. The model becomes Three unilaterally inhibiting neurons
% =1(S —x —bX) RNAVATAVAVAVAVATAVAVATAVAVAY S
X =T(%—X)
yi = max(07xi - 9)
wheret’ (> 0) andb(> 0) controls the time course of the adaptation. ViV ,-"", ‘ S n AR N H
Sl v % “ - T - LS ST L N W
The neurons are now coupled so to form a network. He
neither self-inhibition nor excitation are considered.
Mathematical model. For one neurorj, the equations are now
] b 20 40
% =8 —X—bX—3 Y]
Il (\s i
=T (v =) Fig. 7 Matsuoka oscillator. The fire rate for two networks of three
Yi = max0,x) neurons for a constant inp8t= 1. In the upper graph, the neurons are

, . ... mutually inhibiting each other, i.@; = 2.5vi, j = 1,2,3. In the second
where theajj’s (> 0) are the coupling strengths of the inhibitorycase, the neurons are only unilaterally inhibited,dse.= axs = ago =
connections between the neurdnand j andy; is the output of the 2.5andajs=azo=az;=0.0. The parameters here @ae = a1 = 2.5,

neuronj. Note that here, without loss of generality, we téke: 0 and tau=1,6=0,b=25andr’ =12b/2.5
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The model offered by Matsuoka is thus a powerful tool teepresents the positive differengav; between the desired
model oscillatory behaviors under certain conditionsah c target position of the lim@ (—T for the antagonist muscle)
moreover account for different types of networks of oseillaand its actual positiorp. Aw is then transformed into a
tors. Note that the model can be extended so to have muselesvation patterry; that resemble what is observed in the
command instead of firing rate as an output; we will see suptimate cortex (see Fig.8, top panel).
an example in the following with the model of De Rugy and
Sternad (2003).

It is interesting to note that in this model an oscilla-
tory pattern emerges from the dynamic combination of no ‘ _ Auiliary variables

cyclic units. Such a model achieves to successfully repi 2’,»':;-5-"“"'---- Rl X 1
duce the emergent rhythms observed in the spinal cord (: 1( T |
Section 5 for more details). o1 oz 03 o4 o5 0s o7 o
15 : : : Muscle‘velocity : : :
ik i
7.2 One/Two hypothesis 02_/_\
0 011 O‘.Z 013 O‘.4 015 O‘.G 017 0.8
In the One/Two hypothesis, a similar encoding is used f _ Limb tgjectory
both discrete and rhythmic movements, that is there exist §[ ~  ..eseeeeeeen 1
common basic representation for the two movements. St 2~ _,.--="" =
an hypothesis could reflect the analogy observed by Ha ° P T e TR E R

and Schwarz (2005) between the representation of discr

gndtl_‘hytgmlr Tr?vemegtls in Wthlslk.erﬂmovemenfts In rats (SEie. 8 Model by Schaal et al A typical discrete trajectory converging
ection 6). In this model, mutual influences of movemen{Sine targefr =1. On the top panel, the activation pattern is shown

are supposed to occur at the muscle level rather than atithed, dashed line, as well as its smoothen version (in kdash-

generation level, as discussed above for the Two/Two Hhiptted line). The auxiliary variablg, that ensures that velocity pro-
pothesis. ile is roughly a symmetric, bell-shaped curve is shown ircklglain

line. The middle panel shows the resulting spaedr the muscle and
.We presept here the mOdeI.by Schaal et al (2000), %tom panel the resulting limb trajectory (in black, pldime) and

which both discrete and rhythmic movements are enco peed (red, dashed-line). Hexe=50.0, & = 1,8, = 1, & = 50,

relatively to a difference vector: between the current arag=0.01,a, = 0.08,b = 10 andc, = 60.

desired positions for the discrete movement and between the

current and desired amplitudes for the rhythmic movement.
Mathematical model. The difference vector for musciedw; is
transformed into an activation signal

e Nonlinear dynamical systems as movement primi-
tives. { Aw; = max0,T — p)
S. Schaal, S. Kotosaka and D. Sternad, Vi =ay(—Vi +Aw)
in the proc. of théEEE International Conference on Hu-

| . wherea, is a parameter controlling the rate of convergence .of
manoid Robotics2000 P 9 9

Schaal et al (2000) have developed a model based on theThe activation signal is then tran_sformed into a velocity
concept of programmable pattern generators (PPGs), that/@al yi through a double smoothing. The speed of the
generators of trajectories with some predefined charaetefl'ovement can be adjusted through the paranugter
tics and with some open, task-specific control parameters.
Both discrete and rhythmic movements are triggered in a
similar way, but they are then generated through different {)’q = —ax + (Vi —X)Co

Mathematical model.

processes. At the end the discrete and the rhythmic output Vi = —ayyi + (X —¥i)Co
are linearly added to obtain the final trajectory.

