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Response to reviewers

First, we would like to thank both reviewers for their useful comments.

Reviewer 2: This review concerns the paper entitled ”Modeling Discrete
and Rhythmic Movement through Motor Primitives: A Review”, by S. Degallier
and A. Ijspeert. The manuscript was submitted to Biological Cybernetics.

My global comment is that this paper is well written and very clear. It would
need minor clarifications/corrections to be accepted. The paper gathers nice con-
cepts about motor control, motor primitives, and mathematical model. I enjoyed
reading it.

Here are first two general comments concerning the paper as a whole:

• You propose Bizzi’s view about equilibrium point as the control framework
for discrete movement. While Bizzi’s group obtained intriguing results
to validate this framework, some authors have also questioned this theory
(Hinder and Milner, J. Physiol. 549, 2003; or Liu and Todorov, J. Neu-
rosci. 27, 2007), suggesting that discrete movements might be generated
from optimization principles. Interestingly, the first paragraph of your in-
troduction refer to the modular organization of movement generation (a
correlate of Bizzi’s framework) as a nice ground to explain adaptation of
movements. Recently, Izawa et al. (J. Neurosci. 28, 2008) have instead
suggested that adaptation of discrete movements could result from reopti-
mization processes. It would be very interesting that you discuss the simi-
larities and dissimilarities between the two approaches, and to what extent
the equilibrium approach is really necessary to your contribution. For ex-
ample, de Rugy et al.’s model is not based on equilibrium-point hypothesis
(as far as I understand it).

Response. *** The term equilibrium point is here a bit misleading.
Indeed, when speaking of force fields we refer to an equilibrium position
in space (as used by Bizzi et al in for instance Neuroscientist, 2002), not
to muscles rest position (as used by Feldman).
We do not consider motor primitives at the planning level, but only at
the execution level, thus, to our point of view, there is no contradiction
with optimization-based approaches. Indeed motor primitives [taken as
functional neural and/or muscular units responsible for the generation of
a specific movement] are consistent with internal models and optimization-
based approaches; motor primitives are indeed believed to be used by the
CNS to solve the inverse dynamics problem of finding the motor command
corresponding to a planned limb movement (see for instance Mussa-Ivaldi,
1999, Current Opinion in Neurobiology). That is motor primitives provide
the CNS with built-in links between muscles and movement direction and
hence facilitate the resolution of the inverse problem of finding the muscles
commands generating the desired trajectory. We have tried to make this
point clearer in the introduction and in the following sections.

• You should be more cautious when generalizing results and concepts that
were obtained with animals (mainly if non-primates) to humans. This is
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clearly stated when you discuss the CPG work (for which only indirect ev-
idences exist for humans) but - in relation to my 1st remark - not when
you discuss the generation of discrete movements. It is very likely that
the complexity of discrete movements (and the repertoire of possible dis-
crete movements) correlates with the volume of some cortical areas across
species, suggesting that the mode of control is certainly more complex in
humans than in frogs.

Response. A paragraph presenting results concerning primates (includ-
ing humans) has been added; it has notably been shown that a finite set of
synergies could account for fast reaching movements in humans (d’Avella
et al., Jour. of Neurosci., 2006) providing evidences that the concept of
motor primitives mgiht be extendable to higher vertebrates. Note that
in the specific section that you are mentioning, we focus mainly on the
execution of the movement at the spinal level, not on the planning of the
movements in higher areas.

Here are some others remarks, listed as they appear in the text:

• p.2, left col., line 10: You propose to take a functional perspective. While
very central to your contribution, this terminology does look clear to me.
Please be more specific. What is a functional perspective? How does it
differ from previous work?

Response. We have defined more precisely what we mean by a functional
perspective:
By functional perspective, we mean that contrarily to other previous ap-
proaches, we focus on the processes underlying the generation of the move-
ments rather than on the kinematic outcomes of the movement.

• p.4, section 4: I wondered why this section should not come first (after
introduction). This is very nice material and summary.

Response. This section has been moved after the introduction.

• p.4, right col., line 8: please define ”somatosensory information” (extra
footnote).

Response. The term has now been defined as a footnote as follows:
The term somatosensory information refers to different sensory signals
from all major parts of the body, namely proprioception (that is muscles
and joints position), touch, pressure, temperature and pain (see Kandel
et al., Principles of Neural Science (2000) for instance). Note that these
different signals do not all use the same pathway.

• pp.6-7, section 6.1: you nicely summarize the concept of internal models.
To what extent is this framework not in opposition with the equilibrium
point theory? In a recent paper (Exp Brain Res 194, 2009), Feldman (one
of the ”popes” of the equilibrium-point theory) argue that efference copies
of motor commands in the brain (a necessary element of internal mod-
els) are not necessary if one adopts his view on the generation of discrete
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movements. How do you conciliate Internal Models and Equilibrium Point
Theory in your paper?

Response. See Response*** above.

• p.7, left col., last par. of section 6.1: I do not understand this paragraph.
How do you conclude that internal models mean that the CSN represent
discrete movements as time-varying equilibrium-points? Please be more
explicit.

Response. See Response*** above.

• pp.7-8, section 6.2: even if it gathers nice material, I do not see the in-
terest of this section for your paper. What does it bring to your message?
I believe that this section (at least for the part going to line 39 of p.8) can
be drastically reduced.

Response. This part has been reduced. The pertinence of what has been
kept has also been emphasized. Our aim is to link movement encoding with
the concept of motor primitives before introducing the existing literature
on discrete and rhythmic movements encoding per se.

• p.15, section 7.4: when citing de Rugy et al.’s model, please also refer to
Ronsse et al. (Neural Computation 21, 2009). These authors extended de
Rugy’s model to cope with reafferent signals, and to capture some biman-
ual coordination features.

Response. Thanks for the reference, it has been added.

Reviewer 3: Modeling Discrete and Rhythmic Movement through Motor
Primitives: A Review - Sarah Degallier and Auke Ijspeert

The aim of the paper is to review the existing studies and bridge between
different perspectives when approaching the studies of discrete versus rhythmic
movements using the motor primitives’ framework.
In general this is a research topic which is of major interest to Motor Control
researchers and generally the authors did quite a good work in compiling the
major concepts that are in the scientific forefront when studying discrete versus
rhythmic movements. The paper reviews current neurophysiological literature
and surveys the many different existing approaches to the problem of controlling
such movements by looking at two levels- the level of command and the level of
generators, the reviewed models are divided into several groups : the so called
Two/Two, Two/One, One/One and One/Two schemes.
Hence, the authors provide quite a useful roadmap to researchers becoming in-
terested in this topic and such readers may find the review as providing an
illuminating entry point. Still, the paper should undergo revision since there are
several important aspects of the review that should be dealt with as follows.

General comments:
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• It is said in the introduction that experiments have shown that motor prim-
itives seem to be present at the planning and execution levels. Still the
paper reviews mainly dynamical systems based models and approaches and
the review does not seem to adequately review the topic of the existing of
motion primitives for discrete and rhythmic movements at the kinematic
level. While given that the paper covers a large number of issues and topic,
this confinement to these aspects is quite well understood, the fact that the
paper focuses on certain aspects of this general topic and not others should
be clearly stated in the introduction.

Response. This comment is related to the one of Reviewer 2 who required
more explanation on the term functional (please see above). Indeed we
meant by that the we focus on the generation process more than on the
outcome of the movement (even if both are obviously tightly linked), no-
tably because Hogan and Sternad (Exp. Brain Research, 2007) did an
excellent work in analyzing the kinematics of discrete and rhythmic move-
ments. The present review thus aims at being a complement to such
analyses. To clarify this, the following footnote has been added in the
introduction:
In this review, by motor primitive we mean a functional neural and/or
muscular unit responsible for the generation of a specific movement. As
such a topic is already dense, we do not consider motor primitives in
trajectory planning or more generally in the kinematic outcome of the
movement. The reader is referred to Hogan and Sternad (Exp. Brain Re-
search, 2007) for a thorough kinematic analysis of discrete and rhythmic
movements.

• A review, I believe, should be as impartial as possible. Whereas a research
paper has an agenda to promote, a review paper should not choose sides
and should represent the various existing view points on the subject.
In that respect, there is still a great debate revolving the existence or even
the justification for the need of internal models in the community. Of
course, here primitives provide a framework for the current review and
the link between primitives and internal models is natural. Nevertheless,
the authors should also present in more details other alternative views (e.g.
Equilibrium point hypothesis). Thus, while the equilibrium point control is
mentioned briefly from the perspective of force fields this is not sufficiently
detailed from the perspective of equilibrium trajectory models.

Response. We do not want to enter the debate as it is not our topic here:
the section dealing with internal models has thus been renamed ”Motor
primitives in movement planning”. The text on internal models has been
reduced so to only keep the part relevant to this review. Moreover we have
added a paragraph mentioning that the existence on internal models was
still debated and the major objections to their existence. We also now
present the approach by Latash et al, Motor Control, 2007, as it presents
an alternative view that is also based on muscles synergies.

• Even though there is a separate discussion of planning versus execution
there is not sufficient distinction between representations at different hi-
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erarchical levels, e.g. joint kinematics versus muscle activation. This is
especially evident when reviewing the existing models.

Response. The review of existing model has been extensively revised
and more details on each model has been given, in particular on the rep-
resentations. We have tried to clearly specified the type of representation
that was discussed throughout the article.

• The term ”Synergy” is used quite often in the manuscript but it is not
even once defined. Since, there is some debate revolving this term, it is
desirable that the authors briefly define what Synergies are.