In this model, discrete and rhythmic movements are efbereay anday control the rate of convergence of the system efd
coded by the difference between the desired state (resp. ¢piérols the speed of the movement.
positionT and the amplitud®) and the actual state (regp. . o ) .
and 8); the output of the system is the position of the limb ~Finally the velocityy; is integrated in order to obtain the
(a = p+ 6). This system is quite complex, having manyinal desired velocity; for the muscle change (see Fig.8,
variables and parameters, so that the final output trajectdtiddle panel). An auxiliary variablg is used to make;
can be finely tuned to reproduce a desired movement.  roughly symmetric and bell-shaped.

The discrete system is a modified version of the VITE
model that we have presented before. The movement o
the limb is controlled through the speed of contraction of F = ar(—ri + (1—ri)bw)

a pair of agonist/antagonist muscles. The difference vecto {z =—aZ+(yi—z)(1—ri)Co

f Mathematical model.
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where a, and b controls the shape of the signal and are chosdyottom panel).

so to obtain a bell-shaped velocity profila; controls the rate of
convergence af;. Mathematical model.

. . . 6 =
The v_elocny command pf the agonist anq antagonist {glr =cr|(max(0,9.)fmax(0, 9))
muscles i( and j) are finely integrated to obtain the limb
movementp (see Fig.8, bottom panel). wherec; controls the frequency of the oscillations.

Mathematical model. The movement of each dof is then defined by the linear
. N _ combination of the output of both signals & p-+ 6). This
p=ap(max0.2) ~max0.2)))co linearity allows for a simple, independent control of both

wherea, controls the rate of convergence of the system epits movements, but it fails to reproduce the mutual influence of

speed. the discrete and rhythmic movements observed in humans.

Note that the primitives can also be coupled together in

As for the rhythmic movement, it is triggered in gorder to synchronize several dof during coordinated move-
similar way by a difference vectatcw between the actual ment (see Schaal et al (2000) for more details).

position 6 and the desired amplitud® A is turned into It has many variables that allows for the tuning of

an activity signak; (see Fig.9, top panel). desired basic building blocks of movements, but that also

makes the system quite complex. The model achieves
to reproduce movements containing many human-like
features, as a bell-shaped velocity profile for instance.

Activity Signal
0.4 T y‘ 9 T

0.3 J

7.3 One/One hypothesis

The One/One hypothesis, that assumes that a uniqgue mo-
tor representation and generator are used to produce move-
ments, implies either that one of the movementis a particula
case of the other one (i.e it corresponds, more or less, to the
Fig. 9 Model by Schaal et alA typical rhythmic trajectory conver concatenation and half cycle hypotheses mentioned before)
ing'of amplitud{:‘A=O.6. The top ganel s%wws theJ activgtion pat%erRr that discrete and rhythmic movement are themsel.v(.as par-
&. The bottom panel shows the resulting limb trajectory (iackl ticular case of a larger class of movements. The difficulty
plain line) and its speed (red, dashed line). Heye= 500, ay = 1.0, here is that the model should be designed so to reproduce
B =25,w=25 andc = 20. the mutual influences observed during movements that are
both discrete and rhythmic.

We first present a model that we developed (Degallier

Mathematical model. et al (2008)), where discrete and rhythmic movement are
Aw =max0,A— ) two particular cases of a larger class of movements. In
{éi =a;(—&+Aw) the second model, by Schoner and Santos (2001), discrete
movements are a particular case of rhythmic ones, i.e.
wherea; is a parameter controlling the rate of convergencg of  (discrete movements are considered as truncated rhythmic
movements.

Then, a couple of mutually inhibiting Matsuoka oscilla-
tors are used to generate oscillatory velocity siggaland
;. The oscillator is slightly modified to take in account thee A modular bio-inspired architecture for movement

fact thatyj; is a velocity and not a position. generation for the infant-like robot iCub.
S. Degallier, L. Righetti, L. Natale, F. Nori, G. Metta,
Mathematical model. A.J. ljspeert,
U = —ayth + (& + G + B +wmax0, ;))c in the proc. ofthe second IEEE RAS / EMBS In-
{Zi:*aéﬂZiJr(ma)(QWi)*Zi)% ternational Conference on Biomedical Robotics and

Biomechatronics (BIOROB2008.
whereay controls the convergence rate of the oscillators gnthe

frequency of the oscillationsv controls the strength of the inhibitory ~ Degallier et al (2008) present a system where both
coupling. discrete and rhythmic trajectories are generated through a
unique set of differential equations, which is designed to
Finally, the difference between the two oscillatorg) produce complex movements modeled as a periodic move-
is integrated to obtain the desired trajectéy(see Fig.8, ments around time-varying offsets.
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Here the input is a command specifying the targetf Frequency (@)

the discrete movement, and the amplitideand the fre- 2 ‘ ‘ ‘

quencyw of the rhythmic movement. A null (or negative) 12 --------- SR (R S S e EREEEES |
amplitude generates a purely discrete movementandac ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

stant offset generates a purely rhythmic movement. Theo ° %2 %4 06 08 1 12 14 16 18 2
put of the system is the trajectory of the limb. ) ‘ _timb Trajectory

Go command

Fig. 11 Model by Degallier and al.The top panel shows the value
0 w s of the frequencyy that is modulated through the parameteyg and
Limb Trajectory ’ Wdown In red, dashed lineq,p = wyown @and the resulting movement
4 S —— (bottom panel) is a normal sinusoidal movement. In blaciinpline,
"""" Wdown> Wyp and the resulting trajectory is a distorted sinusoidal eNot
2r Riad SeeT that only awyown is controlled,w,, being calculated so thad is con-
stant. Heraw = 21 and wyown= 47t for the red curve andygwn= 611

0 05 1 15 for the black curvea= 100,m= 1 andf = 100.

Fig. 10 Model by Degallier and al.The top panel shows the go func-
tion used in this implementation, that is a trajectory astptigally . . . .
converging top; (=2 here), instead of the step functions presented with . Mathematical model. The oscillator is governed by the following
the VITE model. Such a go command turns the velocity commared i S€t Of equations _

a symmetric, bell-shaped curve (red, dashed line), as ibeaseen on X =a(M —r?)x — wz
the bottom graph, as well as the resulting limb trajectotgdk, plain 7 =a(Mj — 1)z + wx;

i i = = = — W W
line) converging to the targdt = 2. Hered = 2 andb = 2.5. w= e+ gfz‘%l

wherer; = /x2+z2. a controls the rate of convergence to the limit

T_he_ﬁrSt,Set of equation controls the discrete moveme@);cle,f the rapidity of the switching between the swing and the stanc
and is inspired from the VITE model that was presented

above. The trajectory converges towards a Jpahd the go
commandG; is chosen so to ensure a bell-shaped velocigfn
profile, as it it illustrated in Fig.10. As for the VITE model
all the joints converge synchronously to the target

The two primitives are then combined together by
bedding the discrete movemeninto the rhythmic one
'as an offset. The system outpxtis now an oscillatory
movements around a time-varying offset.

Mathematical model. The discrete primitive, which is inspired
from the VITE model, is modeled by the following system of atjons

{gi =d(p-Gi)

Control Parameters

yi =G\ ,
Gi=p' (vi—T) by

The system is critically damped so that the outgwonverges asymp-
totically and monotonically to a god} with a speed of convergence
controlled byb, whereas the speeg converges to zerq andd are
chosen so to ensure a bell-shaped velocity profilesonverges tg
and is reset to zero at the end of each movement.