Response. The term synergy has now been clearly defined in a footnote
in the following way:
By synergy, we mean a set of muscles activated in a coordinated way so to
execute a specific movement, that is a group of muscles defined relatively
to the movement they produced when they are activated together.

• While the authors review current literature about motor neurophysiology
and neural representations they should make greater effort to clearly focus
on the literature that is especially pertinent to the distinct neural represen-
tations of discrete versus rhythmic movements and not of motor behaviors
in general as is currently done. To the best of my understanding the cur-
rently available knowledge about such representations at the cortical level
is quite limited, perhaps to a few fMRI and/or single cell studies.

Response. This part has been reduced. The pertinence of what has been
kept has also been emphasized. Our aim is to link movement encoding with
the concept of motor primitives before introducing the existing literature
on discrete and rhythmic movements encoding per se.

• In Section 7, the discussion of the mathematical models should be exten-
sively revised. The choice of models is fine. However, each model is very
briefly described while the mathematical equations are fully given (and
there are 7 models descriptions). This even makes things more compli-
cated since it is impossible to really understand the models as presented by
the mathematical equations (moreover, even not all the models’ parame-
ters are fully explained). I believe it will be better to give a better intuition
of these models and discuss them at a more conceptual level by presenting
a more integrated discussion and description of the issues and problems
they address and how they fit the different concepts presented in the pa-
per. In the current situation, the interested reader cannot find this part of
the review educating enough nor useful and anyway the reader will have
to refer to the original paper. Therefore, since it is a review which has
to discuss the different approaches, their advantages and shortcomings, as
well as open issues, there is no much good in providing too many details
which only add clutter and confusion rather than strengthen the concepts
behind these models.
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Response. The mathematical section has been revised accordingly to
the given suggestions. The parameters and the level of representation are
clearly stated and the models are explained in details. The major aspects
of the models are now illustrated by figures linking the control parameters
and the corresponding output.
The equations have however been kept as we think that for some people
equations are clearer than any text. Moreover, we will provide the mat-
lab code we use for generating the figures to the interested readers upon
demand, as stated in the text.
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Abstract Rhythmic and discrete movements are frequently
considered separately in motor control, probably because
different techniques are commonly used to study and model
them. Yet, an increasing appeal for a comprehensive model
for movement generation requires to bridge the different per-
spectives arising from the study of those two types of move-
ments.

In this article, we consider discrete and rhythmic move-
ment within the framework of motor primitives, that is of
modular generation of movements. Doing so, we hope to get
insights on the functional relationships between discreteand
rhythmic movements and therefore on suitable representa-
tions for both of them.

We start by reviewing some of the existing literature re-
garding discrete and rhythmic movement, that we study from
a functional view point. We then present some mathematical
models found in the literature for the generation of discrete
and rhythmic movements.

1 Introduction

Humans are able to adapt their movements to almost any
new situations in a very robust, seemingly effortless way. To
explain both this adaptivity and robustness, a very promis-
ing perspective is the modular approach to movement gen-
eration: Movements results from combinations of a finite set
of stablemotor primitivesorganized at the spinal level (see
Bizzi et al (2008) for a review).

In terms of control, the modularity assumption is attrac-
tive because it drastically reduces the dimensionality of the
problem: instead of a complex activation of a vast number of

This work was supported by the European Commission’s Cognition
Unit, project no. IST-2004-004370: RobotCub and by the Swiss Na-
tional Science Foundation.

S. Degallier· A. Ijspeert
Biologically Inspired Robotic Group (BIRG)
School of Engineering
Ecole polytechnique fédérale de Lausanne
1015 Lausanne
E-mail: sarah.degallier@epfl.ch

muscles across the body, only a couple of synergies of mus-
cles need to be controlled. Here, the termsynergydesigns
a set of muscles activated in a coordinated way so to exe-
cute a specific movement, that is a group of muscles defined
relatively to the movement they produced when they are ac-
tivated together. Strong evidence, notably through the con-
cepts of central pattern generators and force fields (see resp.
reviews by Grillner (2006) and Bizzi et al (2008)), supports
the assumption that such functional modules of movements
are located at the spinal level.

Indeed, neurological studies have provided evidence that
the spinal cord produces many behaviors in a modular way.
Bizzi and colleagues have brought to light such synergies of
muscles in the frog (Bizzi et al (1991)); they have identi-
fied small functional sets of modules related to the direction
of movements at the spinal level. Furthermore, it has been
shown by Mussa-Ivaldi et al (1994) that by simply combin-
ing these modules, a wider range of stable movements could
be produced. Finally, Kargo and Giszter (2000) have shown
that such synergies could account for the natural whipping
reflex in the frog, showing that the CNS could use such prim-
itives to produce behaviors.

In this review, bymotor primitivewe mean a synergy re-
sponsible for the generation of a specific movement. As such
a topic is already dense, we do not consider motor primitives
involved in trajectory planning or more generally present in
the kinematic outcome of the movement. The reader is re-
ferred to Hogan and Sternad (2007) for a thorough kinematic
analysis of discrete and rhythmic movements.

In summary, motor primitives are here taken as neu-
ral/motor building blocks of movements that are used by
the CNS to execute a particular movement. In this article,
we propose to consider discrete and rhythmic movements
within this modularity framework; more precisely, we take
what we call afunctional perspectiveto the generation of
these movements. More precisely, here we focus on the pro-
cesses underlying the generation of the movements rather
than on the kinematic outcomes of the movement, as this
subject as already been addressed in the past. Indeed, most
of the studies on discrete and rhythmic movements are ei-
ther based on EMG analyzes of the generated movements
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2

(Hogan and Sternad (2007), van Mourik and Beek (2004)) or
on fMRI analysis (Schaal et al (2004)) as it will be reviewed
in Section 3. While those studies have provided insightful re-
sults on the nature of discrete and rhythmic movements, we
think that taking a functional perspective is a useful, comple-
mentary step to understand how such movements are gener-
ated, and also to provide more understanding on how brain
and EMG studies can be bridged.

After a brief recall on some basic notions on movement
generation (Section 2), we present several studies on the dif-
ferences between discrete and rhythmic movements (Section
3). We then introduce some of the literature on the com-
bination of these movements in Section 4. Albeit we are
well aware that movement generation is a dynamic process
involving the whole motor system, we discuss separately
movement execution and movement planning as we believe
that in this way properties pertaining to those two phases of
movement can be brought to light, as it will be discussed in
Sections 5 and 6. We furthermore present in Section 7 some
existing mathematical models for the generation of discrete
and rhythmic movement, as such models provide discerning
information on the generation of these movements.

2 Overview on movement generation

According to textbooks (see for instance Kandel et al
(2000)), movement generation is achieved through three mo-
tor structures organized hierarchically and corresponding to
different levels of abstraction. Namely, those structuresare
(a) thecerebral cortex, which is responsible for defining the
motor task; (b) thebrain stem, which elaborates the motor
plan to execute the motor task; and (c) thespinal cord, which
generates the spatiotemporal sequence of muscles activation
to execute the task. In addition, the cerebral cortex and the
brain stem are influenced by thecerebellumand thebasal
ganglia, which can be considered as feedback circuits, the
cerebellum being also linked with the spinal cord. Figure 1
represents a schematic view of the motor structures of the
central nervous system (CNS). Note that the cerebellum and
the basal ganglia act on the cerebral cortex through the tha-
lamus, which is not represented on the figure for clarity rea-
sons.

More precisely, the spinal cord is responsible for the
activation of motoneurons through networks of spinal neu-
rons, those circuits being modulated by higher areas. Then,
in the middle, the brain stem receives input from the cere-
bral cortex and projects into the spinal cord. It contributes
to the control of posture by integrating visual, vestibular,
and somatosensory1 information. It can also control more
distal limb muscles involved in goal directed movements.
The cerebral cortex oversees the brain stem and the spinal

1 The termsomatosensory informationrefers to different sensory
signals from all major parts of the body, namely proprioception (that
is muscles and joints position), touch, pressure, temperature and pain
(see Kandel et al (2000) for instance). Note these differentsignals do
not all use the same pathway.

Fig. 1 Hierarchical organization of the three motor structures. At the
highest level, the cerebral cortex projects directly to thespinal cord
and the brain stem. The spinal cord also receives input from the brain
stem. Two independent entities (in green), the cerebellum and the basal
ganglia have be proved necessary for smooth movements and postures.
They interact with both the cerebral cortex and the brain stem.

cord; the primary motor cortex and some other premotor ar-
eas project directly to the spinal cord (corticospinal tract)
and regulate motor tract from the brain stem.

Observations on patients with lesions in the cerebellum
and basal ganglia have shown that the cerebellum is involved
in timing and coordination of movements, as well as in learn-
ing of new motor programs, whereas basal ganglia is be-
lieved to be involved in the motivation and selection of ap-
propriate behavioral responses.

Thesomatosensory informationis crucial for movement
execution as it provides the representation of the space in
which the task has to be performed and also of the state and
posture of the body. A constant update of this information is
needed to ensure smooth movements. The somatosensory in-
formation is also used to control the movement which is ex-
ecuted. This control can be feedback or feed-forward. Feed-
back control is used by the spinal cord to maintain a given
position and to modulate the force needed to perform the
task. A feed-forward control, based on experience, is used
for anticipation; it can also modify the feedback response.
Schneider and Shiffrin (1977) distinguish the controlled and
the automatic processing of information; the controlled pro-
cess is relatively slow, volitional and attention demanding
(as in obstacle avoidance, for instance, where the visual in-
formation has to be processed), whereas the automatic one is
fast, not volitional (and often unavoidable (Underwood and
Everatt (1996))) and demands no attention (as for instance
contact information of a foot with the ground which is fed
back into the CPGs in locomotion).