The rhyth.mic_primi.tive is modeled as a modified HOpfl:ig. 12 Model by Degallier and al.The top panel shows the tardgit
oscillator, which is a simple model that allows for the genor the discrete movement and the resulting trajectory ashin the
eration of sinusoidal movements of amplitugém and bottom panel (in blue, dashed line). In red, dash-dotteel inshown
frequencyw. These oscillations can be switched on arfe amplitude control parametdf; (top panel) and the resulting tra-

. : . ctory (bottom panel). In the bottom panel, in black, plaire, the
off easily through the parameters controlling the ampmucfombined trajectory is also shown. It can be noted that isrsinple

.(more preqisely, b)( bifurcation between a limit cycle behaynear combination of the discrete and the rhythmic trajactshowing

ior and a single point attractor). the influence of the embedding of the two dynamics. Henega= 411
In this model the expression for the frequengy is Pi=2,di=2,b =25,a =100 andf; = 100.

slightly modified so to allow an independent control of

duration of the ascendingw(p) and of the descending i _ _ )

(«hown) part of the sinusoidal, as illustrated on Fig.11. This Mathematical model. The oscillator is governed by the following
owr- . ’ o Set of equations

feature is particularly useful for the control of the swingla

the stance phase in locomotion. { % = a(M; —r2) (x —yi) — 1z

Z=aM—r)z+w(x—w)
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where nowr; = /(% —¥i)2+ 2. when a command is received, the Hopf oscillator is activated
(un = 1) and the first attractor deactivategl£ 0), so that the

Qualitatively, by simply modifying on the fly the pa-trajectory follows the limit cycle until it is close enougb t
rametersT; and M;, the system can switch between purelihe final target. At this moment the Hopf "neurowy, is set
discrete movementsVf < 0,T; # const), purely rhythmic to zero and the final attractor is activateg & 1) so that the
movementsi; > 0, T, = const), and combinations of bothtrajectory converges to the target positdn This sequence
(M;j > 0, T; # const) as illustrated on Fig. 12. of action is illustrated in Fig.13.

This system allows for a simple modeling of discrete Note that a trajectory converging to the target point
and rhythmic movements. Both dynamics influence eachuld be obtained simply by using the final attractor only,
other, and, when the movement co-occurs, the discréewever here the trajectory is governed by time-varying
movement inhibits the rhythmic one, as observed in humaatéractor along the limit cycle, reducing the transiemttihe
(see Sternad et al (2000), and section 4). uncontrolled phases.

Mathematical model. The timing of activation of the three "neu-
e Control of movement time and sequential action rons” is controlled by the neuronal dynamics which are gilgrthe
through attractor dynamics: A simulation study following equations:
demonstrating object interception and coordination. _ s by
G. Schoner and C. Santos, aty = piu; — [y ;C(”htuf)‘z‘i
in the proc. of thedth Intelligent Symposium on Intelli- aUn = HpUh — [HplUp — S(U7 + Up)un
gent Robotic System2001. at = ppug — | uf — o(U? + uf ug

We present here the model developed by Schoner dmth gquati_on corresponds to the normal form of a degenpitate
Santos (2001). This model is built to generate discrete moverk bifurcation controlled by parameteys® with an extra term to
ments, but is based on limit cycles, which makes it easy gsure that only one neuron is active, i.e that any solutiih more

! . . h an one neuron active is destabilized. The paramgiease given by
extend to the generation of rhythmic movements. Here the

input is the target positiom of the limb and the output is its [ = 1.5+ 2b
trajectory . { Uh=15+2(1—b)(1—bs)
In this model, discrete and rhythmic movements are both Ht =1.5+42xbg

modeled using limit cycles, i.e. discrete movements are in- ) _
terrupted rhythmic movements. A two-layered system yéhereb; = 1 is equals to 1 when no movement occurs and is set to 0
used, consisting of a layer able to generate both oscitiatio® 2Vt the movement and
and stationary states ("timing layer”) and another layer-co br = 1—tanh(10% (0.7 Xt — X (1)) +1)/2.
trolling the switching between those states ("neural dynam
ics control”).

The timing layer consist in three terms: the first one
is an attractor towards the initial statg the second one
is a Hopf oscillator of amplitude 1 and the third one is a Neurons
attractor towards the target positiofy. All these terms a

1 oINS aTamsst e sam i s r naY s n  emen aessemantee s camenen o s ven]
multiplied by three "neurons” that are never fully active ¢ i
. 0.5 L n i
the same time. T H
0 o J’ iKY
Mathematical model. The equations of the timing layer are giver 0 05 1 15 2 25

by:

{ x = —alu;|(x—x;) + |up| (b(1—r?)x— cwy) — alug| (x— X¢)
y = —alujly+ |up|(b(1—r?)y — wx) — alug |y

wherex is the output of the system arydan auxiliary variablea and
b are constant controlling the speed of convergence of themsys
Gaussian white noise is added to the system. In this systenti=i,
h, f) represents neurons which are never active (i.e. equahe) at