Along this three-layered architecture, three types of
movement are distinguished relatively to the way there are
produced (see, for instance, Kandel et al (2000)): (a)re-
flexes; (b) rhythmic automatisms2; and (c)voluntary move-
ments. Reflexes and rhythmic automatisms are spontaneous,
whereas voluntary movements are the result of a (motor)
plan. Thus, higher cortical areas are required for voluntary
movements. Automatisms are mainly generated at the spinal

2 Rhythmic automatisms (as motor generation processes) are often
referred to as rhythmic movements in the literature. However, to avoid
confusion with rhythmic movements as kinematic outcomes ofthe mo-
tor system, we will rather use the term automatisms.
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cord and the brain stem levels whereas the generation of vol-
untary movement also involves areas of the cerebral cortex.

Now that some of the basics notion have been defined,
we can start reviewing the existing literature on discrete and
rhythmic movements.

3 Defining discrete and rhythmic movements

Mathematically, defining rhythmic and discrete movements
is an easy task. Rhythmic refers to periodic signals, discrete
to aperiodic ones. However, when considering movements
that we actually perform, the task starts being tricky, the ma-
jor problem being that movements are finite in time and that
the formal, mathematical definition of periodicity is thus un-
usable. Moreover inner variability of movements and modu-
lations by the environment (contacts for instance) change the
basic nature of the actual trajectory, so that it is impossible
to perform a perfectly periodic trajectory for instance.

The attempt by Hogan and Sternad (2007) to develop a
taxonomy to classify discrete and rhythmic movements con-
firms the inherent difficulty of the task. A discrete movement
is defined as a movement which occurs between two pos-
tures, where postures stand for a non zero interval of time
where (almost) no movement occur. Rhythmic movements
are categorized in four subsets, going from strictly periodic
movements to movements with recurrent patterns. However,
as the authors point out in the article, those two definitions
are not exclusive. The so-called rhythmic movements occur
in between postures (and thus enter the definition of dis-
crete), and discrete movements can be repeated so to become
periodic.

Another difficulty comes from the fact that rhythmic and
discrete movements have mainly been studied separately
in the literature, although some interesting (relatively re-
cent) articles on their combinations exist. This distinction
is mainly due, from our point of view, to two interlinked
factors. First, rhythmic and discrete movements have not
been studied per se in general, but mainly as outcomes of
some specific processes in trajectory generation, for instance
central pattern generators (CPGs) in locomotion and senso-
rimotor transformations in reaching. Second, rhythmic and
discrete movements are representative of two different lev-
els of movement generation, i.e. the automatic and voluntary
levels. This implies different investigation techniques;most
of the studies on rhythmic movements have focused on the
spinal cord-brain stem system in deafferented or spinalized
animals, whereas discrete movement is usually studied us-
ing brain imaging techniques or kinematic data on awake,
behaving animals. Overcoming these differences in perspec-
tive is a necessary step to understand movement in general.

These two issues make a review of rhythmic and dis-
crete movements difficult in the sense that any comparison
between the numerous studies on the subject is laborious
due to the fact that the methods, the point of view and the
physiological level of investigation are different. It is in-
teresting to question if, in terms of motor control, the ap-

parent differences between discrete and rhythmic movement
are artifacts due to different scientific approaches or if both
movements are in fact produced independently. Indeed, as
proposed by Schaal et al (2004) and van Mourik and Beek
(2004), three possibilities need to be addressed: (a) rhythmic
movements are repeated discrete movements (concatenation
hypothesis), (b) discrete movements correspond to half a cy-
cle of a rhythmic behavior (half-cycle hypothesis) and (c)
discrete and rhythmic movements results from different pro-
cesses (two primitives hypothesis).

If hypotheses (b) and (c) are still left open, several stud-
ies have shown that hypothesis (a) is unlikely to be true.
According to van Mourik and Beek (2004), the concatena-
tion hypothesis is mainly a consequence of trajectory plan-
ning theory where it is often supposed that discrete segments
are used as building blocks for the movement. It has been
ruled out by several studies comparing discrete and rhyth-
mic movements (van Mourik and Beek (2004); Hogan and
Sternad (2007)) where the key kinematic features of rhyth-
mic movements are significantly different from those of the
discrete movements. Schaal et al (2004) obtained similar re-
sults using fMRi techniques: some cortical areas activated
during discrete movements where not active during rhyth-
mic ones. In addition, as reported by van Mourik and Beek
(2004), Guiard (1993) argued against the concatenation as-
sumption that it would involve a waste of elastic energy (in-
deed at the end of a reaching movement, the energy has to be
dissipated, whereas for rhythmic movement, the energy can
be stored as potential energy for the remaining half-cycle).

It is however important to point here that those compar-
isons are always made between a reaching movement and
its corresponding back and forth rhythmic movements: Thus
the difference observed may be due to the characteristics of
reaching itself rather than due to the fact that reaching is
a discrete movement. For instance, in the experiment con-
ducted by Schaal et al (2004), the subjects had to either cycle
around a rest position at a self-chosen amplitude or to stop at
a chosen position, to wait for a while and then to start again.
fMRI recordings of this experiments have shown that some
cortical areas active during the discrete movements were
not activated during the rhythmic movements, leading to
the conclusion that rhythmic movements cannot be concate-
nated discrete movements. However, as it has been pointed
out, notably by Miall and Ivry (2004), the discrete move-
ments required more processing, namely choosing where to
stop and when to start again, which could also explain the
difference observed in the fMRI recordings.

Another non negligible phenomenon is the onset and the
ending of a rhythmic movement: indeed, border conditions
changes the kinematic properties of the cycles (compared to
normal, in-between cycles), making them closer to those of
discrete movements. Indeed, when a discrete movement is
performed, the initial and final accelerations are null while
it is not the case during in-between cycles. However, in the
first and final half-cycles, a similar feature can be observed.

van Mourik and Beek (2004) have studied separately
the in between cycles and first and last half-cycles. They
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came to the conclusion that, whereas the in between cy-
cles were significantly different from the discrete move-
ments, the first and last half cycles were kinematically close
to discrete movements. If their results do not rule out the
half-cycle hypothesis, it speaks more for the two primitives
hypothesis: the performed cyclical movements could be in
fact a sequence of a discrete, onsetting movement, followed
by rhythmic movements and terminated again by a discrete
movement. A model by Schöner and Santos (2001) based on
this latter hypothesis will be presented in the last part of this
review.

The questions on the nature of discrete and rhythmic
movements remains thus open, even if strong evidence
seems to rule out the concatenation hypothesis. In the next
section, we present some work on the interaction of discrete
and rhythmic movements in tasks involving their combina-
tion.

4 Discrete and rhythmic movements and their
combination

Most of the EMG and movement studies on the combination
of rhythmic and discrete movements are built on the same
scheme: a particular joint (the finger or the elbow generally)
has to be moved from an initial to a target position (discrete
movement) while oscillating (rhythmic movement). The os-
cillation is either physiological (Goodman and Kelso (1983);
Adamovich et al (1994); Michaels and Bongers (1994); Ster-
nad et al (2000)) or pathological (Wierzbicka et al (1993);
Elble et al (1994); Staude et al (2002)), the reader is referred
to Sternad (2007) for a very nice review.

In all these experiments, an entrainment effect was ob-
served, that is the discrete movement is phase-coupled with
the rhythmic movement, in the sense that the onset of the
discrete movement occurs preferably (though not always)
during a specific phase window of the oscillations. Good-
man and Kelso (1983) showed that this phase window cor-
respond to the peak of momentum of the oscillations in the
direction of the discrete movement. Interestingly, it is a well
known fact that professional pistol shooters press the trigger
in phase with their involuntary tremor, while beginners try
to immobilize themselves before shooting.

In terms of EMG, the burst initiating the discrete move-
ment occurs approximately at the time where the EMG ac-
tivity for the rhythmic movement would have been expected
without this perturbation. This effect is thus referred to as
”burst synchronization” by De Rugy and Sternad (2003).
Performing the same experiment, although at different fre-
quencies, Adamovich et al (1994) and De Rugy and Sternad
(2003) came to different conclusion on movement combina-
tion.

Indeed, Adamovich et al (1994) observed the three fol-
lowing feature: (a) the oscillations rapidly attenuate during
the discrete movement and resume after the peak velocity of
the discrete movement; (b) there is a phase resetting of the
oscillations after its attenuation; and (c) the frequency tend

to be higher after the discrete movement. In addition, they
observed that (d) once the discrete movement is initiated, it
is performed independently from the rhythmic one, in the
sense that the discrete trajectory is not influenced by the
rhythmic movement. Basing themselves on the monotonic
hypothesis (St-Onge et al (1993)), i.e. an hypothesis accord-
ing to which the command of the discrete movement stops at
the time of its peak velocity, they conclude that discrete and
rhythmic movements are excluding each other at the neural
level, in the sense that they cannot co-occur. However, their
kinematic outcome outlasts them and overlap.

Performing the same experiment at lower frequencies (2-
3Hz instead of 5-7Hz), Sternad et al (2000) came to a differ-
ent conclusion concerning the interdependence of the two
movements. Indeed, they observed a significant influence of
the rhythmic movement on the discrete movement (lower
frequencies of oscillations lead to longer discrete move-
ments), which is in contradiction with the result (d) obtained
by Adamovich et al (1994). Moreover, the higher frequency
observed by Adamovich et al. after a discrete movement (ob-
servation (c)) appeared to be a transient phenomenon. Ac-
cording to these observations, Sternad et al (2000) propose
that both movements co-occur and that the attenuation of the
oscillations during discrete movements is due to inhibitory
phenomena.

Note that co-occurrence of movement is supported by a
study on whisker movements in rats by Haiss and Schwarz
(2005), where it has been found that rhythmic and non rhyth-
mic movements can be evoked through two different areas
of the primary motor cortex. Indeed, it has been shown in
addition that simultaneous activation of both areas resulted
in a shift of the offset of the whisker oscillations, that is in
a combination of both movements. This experiment will be
discussed more in details in Section 6.

We now discuss more precisely the generation of discrete
and rhythmic movements, both at the execution and at the
planning levels.

5 Discrete and rhythmic movement in movement
execution

We present movement execution through two fundamental
concepts,central pattern generatorsandforce fields, that we
develop in the following.

Central pattern generators(CPGs), that is spinal net-
works involved in many behaviors in vertebrates and inverte-
brates, is a seminal concept in the generation of (rhythmic)
movements (Grillner (1985), Delcomyn (1980)). Although
most work on CPGs were originally dedicated to rhythmic
movements, Grillner (2006) for instance now enlarges it to
discrete movements.

Another primary discovery in movement generation is
the concept offorce fields, which has been brought to light
by Bizzi’s group (Bizzi et al (1991)). As we will see, forces
fields provide evidence for a modular organization of the
spinal cord circuitry.
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In the following we present these two notions more in
details, as well as their relationship to discrete and rhythmic
movements.

5.1 Central pattern generators

One century ago, two discrepant explanations for the rhyth-
micity presents in locomotion were competing: one suggest-
ing that sensory feedback was the main trigger of the dif-
ferent phases of locomotion (Sherrington (1910)), and an-
other one suggesting the existence of central neural networks
capable of generating rhythms without any sensory input
(Brown (1912)), such neural networks being now called cen-
tral pattern generators (CPGs). Since then, this latter hypoth-
esis has been strengthen by experiments on both vertebrates
and invertebrates (see Stein et al (1997) or Ijspeert (2008)
for more comprehensive reviews).

Actually, there is now very clear evidence that rhythms
are generated centrally without requiring sensory informa-
tion. Experiments on lampreys (Cohen and Wallen (1980),
Grillner (1985)), on salamanders Delvolvé et al (1999) and
on frog embryos (Soffe and Roberts (1982)) have shown that
when the spinal cord is isolated from its body, electrical or
chemical stimulations activate patterns of activity, called fic-
tive locomotion, very similar to the one observed during in-
tact locomotion.

Grillner (1985) proposed that CPGs are organized as
coupled unit-burst elements with at least one unit per ar-
ticulation (i.e. per degree of freedom) in the body. Cheng
et al (1998) report experiments where these units can be di-
vided even further with independent oscillatory centers for
flexor and extensor muscles. Furthermore, several experi-
ments show that CPGs are distributed networks made of
multiple coupled oscillatory centers (Ijspeert (2008)).

According to Marder and Bucher (2001), two types
of CPGs networks can be distinguished: the so-called
pacemaker-driven networks and networks with emergent
rhythms. Pace maker-driven networks, which are usually
networks that are always active, as in breathing, consist of
a subnetwork of intrinsically oscillating neurons that drives
non-bursting neurons into a cyclic pattern, while in networks
with emergent rhythms, the most commonly found, the os-
cillatory pattern comes from couplings between the neurons,
for instance by mutual inhibition of two reciprocal neurons.
A mathematical model by Matsuoka (1985) of such a system
will be presented in Section 7.

While sensory feedback is not needed for generating the
rhythms, it has been shown that some important features of
the actual motor pattern are not present in the fictive mo-
tor pattern (Stein and Smith (2001)). For instance, in the cat
scratching movement, the rhythmic alternation between ag-
onist and antagonist muscles is already present in the fic-
tive motor pattern, whereas the relative duration of exten-
sor activity observed during actual scratching is greater than
the one observed in the immobilized preparation (fictive pat-
tern). The motor pattern generated by the CPGs thus seems

to be modulated by the sensory-motor information so that it
stays coordinated with body movements.

Sensory feedback is also involved in the mechanisms un-
derlying short-term and long-term adaptation of CPGs ac-
cording to Pearson (2000). He postulates that the long-term
phenomenon are driven by the body and limbs propriocep-
tors together with central commands and neuromodulators.
Kawato (1996) also proposed that persistent errors detected
by proprioceptors are used to recalibrate the magnitude of
the feed forward command.

The existence of CPGs in the human system is well ac-
cepted nowadays, even if the identification of such spinal
networks has not been possible yet. Strong evidence is in-
deed provided by studies on infants (Thelen (2000); Yang
et al (1998); Lamb and Yang (2000)). Stepping reflexes, just
after birth, have been observed in anencephalic infants, pro-
viding evidence that circuits responsible for this behavior are
located at the spinal and/or at the brain stem level.

In addition, studies of disabled patients have shown that
in the absence of sensory information, gross movement con-
trol is preserved, even if peripheral information is necessary
for precise movement organization and control (see Jean-
nerod (1988) or Gandevia and Burke (1992)).

Finally, even though it is believed that in humans the role
of descending signals is more crucial for movement genera-
tion and thus that the spinal cord system may be less able
to function after spinal cord injuries (SCI), it was shown
that treadmill exercises for patients with SCI improved their
walking pattern (Barbeau and Rossignol (1994); Dietz and
Harkema (2004); Edgerton et al (2004); Rossignol et al
(2007); Wolpaw and Tennissen (2001)). This may be ac-
counted by the fact that CPGs can be trained to function
independently from descending signals (Stein (2008)). Dim-
itrijevic et al (1998) have shown that non rhythmic stimula-
tions of the spinal cord of patients with complete SCI could
induce patterned, locomotor-like activity.

In conclusion, the existence of CPGs in animals is now
strongly endorsed, while the role of CPGs in humans is not
clear yet, notably because movement generation in humans
strongly depends on the descending signals (MacKay-Lyons
(2002)). However, there are strong evidences that adapta-
tion processes occur in the spinal cord, in particular through
promising clinical treatments after SCI that appear to exploit
CPGs.

Most of early work on CPGs were focused on rhyth-
mic movements, however the discovery of functional mus-
cles synergies in the frog responsible for discrete movements
have lead to an extension of the term, as we will see in the
next section.

5.2 Motor primitives and forces fields

Bizzi’s group provided some evidence for the concept of
motor primitives. Indeed, they brought to light that move-
ments were generated in a modular way by the spinal cord
in frogs (for a comprehensive review, see Bizzi et al (2008)).
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More precisely, stimulating specific interneuronal areas of
the spinal cord, they observed that the limb was moved in the
direction of the same end point (equilibrium point) whatever
the initial position of the limb was. They called the set of the
vectors corresponding to the directions obtained by the stim-
ulation force fields. Surprisingly, only 3-4 directions, corre-
sponding to different areas in the spinal cord, were identi-
fied (Bizzi et al (1991)), furthermore, they were sufficient
to account for natural limb trajectories (Kargo and Giszter
(2000)).

Indeed Mussa-Ivaldi et al (1994) found that stimulating
two areas simultaneously was almost equivalent to a sim-
ple linear combination of the vector of the force fields pro-
portional to the intensity of stimulation. Since the intensity
of stimulation does not change the pattern of force orien-
tation (Giszter et al (1993)), this results provide an efficient
way to span the space of possible end-effector target position
through the weighted sum of the basic force fields. Similar
results were obtained with rats (Tresch et al (1999)) and cats
(Krouchev et al (2006); Ting and Macpherson (2005)).

Such findings endorse the hypothesis that movements are
produced through the combination of motor primitives pro-
duced by spinal functional units, which can be character-
ized by a force field acting on the end-effector of the limb.
This seminal result provides a powerful tool for explaining
how the CNS can easily control the many muscles involved
in any movement. Indeed, instead of having to activate and
control the different muscles involved in the task, the CNS
only has to define the level of activation of a small num-
ber of synergies. Furthermore, the combination being almost
linear, it provides an efficient way of bypassing the inher-
ent nonlinearities present in movement control using direct
muscle activation. Tresch et al (1999) have developed a va-
riety of computational methods to extract muscles synergies
involved in different movements. Indeed, identifying those
synergies is a difficult task, mainly because muscles can be-
long to more than one synergy at the time.

In an experiment using chemical stimulation3 of in-
terneurons in the frog, Saltiel et al (1998) found out that
some regions were eliciting rhythmic behaviors. Force mea-
surements of the limb show a finite number of synergies cor-
responding to the direction of oscillations. More precisely,
in rhythmic activation, the direction of the force field change
through time, leading to an oscillatory behavior. It is thusbe-
lieved that by stimulating a particular area of the spinal cord,
a whole CPG network can be activated through connectiv-
ity. Interestingly, the different orientations of the oscillation
correspond to the directions of the forced fields found using
the same method. Furthermore, the rhythmic and tonic ar-
eas of activation corresponding to the same orientation were
topographically close (Saltiel et al (2005)). This resultssug-
gest that rhythms might arise from the temporal combination
of simpler tonic modules. According to Saltiel et al (1998),

3 Chemical activation, here through N-methyl-D-aspartate (NMDA)
Iontopheric, is more precise in the sense that it activates only somas
and dendrites, whereas in electric stimulation axons and nerve termi-
nals can also be depolarized.

CPGs could be organized such that tonic modules provides
the orientation of the oscillations while the timing features
comes from the network.