Fig. 13 Model by Schoner and Santosln the top panel, the activ-
i ity of the three neuronay( in black, plain line,uy, in red, dash-dotted
the same time. line andus in blue, dashed line) during a typical discrete movement
can be observed. Only one neuron is active a the time, camespy
The sequence of movement is controlled by the neut@lthree stages of the movement: rest at initial positionyerto the
layer, and more precisely through three "neuransti, and target and converge and rest at the target position. In ttierhganel,
Vo . . .the obtained trajectory, is shown (in black, plain line) as well as the
U activating respectively the first attractor, the Hopf 0sCibyiliary variabley;. Herea—5,b= 1, 0 — 2, c— 2.1 anda — 0.02.
lator and the target attractor. At rest position only thet firs
attractor is activej = 1,u, = 0,us = 0), so that even if per- & That is the system has one stable solutior-(0) wheny; is neg-
turbations occurs the limb stays at the same position. Thatye and two stable ones;(= 1 anduy; = —1) wheny; is positive.
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Movements can thus be shaped through the neuronal Mathematical model. The network is governed by the following
dynamics that qualitatively changes the space of solutioeiations (for one neurajt
of the timing layer. The three sequences of this movement _ ,
(discrete, rhythmic, discrete) is analogous to the obsienva { X =T(=% = BX; + S— wmax0,x;))
by van Mourik and Beek (2004) that the first and last X = T(=4+max0,x))
half cycles of a rhythmic movement resemble a d'Scr%erer and 1’/ are two parameters controlling the time course of

movement. In multi dofs system, coordination can be obtgil,ectively the firing rate, and the fatigue (or self-inhibition§ and
through the coupling of rhythmic parts of the system (S(—;:(é_eis the output of the second neuron
[ .

Schoner and Santos (2001) for more details). Synchroniz
discrete movements can be obtained trough coupling. The firing rates of the neurons (x;) are then trans-

formed into torques T, Tj) exerted by a pair of ago-
nist/antagonist muscles.

7.4 Two/One hypothesis

In the Two/One hypothesis, two different motor commanc ‘ ‘ ‘ __ Ineus
are sent to the same generator. An open question is tl
how the two motor commands are combined together. \ *
present here a model developed by De Rugy and Stert o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
(2003), initially to explain the phase entrainment effec ' ' ' ' ' ' ' '
where both commands are simply summed.

e Interaction between discrete and rhythmic move- R T 2
ments: reaction time and phase of discrete movement '
initiation during oscillatory movements. o Umbwmety
A. de Rugy and D. Sternad, 10 |
in Brain Research2003 80\/\/\/\/
0 0‘.2 014 016 018 ‘1 112 114 116 1.‘8 2

This model has originally been developed to explain tt
phase entrainment effect observed in humans (please reic
to De Rugy and Sternad (2003) or to Sec.4 for more detailsly. 14 Model by De Rugy and Sternad A purely rhythmic com-
Here a motor comman8, composed of the sum of a dis—me}ggiz asﬁezl)ll gorl)ir?a?c?g r?gtsr;il?:tg:e t?girg%(: ngfums(tgo?tsocrwates
creteS; and a rhythmic§ command inputs, is sent to a two—(rgl]el)_ ﬁere/:' 05| :90.08,h e :}’).051, i ())/.125,taus iy
neurons Matsuoka oscillator to generates two firing ratgS_5's ande — 2.5.

(xi,x;j). These firing rates are then transformed into muscle
commands Tj, Tj) for a pair of agonist/antagonist muscles
and finally to a limb trajectory.

The discrete command is modeled as a pulse followed

by an exponential decay, resulting in a damped oscillati Inputs
which, with well-tuned parameters, will later generate  if : ‘ ‘ ‘ ‘ ]
discrete movement. The rhythmic command is simply 0-;* I; ~—— il
constant signal. 0 o0z 04 06 08 1 12 14 16 18 2
Firing rates
Mathematical model. The command input is given by ool ‘ ‘ ‘ ‘ ‘ ‘ ‘ ]
NN\ ]
S: S' + S‘ _0'207 O‘.Z 014 0.‘6 O‘.S i 112 l.‘4 1‘.6 1‘.8 E
Limb trajectory
whereS =const and 120 ‘ —
1101 / 7
Si=Ts(—S4+Pa) 100 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ]