It is not known yet if the concept of force fields can
be extended to higher vertebrates, but it has been shown
that a finite set of (time-variant) synergies of muscles could
account for the movement generation in humans during
fast reaching movements d’Avella et al (2006) as well as in
primate grasping Overduin et al (2008), providing evidences
for the existence of motor primitives.

The difference between discrete and rhythmic move-
ments, at least at the spinal level, may thus be due to dif-
ferences in the topology of the network of motor primitives
(CPGs, in the broad sense) rather than to completely distinct
pathways. Indeed, discrete networks need to encode a target
position and possible a time onset, while rhythmic networks
also need to be endowed with a frequency and a phase. As re-
viewed by Marder and Bucher (2001), such features seem to
simply emerge from the intrinsic and synaptic properties of
the neurons constituting these particular (rhythmic) CPGs.

In summary, there is strong evidence that basic build-
ing blocks of movements are present at the spinal level and
that they are used by the CNS to create behaviors by com-
bination. It seems reasonable to postulate that discrete and
rhythmic movements are both generated through the specifi-
cation of respectively target equilibrium points or directions
of oscillations through the activation of specific spinal build-
ing blocks, while features pertaining to rhythmic movements
(such as frequency and phase) may arise from the topologi-
cal properties of the larger spinal networks eliciting the be-
havior.

6 Discrete and rhythmic in movement planning

We now question discrete and rhythmic movement during
planning. We start by presenting the possible role of mo-
tor primitives in movement planning; we then discuss move-
ment encoding by the motor cortex.

6.1 Motor primitives in movement planning

A common hypothesis on how we choose to perform a given
action is that the CNS uses internal models, that isrepresen-
tationsof the sensorimotor system and the environment to
select the next action that it is going to produce. An inverse
dynamic model is then required for movement initiation, that
is to find the motor commands to be sent to the spinal cord
to fulfill the desired task.

The question of how the CNS actually computes the in-
verse model is still open. Indeed, inverse dynamics problems
are complex, in particular in systems with high degrees of
freedom, that is with high redundancy. In addition, in living
systems, the dynamics of the body is changing through time,
as well as the external dynamics. According to some au-
thors, the existence of motor primitives might help the CNS
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to solve the inverse dynamics problem (Bizzi et al (1991);
Mussa-Ivaldi (1999); Georgopoulos (1996)). Indeed, motor
primitives could provide the CNS with built-in links between
muscles and movement direction and hence facilitate the res-
olution of the inverse problem of finding the muscles com-
mands generating the desired trajectory (Mussa-Ivaldi and
Bizzi (2000) ).

More precisely, we have seen in Section 5 that motor
primitives, at least in frogs, can be combined linearly, by-
passing the high nonlinearity of muscles. It can be thus
imagined that instead of solving an inverse problem so to
control each of the needed muscles to follow the desired
trajectory, the CNS choose a combination of motor primi-
tives that best fit this trajectory. In this case the CNS only
task is to optimize the activation of each motor primitive
so to minimize the error between the desired and the ac-
tual trajectories. According to what was postulated in Sec-
tion 5, such an hypothesis could mean that discrete move-
ments are represented during planning by the CNS by a
(possibly time-varying) equilibrium point in space, whereas
rhythmic movements would be represented by a (possibly
time-varying) direction of oscillation.

Note that the existence and also the need for internal
models is still strongly debated. Basically, the opponents
of internal models mainly doubt that the brain is able of
imitating the natural laws, which seems to be required to
solve the inverse problem of finding the motor command
that gives the desired natural consequence (for instance the
torque needed to accelerate a limb). The reader is referred to
articles by Bridgeman (2007) and Feldman (2009) for more
details. Note that the concept of motor primitives as we take
it here is not in opposition with these models, as for instance
proposed by Latash et al (2007). From their perspective, a
synergy is a set of muscles that are involved in the control
of a variable relevant for the achievement of a particular task
and which influence each other so to ensure stability.

We now present some results on the movement encod-
ing that are relevant for the control of discrete and rhythmic
movements.

6.2 Movement encoding by the motor cortex

The motor cortex can be subdivided in two areas, the pri-
mary motor cortex and the premotor cortex (M1). The lat-
ter is formed of the lateral (dorsal and ventral) premotor ar-
eas (PMd and PMv) and of the supplementary motor area
(SMA) which are involved in learning sequences of move-
ment, in timing, in the processing of sensorimotor informa-
tion as well as in the selection of actions.

The primary motor cortex is involved in the control of
movement parameters.According to a study by Graziano
et al (2002), if the motor cortex is indeed organized somato-
topically, its seems that the parameter that is encoded in the
primary cortex is the location in space to which the move-
ment is directed. Indeed, in their experiments, regions of the
primary motor and premotor cortex of monkeys were stim-
ulated for 500 ms (the time scale of normal reaching and

grasping movements), this duration being longer than in tra-
ditional studies. They found out that those simulations were
resulting in a complex movement ending in the same loca-
tion whatever the initial position of the limb was. They con-
clude from this that instead of encoding regions of the body,
the motor cortex was a representation of different complex
postures.

Such a finding support the hypothesis according to which
some primary motor cortex neurons are connected in a
one-to-one relationship with spinal motor synergies (Ashe
(2005)); Georgopoulos (1996) has proposed a model for
movement control where level of activations of motor corti-
cal neurons control the weights of different motor primitives
at the spinal level, that is that cortical neurons elicit combi-
nation of preprogrammed basic trajectories rather than en-
code the complexity of a particular desired trajectory. This
could mean that the invariant observed in movement execu-
tion are the results of the usage by the CNS of a small set
of motor primitives defined at the spinal level rather than to
a kinematic plan or to optimization processes in the supra-
spinal structures.

In particular, Haiss and Schwarz (2005) have studied the
electric stimulation of different types of whisker movements
in the rat, that is rhythmic movement (used for tactile ex-
ploration) and whisker retraction (used to sense an object
at a specific location). They found that both movements, al-
though performed by the same set of muscles, where elicited
by different but adjacent regions of the primary motor cor-
tex. At this point it is difficult to conclude if this is due to the
nature of movement (rhythmic or discrete) or simply to the
fact that the motor cortex encodes behaviors (as postulated
by Graziano et al (2002)), however the extension of such
an experiment to broader range of movements and animals
could possibly provide further insights on the differencesin
discrete and rhythmic movement generation.

In the same experiment, Haiss and Schwarz (2005) found
that eliciting both “discrete” and “rhythmic” areas of the pri-
mary motor cortex resulted in a simple combination of the
two behaviors: the resulting movements was the oscillation
expected when only the rhythmic area is activated but with
an offset corresponding to the discrete movement resulting
from the activation of the discrete area. This results is im-
portant in the sense that it shows that, even if discrete and
rhythmic motor primitives result from different processes,
which is unknown, the combination of those primitives still
results in a coherent, meaningful behavior. We will present
two models, by De Rugy and Sternad (2003) and Degallier
et al (2008), representing complex movements as oscilla-
tions around time-varying offset in the next section.

7 Mathematical models for the generation of discrete
and rhythmic movements

In this section, we present a set of mathematical models of
discrete and rhythmic movements: such modelings provide
a functional, qualitative description of movement generation
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that can be tested against experimental results. We focus on
the assumptions underlying them, both at the planning and
execution level. We have distinguished four categories of
models (Fig.2):

(a) Two/Two. Two independent processes exist for move-
ment generation, with both different motor representa-
tions and generators (Subsection 7.1);

(b) One/Two. A similar motor command is sent to two dif-
ferent generators (Subsection 7.2);

(c) One/One.The same motor encoding and the same gen-
erator are used to generate both discrete and rhythmic
movements (Subsection 7.3);

(d) Two/One.Two different motor commands are sent to the
same generator (Subsection 7.4).

Discrete 

command

Discrete 

generator

Rhythmic

command

Rhythmic 

generator

(a) Two/Two

Discrete 

generator

Rhythmic 

generator

Unique

command

(b) One/Two

Unique 

generator

Unique 

command

(c) One/One

Discrete

command
Rhythmic 

command

Unique 

generator

(d) Two/One

Fig. 2 Schematic of the four different categories of models.

These four categories of models are discussed more in
details in the following; we illustrate them with fitting math-
ematical models found in the literature4.

All the mathematical models that we present here are
based on the dynamical system theory, that is on sets of dif-
ferential equations that define the evolution of a complex
system through time. As we will see, such an approach is
powerful to study the qualitative time course of a system as
well as the interconnections between its parts5.

Furthermore, dynamical systems are particularly well-
suited for modeling of discrete and rhythmic movements, as
they have two characteristic types ofstablesolutions - that is
solutions robust against perturbations - which correspondto
discrete and rhythmic signals. Hence a natural solution for
modeling discrete and rhythmic motor primitives is using

4 The matlab code for the different models is available upon demand
to the authors.

5 For an excellent introduction to dynamical systems, pleasesee
Strogatz (2001).

those stable solutions. Several examples of such modeling
are presented in the following.

As a side note, combinations of stable modules are not
necessarily stable themselves. Now, Slotine and Lohmiller
(2001) have shown that a certain form of stability, called
contraction6, ensures that any combination of such contract-
ing systems is also contracting.

7.1 Two/Two hypothesis

In the Two/Two hypothesis (Fig.2(a)), it is assumed that two
different, independent processes are involved in the genera-
tion of discrete and rhythmic movements. This hypothesis is
convenient for modeling, because each process can be opti-
mized so to finely reproduce the characteristics of both dis-
crete and rhythmic movements. Yet, the question of the com-
bination and of the mutual influence of the movements is left
open.

We start by presenting two independent models for
discrete and rhythmic generation, developed respectively
by Bullock and Grossberg (1988) and by Matsuoka (1985).
These seminal models, or extensions of them, have been
extensively used in the literature (Schaal et al (2000), De
Rugy and Sternad (2003), Degallier et al (2008),...).

• The VITE Model: A Neural Command Circuit for
Generating Arm and Articulator Trajectories
D. Bullock and S. Grossberg,
in Dynamic Patterns in Complex Systems, 1988.

The VITE (VectorIntegrationTo Endpoint) model was
originally developed by Bullock and Grossberg (1988) to
simulate planned and passive arm movements. The limb po-
sition is controlled through a neural command that modi-
fies the respective lengths of a pair of agonist and antagonist
muscles according to a desired target position. The final po-
sition of the limb is then computed according to the length
of the muscles.

The model thus represents a motor primitive that, given
a volitional target position, controls in an automatic way a
synergy of muscles so that the limb moves to the desired
state. More precisely, here the brain does not encode a trajec-
tory, but a desired state; the actual trajectory emerges from
the dynamics of the motor primitive.

The target of the trajectory of each muscle is encoded
through adifference vector, i.e. a population of neurons
representing the difference between the desired length of
the muscle (T and its actual length (p). The movement is
produced by modifying the length of the muscle at a ratev
(called theactivity) that depends on the difference vector.
The whole process is gated by ago command(G) that
can also modulate the speed of the movement. There are
thus two control parameters, the target lengthT and the go

6 Contracting systems are defined as nonlinear dynamical systems
in which “initial conditions or temporary disturbances are forgotten
exponentially fast” (Slotine and Lohmiller (2001), p.138).
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commandG, the output of the system being the length of
the musclep.

Mathematical model.The following set of differential equations
generate, for each muscle, a trajectory converging to the target posi-
tion T, at a speed controlled by the difference vectorT − p and the go
commandG:

{

v̇ = α(T − p−v)
ṗ = Gmax(0,v)

where α is a constant controlling the rate of convergence of the
auxiliary variablev.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2
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6
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Position

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6
Velocity

Fig. 3 VITE model. Trajectory for three different targets:G=1, in
black, plain line,T=5 in red, dash-dotted line andT=7 in blue, dotted
line). It can be seen that the three trajectories converge totheir targets
(horizontal lines) at the same time (top graph) and that the velocity
peak is proportional to the displacement, i.e. to the difference vector
(bottom graph). Here, for all the systems,G = 1 andα = 10.

As it can be seen in the equations, the activityv of the
population depends proportionally on the difference vector
(the bigger the distance, the higher the activity and thus the
speed of contraction of the muscle). In other words, the du-
ration of the movement does not depend on the amount of
contraction needed to reach the target length, but is con-
stant, as it is shown in Fig.3. Such a feature is very inter-
esting when doing synchronized movements: indeed all the
muscles automatically converges to their target length at the
same time, whatever the difference between the target and
the actual muscle length was. Moreover this system is con-
sistent with the observation that human pointing movements
tend to have the same duration, no matter the distance that
the hand has to cover (see for instance Morasso (1981)).

The go commandG controls both the onset of the move-
ment and its speed profile. Indeed once the target lengthT
is known, nothing prevents the movement to start but the go
command (if it is set to zero). It thus allows movements to be
primed before being actually executed. In addition, the am-
plitude of the go commandG allows for a modulation of the
speed defined by the difference vector. Thus the CNS can not
only control the target of the movement, but also its speed.
These features are illustrated on Fig.4 with go commands

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2
Go Command

0 0.5 1 1.5 2 2.5 3 3.5 4
0
1
2
3

Position

0 0.5 1 1.5 2 2.5 3 3.5 4
0
2
4

Velocity

Fig. 4 VITE model. Trajectory with three different go commandG:
G=1, in black, plain line,G=2 in red, dash-dotted line andG=1 from
t=1 s and 0 before in blue, dotted line (top graph). For the three sys-
tems, the target is constant (T = 3). In the middle graph, it is shown
that the onset of the movement can be postponed thanks to the go com-
mand and that the duration of the speed of convergence to the target
can also be modulated. In the bottom graph, it can be seen thatincreas-
ing the amplitude of the go command also increases the peak velocity.
Hereα = 10.

modeled by simple step function. Note that more complex
functions can be chosen as go command, so to modify (and
in particular smoothen) the velocity profile for instance, as it
will be shown when presenting the model of Degallier et al
(2008).

In summary the VITE model is a very simple model for
generating discrete movements with open target position
and speed, that allows for synchronized and delayed control
of several dofs. It has been extended many times to different
applications, as for instance for visually guided reaching
movements (AVITE model, see Gaudiano and Grossberg
(1992)) or for modeling the interaction with the spino-
muscular system to generate the torque needed to follow a
specific trajectory (VITE-FLETE model, see Bullock and
Grossberg (1989)).

• Sustained Oscillations Generated by Mutually In-
hibiting Neurons with Adaptation
K. Matsuoka,
in Biol. Cybern, 1985.

In this article, Matsuoka (1985) proposes a modeling for
oscillating network of neurons. As discussed in Sec.5, it has
been observed that oscillatory behaviors can emerge from
networks of mutually inhibiting neurons (see for instance
Marder and Bucher (2001)).

In Matsuoka’s model, the activity of each neurons is
modeled by a simple continuous-variable neuron model
originally developed by Morishita and Yajima (1972). An
input Si

7 to the system increases the membrane potentialxi .
When the membrane potential is bigger than the threshold

7 Note that we take a single valueSi as the input to the system, but
it can be the weighted sum of different inputs.
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value of the membraneθ , the neuron starts to fire (with
firing rateyi).

Mathematical model.Here are the equations for one neuron:

{

ẋi = τ(Si −xi)
ẏi = max(0,xi −θ)

whereτ is a parameter controlling the rate of convergence ofxi andθ
is the membrane threshold.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Step response

Fig. 5 Matsuoka Oscillator. Three typical step responses of a single
neuron (i.e.Si = 1 in each case). In black, plain line,b is set to zero
(no adaptation) and the output converges monotonically to the input
value. In blue, dash-dotted, lineb = 2.5, the output raises but decrease
after a while, showing a adaptation effect. Finally in red, dotted line,
b = 10 and it can be seen that the fire rate almost return to zero (which
is the case whenb→ ∞). In all the case, we tooktau= 1, θ = 0 and
τ ′ = 12b/2.5 (this value being chosen so that no damped oscillation
occurs, see Matsuoka (1985))

In this model, the fire rate increases monotonically and
converges to a stationary state, which is not the behavior
observed in neurons. Matsuoka (1985) thus extends the
model to take in account the adaptationx′ (also called
fatigue) of the neurons, that is the fact that when receiving
a step input, the firing rate increases rapidly at first and
then gradually decreases, as it is shown in Fig.5. Adaptation
has indeed been shown to be essential for the generation of
oscillations.

Mathematical model.The model becomes






ẋi = τ(Si −xi −bx′i)
ẋ′i = τ ′(yi −x′i)
ẏi = max(0,xi −θ)

whereτ ′(> 0) andb(≥ 0) controls the time course of the adaptation.

The neurons are now coupled so to form a network. Here
neither self-inhibition nor excitation are considered.

Mathematical model.For one neuronj, the equations are now







ẋi = Si −xi −bx′i −∑ j 6=i ai j y j

ẋ′i = τ ′(yi −x′i)
ẏi = max(0,xi)

where theai j ’s (≥ 0) are the coupling strengths of the inhibitory
connections between the neuronsi and j andy j is the output of the
neuronj. Note that here, without loss of generality, we takeθ = 0 and

τ = 1.

Matsuoka (1985) has derived sufficient conditions for an
oscillatory behavior to emerge for different types of net-
works. The output firing rates for two mutually inhibiting
neurons are shown in Fig.6.

Fig.7 show two possible oscillating networks of three
neurons: one where all the neurons mutually inhibit each
other and another one where the neurons unilaterally inhibit
each other, that is neuron 1 is for instance only inhibited by
neuron 2 and only inhibits neuron 3.

0 10 20 30 40 50 60
1

2

Two mutually inhibiting neurons

Fig. 6 Mastuoka oscillator.The fire rate for two neurons that inhibits
each other for a constant inputSi = 1. The parameters here area12 =
a21 = 2.5, τ = 1, θ = 0, b = 2.5 andτ ′ = 12b/2.5

0 20 40 60 80 100
1

2

3

0
Three mutually inhibiting neurons

0 20 40
1

2

3

Three unilaterally inhibiting neurons

Fig. 7 Matsuoka oscillator. The fire rate for two networks of three
neurons for a constant inputSi = 1. In the upper graph, the neurons are
mutually inhibiting each other, i.e.ai j = 2.5∀i, j = 1,2,3. In the second
case, the neurons are only unilaterally inhibited, i.e.a12 = a23 = a30 =
2.5 anda13 = a20 = a31 = 0.0. The parameters here area12 = a21 = 2.5,
tau= 1, θ = 0, b = 2.5 andτ ′ = 12b/2.5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

11

The model offered by Matsuoka is thus a powerful tool to
model oscillatory behaviors under certain conditions. It can
moreover account for different types of networks of oscilla-
tors. Note that the model can be extended so to have muscles
command instead of firing rate as an output; we will see such
an example in the following with the model of De Rugy and
Sternad (2003).

It is interesting to note that in this model an oscilla-
tory pattern emerges from the dynamic combination of non-
cyclic units. Such a model achieves to successfully repro-
duce the emergent rhythms observed in the spinal cord (see
Section 5 for more details).