0 0.2 0.4 0.6 0.8 1 12 1.4 16 18 2

wherepp is the peak value of the pulse anga time constant.
Fig. 15 Model by De Rugy and SternadA purely discrete command

PR ina_S= S of peakpp = 1 (top panel) leads to strongly damped oscillations
A network of two mutually inhibiting Matsuoka oscilla of the neurons (middle panel), resulting in a discrete marmrmof the

tors is then used to transform this neural comm&ndto  |imp (bottom panel). Herg = 0.5, | = 0.08, h = 5, T = 0.05, T/ =
the firing ratesx;,x;) of two motoneurons controlling a pair0.125,taus = 0.2, B = 2.5 andw = 2.5.
of agonist-antagonist muscles.
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ot the brain are turned into complex outputs governed by the
oF ° q dynamics of the system. So even though the outputs of the
150 : 1 models are not at the same representation level, they can

0 02 04 06 08 1 12z 14 1s 18 2 quite easily be be modified to account for another level of
representation: as for instance De Rugy and Sternad (2003)
extended the model of firing rates of neurons of Matsuoka
(1985) to limb control by extending the system to the mus-
cles and the limbs dynamics.

A viable model should be able to reproduce the inter-
action observed in humans between discrete and rhythmic
movements that we have mentioned in Sec.4. As it was
said before, there are two main studies on the subject by
Fig. 16 Model by De Rugy and Sternad.A combined command AdamOVIC_h etal (1994) and Stem-ad et al (2000), and they
S= S+ S with S = 1 andpp = 1 (top panel) leads to a perturbed®®Me O different conclusions. While they both agree that

oscillators behavior of the neurons (middle panel), résyiin a rhyth- (a) the rhythmic movement is inhibited by the discrete one;
mic movement around a varying offset (bottom panel). Hete0.5,

| —0.08,h=5,T = 0.05,1" — 0.125 taus — 0.2, B — 2.5 andc — 2.5, (b) the phase of the rhythmic movement is reseted after the
discrete one;
(c) the frequency tends to be higher after the discrete move-
Mathematical model. The torques are obtained through the fol- ~Ment (transient phenomenon according to Sternad et al
lowing equations: (2000));
{E ::hj,z: ?n)(;k)(()i)xj) Adamovich et al (1994) conclude that
wherehr is the gain for the torques. (d1) the discrete trajectory is not influenced by the rhythmi
movement.
~ Finally the action of the torques on the movement of thgnich is refuted by Sternad et al (2000), as they have ob-
joint 8 is deduced from the dynamics of the limb. served that
Mathematical model. The dynamics of the limb is governed @l2) the rhythmic movement influence the discrete one, more

the following equation precisely lower frequencies of oscillations lead to longer
. discrete movements.
16+y0—(Ti+Tj)=0
In both the Two/Two and One/Two hypotheses, the ques-
wherel is the inertia of the limb ang is its damping. tion of the combination of the two movements is left open;
more precisely the interaction has to happen at a lower level
Fig.14 illustrates the output of the model for a rhythef the generation process, that is at the muscular level, as
mic command (that is a constant input). The oscillating fiproposed for instance by Adamovich et al (1994) or by
ing rates are transformed into a smooth, sinusoidal trajgct Staude et al (2002). Adamovich et al (1994) postulate that
through the dynamics of the limb. In Fig.15, it is shown thatiscrete and rhythmic movement cannot co-occur, i.e. that
a purely discrete movement can be obtained using a pealy movement can be seen as a sequencing of discrete or
motor command. Finally, in Fig.16, the combination of botkhythmic movements. According to them, the mutual influ-
command signal and the resulting, combined trajectories &nce observed is due to the overlapping of the kinematic out-
shown. come of the two movements: indeed they postulate that the
In this model, there is an the entrainment effect thatnematic outcome of a movement lasts longer that its gen-
emerges from synchronization effects between the tweation. Note that this view is not shared by Sternad et al
Matsuoka neurons. The distribution of the offset, as well §8000), as was discussed before (see Section 4) . Staude
the phase lag observed in human subjects was successfeilgl (2002), for their part, propose that complex movement
reproduced by this model (De Rugy and Sternad (20033)ise from the summation of the two movements subject to a
Note that this model has been extended by Ronsse ethakshold-linear mechanism:; it is interesting to note thist
(2009) so to integrate reafferent signals and so to captgimple model achieves to model the entrainment effect pre-
bimanual features. sented in Sec.4 (please refer to Staude et al (2002) for more
details).
In the One/One and Two/One hypotheses, the distinction
between discrete and rhythmic movements is assumed to be
7.5 Discussion on the models an artifact of movement categorizations, both movements
being in fact generated through the same process. In these
We have presented here several models based the conceptadels, the notion of interaction of the two movements
motor primitives. Indeed the important common feature @ an ill-posed problem, as they indeed emerge from the
these models is that simple, non patterned commands freame process. Note that a viable model should be able to
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reproduce the observations presented above, these beige:rences
consequences of the dynamics of the motor primitives, as