7.2 One/Two hypothesis

In the One/Two hypothesis, a similar encoding is used for
both discrete and rhythmic movements, that is there exists a
common basic representation for the two movements. Such
an hypothesis could reflect the analogy observed by Haiss
and Schwarz (2005) between the representation of discrete
and rhythmic movements in whisker movements in rats (see
Section 6). In this model, mutual influences of movements
are supposed to occur at the muscle level rather than at the
generation level, as discussed above for the Two/Two hy-
pothesis.

We present here the model by Schaal et al (2000), in
which both discrete and rhythmic movements are encoded
relatively to a difference vector: between the current and
desired positions for the discrete movement and between the
current and desired amplitudes for the rhythmic movement.

• Nonlinear dynamical systems as movement primi-
tives.
S. Schaal, S. Kotosaka and D. Sternad,
in the proc. of theIEEE International Conference on Hu-
manoid Robotics, 2000

Schaal et al (2000) have developed a model based on the
concept of programmable pattern generators (PPGs), that is
generators of trajectories with some predefined characteris-
tics and with some open, task-specific control parameters.
Both discrete and rhythmic movements are triggered in a
similar way, but they are then generated through different
processes. At the end the discrete and the rhythmic output
are linearly added to obtain the final trajectory.

In this model, discrete and rhythmic movements are en-
coded by the difference between the desired state (resp. the
positionT and the amplitudeA) and the actual state (resp.p
andθ ); the output of the system is the position of the limb
(α = p+ θ ). This system is quite complex, having many
variables and parameters, so that the final output trajectory
can be finely tuned to reproduce a desired movement.

The discrete system is a modified version of the VITE
model that we have presented before. The movement of
the limb is controlled through the speed of contraction of
a pair of agonist/antagonist muscles. The difference vector

represents the positive difference∆wi between the desired
target position of the limbT (−T for the antagonist muscle)
and its actual positionp. ∆w is then transformed into a
activation patternvi that resemble what is observed in the
primate cortex (see Fig.8, top panel).
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Auxiliary variables
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Limb trajectory

Fig. 8 Model by Schaal et al.A typical discrete trajectory converging
to the targetT =1. On the top panel, the activation pattern is shown
in red, dashed line, as well as its smoothen version (in blue,dash-
dotted line). The auxiliary variabler i , that ensures that velocity pro-
file is roughly a symmetric, bell-shaped curve is shown in black, plain
line. The middle panel shows the resulting speedzi for the muscle and
bottom panel the resulting limb trajectory (in black, plainline) and
its speed (red, dashed-line). Hereav = 50.0, ax = 1, ay = 1, ar = 50,
az = 0.01,ap = 0.08,b = 10 andco = 60.

Mathematical model. The difference vector for musclei ∆wi is
transformed into an activation signalvi

{

∆wi = max(0,T − p)
v̇i = av(−vi +∆wi)

whereav is a parameter controlling the rate of convergence ofvi .

The activation signal is then transformed into a velocity
signal yi through a double smoothing. The speed of the
movement can be adjusted through the parameterc0.

Mathematical model.
{

ẋi = −axxi +(vi −xi)co
ẏi = −ayyi +(xi −yi)co

whereay andax control the rate of convergence of the system andc0

controls the speed of the movement.

Finally the velocityyi is integrated in order to obtain the
final desired velocityzi for the muscle change (see Fig.8,
middle panel). An auxiliary variabler i is used to makezi
roughly symmetric and bell-shaped.

Mathematical model.
{

ṙ i = ar(−r i +(1− r i)bvi)
żi = −azzi +(yi −zi)(1− r i)co
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where ar and b controls the shape of the signal and are chosen
so to obtain a bell-shaped velocity profile.az controls the rate of
convergence ofzi .

The velocity command of the agonist and antagonist
muscles (i and j) are finely integrated to obtain the limb
movementp (see Fig.8, bottom panel).

Mathematical model.

ṗ = ap(max(0,zi)−max(0,zj))co

whereap controls the rate of convergence of the system andco its
speed.

As for the rhythmic movement, it is triggered in a
similar way by a difference vector∆ωi between the actual
positionθ and the desired amplitudeA. ∆ωi is turned into
an activity signalξi (see Fig.9, top panel).
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0.2

0.3

0.4
Activity Signal
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−1

0

1
Limb trajectory

Fig. 9 Model by Schaal et al.A typical rhythmic trajectory converg-
ing of amplitudeA=0.6. The top panel shows the activation pattern
ξi . The bottom panel shows the resulting limb trajectory (in black,
plain line) and its speed (red, dashed line). Hereaξ = 50.0, aψ = 1.0,
β = 2.5, w = 2.5 andcr = 20.

Mathematical model.
{

∆ωi = max(0,A−θ)

ξ̇i = aξ (−ξi +∆ωi)

whereaξ is a parameter controlling the rate of convergence ofξi .

Then, a couple of mutually inhibiting Matsuoka oscilla-
tors are used to generate oscillatory velocity signalsψi and
ψ j . The oscillator is slightly modified to take in account the
fact thatψi is a velocity and not a position.

Mathematical model.
{

ψ̇i = −aψ ψi +(ξi +ψi +β ζi +wmax(0,ψ j))cr

ζ̇i = − aψ
5 ζi +(max(0,ψi)−ζi)

cr
5

whereaψ controls the convergence rate of the oscillators andcr the
frequency of the oscillations.w controls the strength of the inhibitory
coupling.

Finally, the difference between the two oscillators (i, j)
is integrated to obtain the desired trajectoryθ (see Fig.8,

bottom panel).

Mathematical model.
{

θ̇i = ψi
θr = cr(max(0,θi)−max(0,θ j))

wherecr controls the frequency of the oscillations.

The movement of each dof is then defined by the linear
combination of the output of both signals (α = p+θ ). This
linearity allows for a simple, independent control of both
movements, but it fails to reproduce the mutual influence of
the discrete and rhythmic movements observed in humans.

Note that the primitives can also be coupled together in
order to synchronize several dof during coordinated move-
ment (see Schaal et al (2000) for more details).

It has many variables that allows for the tuning of
desired basic building blocks of movements, but that also
makes the system quite complex. The model achieves
to reproduce movements containing many human-like
features, as a bell-shaped velocity profile for instance.

7.3 One/One hypothesis

The One/One hypothesis, that assumes that a unique mo-
tor representation and generator are used to produce move-
ments, implies either that one of the movement is a particular
case of the other one (i.e it corresponds, more or less, to the
concatenation and half cycle hypotheses mentioned before)
or that discrete and rhythmic movement are themselves par-
ticular case of a larger class of movements. The difficulty
here is that the model should be designed so to reproduce
the mutual influences observed during movements that are
both discrete and rhythmic.

We first present a model that we developed (Degallier
et al (2008)), where discrete and rhythmic movement are
two particular cases of a larger class of movements. In
the second model, by Schöner and Santos (2001), discrete
movements are a particular case of rhythmic ones, i.e.
discrete movements are considered as truncated rhythmic
movements.

• A modular bio-inspired architecture for movement
generation for the infant-like robot iCub.
S. Degallier, L. Righetti, L. Natale, F. Nori, G. Metta,
A.J. Ijspeert ,
in the proc. of the second IEEE RAS / EMBS In-
ternational Conference on Biomedical Robotics and
Biomechatronics (BIOROB), 2008.

Degallier et al (2008) present a system where both
discrete and rhythmic trajectories are generated through a
unique set of differential equations, which is designed to
produce complex movements modeled as a periodic move-
ments around time-varying offsets.
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Here the input is a command specifying the targetTi of
the discrete movement, and the amplitudeMi and the fre-
quencyωi of the rhythmic movement. A null (or negative)
amplitude generates a purely discrete movement and a con-
stant offset generates a purely rhythmic movement. The out-
put of the system is the trajectory of the limb.
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Go command
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Limb Trajectory

Fig. 10 Model by Degallier and al.The top panel shows the go func-
tion used in this implementation, that is a trajectory asymptotically
converging topi (=2 here), instead of the step functions presented with
the VITE model. Such a go command turns the velocity command into
a symmetric, bell-shaped curve (red, dashed line), as it canbe seen on
the bottom graph, as well as the resulting limb trajectory (black, plain
line) converging to the targetTi = 2. Hered = 2 andb = 2.5.

The first set of equation controls the discrete movement
and is inspired from the VITE model that was presented
above. The trajectory converges towards a goalTi and the go
commandGi is chosen so to ensure a bell-shaped velocity
profile, as it it illustrated in Fig.10. As for the VITE model,
all the joints converge synchronously to the targetTi .

Mathematical model. The discrete primitive, which is inspired
from the VITE model, is modeled by the following system of equations







ġi = d(p−Gi)
ẏi = G4

i vi

v̇i = p4 −b2

4 (yi −Ti)−b vi

The system is critically damped so that the outputyi converges asymp-
totically and monotonically to a goalTi with a speed of convergence
controlled byb, whereas the speedvi converges to zero.p andd are
chosen so to ensure a bell-shaped velocity profile;hi converges top
and is reset to zero at the end of each movement.
.

The rhythmic primitive is modeled as a modified Hopf
oscillator, which is a simple model that allows for the gen-
eration of sinusoidal movements of amplitude

√
mi and

frequencyωi . These oscillations can be switched on and
off easily through the parameters controlling the amplitude
(more precisely, by bifurcation between a limit cycle behav-
ior and a single point attractor).