for instance the phase entrainment in the model by De Rugyamovich S, Levin M, Feldman A (1994) Merging different mo-
and Sternad (2003). tor patterns: Coordination between rhythmical and discsetgle-
joint movements. Exp Brain Research 99(2):325-337
Ashe J (2005) What is coded in the primary cortex? In: Riehl&aa-
In conclusion, we have presented different dynamical dia E (eds) Motor Cortex In Voluntary Movements, CRC Press
systems that can successfully produce discrete and rhytharbeau H, Rossignol S (1994) Enhancement of locomotovezgo

. . following spinal cord injury. Curr Opin Neurol 7(6):517-24
movements, even though the interaction of the two movg,; E. Mussa-Ivaldi FA, Giszter S (1991) Computations et

ments is usually not addressed (with the exceptipn of the ing the execution of movement: a biological perspectivéerge
model by De Rugy and Sternad (2003)). We believe that 253(5017):287-91 _
such systems can be used to better understand the compiesi E, Cheung VCK, d'Avella A, Saltiel P, Tresch M (2008) @e

; ; i~ bining modules for movement. Brain Res Rev 57(1):125-33
problem of movement generation and to possibly determlgﬁdgeman B (2007) Efference copy and its limitations. Cateps in

the poss!ble control archite_cture underlying the proaurcti Biology and Medicine 37(7):924-929
of both discrete and rhythmic movements. Brown T (1912) The factors in rhythmic activity of the nergmystem.
Proceedings of the Royal Society of London Series 85(578):2
289
Bullock D, Grossberg S (1988) The VITE model: a neural cominan
circuit for generating arm and articulator trajectorias. Kelso
J, Mandell A, Shlesinger M (eds) Dynamic patterns in complex
systems, Singapore: World Scientific, pp 206—305
8 Conclusion Bullock D, Grossberg S (1989) Volitional Action, Amsterdaforth-
Holland, chap VITE and FLETE: Neural Models for trajectooy-f
mation and postural control, pp 253-297
In this review, we have presented concepts relevant for thigeng J, Stein R, Jovanovic K, Yoshida K, Bennett D, Han Y 8199

P & walking in the mudpuppy (necturus maculatus) spinal coftte T
ments. The purpose of such a modeling is twofold: first, to  j; '~ of Neuroscience 18(11):4295-4304

bridge two different approaches in motor control, original cohen A, Wallen P (1980) The neural correlate of locomotiofish.
dedicated uniquely to either discrete or rhythmic move- “fictive swimming” induced in a in vitro preparation of thenta
ments, and second, to define a global model of the mohg'g\ pflfyzp";al ford-EXFli:Bfaln 595 31161—18 i F (2006) Gont

; ; vella A, Portone A, Fernandez L, Lacquaniti
structure applicable to robotics. of Fast-Reaching movements by muscle synergy combinatibns
Because we choose to take a functional approach, mostNeurosci 26(30):7791-7810

of the results that we have presented come from animal stff§-Rugy A, Sterad D (2003) Interaction between discreterayith-

. : - . mic movements: reaction time and phase of discrete moveiment
ies. If this results can not necessarily be generalized 0 hu -0 during oscillatory movements. Brain Research 99460—

mans in a straight forward way, we believe that they can pro- 174
vide insights on the processes underlying discrete antithybegallier S, Righetti L, Natale L, Nori F, Metta G, ljspeert(2008)
mic movements generation in humans. A modular bio-inspired architecture for movement generafor
) ) the infant-like robot icub. In: Proceedings of the secon&HE
Indeed synergies of muscles have been observed in hu-RAS / EMBS International Conference on Biomedical Robotics
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