In this model the expression for the frequencyωi is
slightly modified so to allow an independent control of
duration of the ascending (ωup) and of the descending
(ωdown) part of the sinusoidal, as illustrated on Fig.11. This
feature is particularly useful for the control of the swing and
the stance phase in locomotion.
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Fig. 11 Model by Degallier and al.The top panel shows the value
of the frequencyωi that is modulated through the parametersωup and
ωdown. In red, dashed line,ωup = ωdown and the resulting movement
(bottom panel) is a normal sinusoidal movement. In black, plain line,
ωdown> ωup and the resulting trajectory is a distorted sinusoidal. Note
that onlyωdown is controlled,ωup being calculated so thatωi is con-
stant. Hereωi = 2π andωdown= 4π for the red curve andωdown= 6π
for the black curve,a = 100,m= 1 and f = 100.

Mathematical model.The oscillator is governed by the following
set of equations







ẋi = a(Mi − r2
i )xi −ωizi

żi = a(Mi − r2
i )zi +ωixi

ωi = ωdown
e− f zi +1

+
ωup

ef zi +1

wherer i =
√

x2
i +z2

i . a controls the rate of convergence to the limit
cycle, f the rapidity of the switching between the swing and the stance.

The two primitives are then combined together by
embedding the discrete movementyi into the rhythmic one
as an offset. The system outputxi is now an oscillatory
movements around a time-varying offset.
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Fig. 12 Model by Degallier and al.The top panel shows the targetTi
for the discrete movement and the resulting trajectory is shown in the
bottom panel (in blue, dashed line). In red, dash-dotted line is shown
the amplitude control parameterMi (top panel) and the resulting tra-
jectory (bottom panel). In the bottom panel, in black, plainline, the
combined trajectory is also shown. It can be noted that is nota simple
linear combination of the discrete and the rhythmic trajectory. showing
the influence of the embedding of the two dynamics. Hereomegai = 4π
, pi = 2, di = 2, bi = 2.5, ai = 100 andfi = 100.

Mathematical model.The oscillator is governed by the following
set of equations

{

ẋi = a(Mi − r2
i )(xi −yi)−ωizi

żi = a(Mi − r2
i )zi +ωi(xi −yi)
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where nowr i =
√

(xi −yi)2 +z2
i .

Qualitatively, by simply modifying on the fly the pa-
rametersTi andMi , the system can switch between purely
discrete movements (Mi < 0,Ti 6= const), purely rhythmic
movements (Mi > 0,Ti = const), and combinations of both
(Mi > 0,Ti 6= const) as illustrated on Fig. 12.

This system allows for a simple modeling of discrete
and rhythmic movements. Both dynamics influence each
other, and, when the movement co-occurs, the discrete
movement inhibits the rhythmic one, as observed in humans
(see Sternad et al (2000), and section 4).

• Control of movement time and sequential action
through attractor dynamics: A simulation study
demonstrating object interception and coordination.
G. Schöner and C. Santos,
in the proc. of the9th Intelligent Symposium on Intelli-
gent Robotic Systems, 2001.

We present here the model developed by Schöner and
Santos (2001). This model is built to generate discrete move-
ments, but is based on limit cycles, which makes it easy to
extend to the generation of rhythmic movements. Here the
input is the target positionT of the limb and the output is its
trajectory .

In this model, discrete and rhythmic movements are both
modeled using limit cycles, i.e. discrete movements are in-
terrupted rhythmic movements. A two-layered system is
used, consisting of a layer able to generate both oscillations
and stationary states (”timing layer”) and another layer con-
trolling the switching between those states (”neural dynam-
ics control”).

The timing layer consist in three terms: the first one
is an attractor towards the initial statexi , the second one
is a Hopf oscillator of amplitude 1 and the third one is an
attractor towards the target positionXf . All these terms a
multiplied by three ”neurons” that are never fully active at
the same time.

Mathematical model. The equations of the timing layer are given
by:

{

ẋ = −a|ui |(x−xi)+ |uh|(b(1− r2)x−ωy)−a|uf |(x−Xf )
ẏ = −a|ui |y+ |uh|(b(1− r2)y−ωx)−a|uf |y

wherex is the output of the system andy an auxiliary variable,a and
b are constant controlling the speed of convergence of the system.
Gaussian white noise is added to the system. In this system,|ui | (i=i,
h, f) represents neurons which are never active (i.e. equal to one) at
the same time.

The sequence of movement is controlled by the neural
layer, and more precisely through three ”neurons”ui , uh and
uf activating respectively the first attractor, the Hopf oscil-
lator and the target attractor. At rest position only the first
attractor is active (ui = 1,uh = 0,uf = 0), so that even if per-
turbations occurs the limb stays at the same position. Then,

when a command is received, the Hopf oscillator is activated
(uh = 1) and the first attractor deactivated (ui = 0), so that the
trajectory follows the limit cycle until it is close enough to
the final target. At this moment the Hopf ”neuron”uh is set
to zero and the final attractor is activated (uf = 1) so that the
trajectory converges to the target positionXf . This sequence
of action is illustrated in Fig.13.

Note that a trajectory converging to the target point
could be obtained simply by using the final attractor only,
however here the trajectory is governed by time-varying
attractor along the limit cycle, reducing the transient, i.e the
uncontrolled phases.

Mathematical model. The timing of activation of the three ”neu-
rons” is controlled by the neuronal dynamics which are givenby the
following equations:











α u̇i = µiui −|µi |u3
i −c(u2

h+u2
f )ui

α u̇h = µhuh−|µh|u3
h−c(u2

i +u2
f )uh

α u̇f = µfuf −|µf |u3
f −c(u2

i +u2
h)uf

Each equation corresponds to the normal form of a degeneratepitch-
fork bifurcation controlled by parametersµi

8 with an extra term to
ensure that only one neuron is active, i.e that any solution with more
than one neuron active is destabilized. The parametersµi are given by

{ µi = 1.5+2bi
µh = 1.5+2(1−bi)(1−bf )
µ f = 1.5+2∗bf

wherebi = 1 is equals to 1 when no movement occurs and is set to 0
to activate the movement and

br = 1− tanh(10∗ (0.7∗Xf −xr(i)))+1)/2.
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Fig. 13 Model by Schoner and Santos.In the top panel, the activ-
ity of the three neurons (ui in black, plain line,uh in red, dash-dotted
line anduf in blue, dashed line) during a typical discrete movement
can be observed. Only one neuron is active a the time, corresponding
to three stages of the movement: rest at initial position, move to the
target and converge and rest at the target position. In the bottom panel,
the obtained trajectoryxi is shown (in black, plain line) as well as the
auxiliary variableyi . Herea = 5, b = 1, ω = 2, c = 2.1 andα = 0.02.

8 That is the system has one stable solution (u = 0) whenµi is neg-
ative and two stable ones (ui = 1 andui = −1) whenµi is positive.
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Movements can thus be shaped through the neuronal
dynamics that qualitatively changes the space of solutions
of the timing layer. The three sequences of this movement
(discrete, rhythmic, discrete) is analogous to the observation
by van Mourik and Beek (2004) that the first and last
half cycles of a rhythmic movement resemble a discrete
movement. In multi dofs system, coordination can be obtain
through the coupling of rhythmic parts of the system (see
Schöner and Santos (2001) for more details). Synchronized
discrete movements can be obtained trough coupling.

7.4 Two/One hypothesis

In the Two/One hypothesis, two different motor commands
are sent to the same generator. An open question is then
how the two motor commands are combined together. We
present here a model developed by De Rugy and Sternad
(2003), initially to explain the phase entrainment effect,
where both commands are simply summed.

• Interaction between discrete and rhythmic move-
ments: reaction time and phase of discrete movement
initiation during oscillatory movements.
A. de Rugy and D. Sternad,
in Brain Research, 2003

This model has originally been developed to explain the
phase entrainment effect observed in humans (please refer
to De Rugy and Sternad (2003) or to Sec.4 for more details).
Here a motor commandS, composed of the sum of a dis-
creteSd and a rhythmicSr command inputs, is sent to a two-
neurons Matsuoka oscillator to generates two firing rates
(xi ,x j ). These firing rates are then transformed into muscle
commands (Ti ,Tj ) for a pair of agonist/antagonist muscles
and finally to a limb trajectoryθ .

The discrete command is modeled as a pulse followed
by an exponential decay, resulting in a damped oscillation
which, with well-tuned parameters, will later generate a
discrete movement. The rhythmic command is simply a
constant signal.

Mathematical model.The command input is given by

S= Sr +Sd

whereSr =const and

Ṡd = τs(−Sd + pd)

wherepD is the peak value of the pulse andτs a time constant.

A network of two mutually inhibiting Matsuoka oscilla-
tors is then used to transform this neural commandS into
the firing rates (xi ,x j ) of two motoneurons controlling a pair
of agonist-antagonist muscles.

Mathematical model. The network is governed by the following
equations (for one neuroni):

{

ẋi = τ1(−xi −βx′i +S−ωmax(0,x j))
ẋ′i = τ ′(−x′i +max(0,xi))

where τ and τ ′ are two parameters controlling the time course of
respectively the firing ratexi and the fatigue (or self-inhibition)x′i and
x j is the output of the second neuron.

The firing rates of the neurons (xi ,x j ) are then trans-
formed into torques (Ti ,Tj ) exerted by a pair of ago-
nist/antagonist muscles.
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Fig. 14 Model by De Rugy and Sternad.A purely rhythmic com-
mandS= SR = 1 (top panel) entrains the coupled neurons to oscillates
(middle panel), leading to an oscillatory trajectory of thelimb (bottom
panel). Hereγ = 0.5, I = 0.08,h= 5, τ = 0.05,τ ′ = 0.125,taus = 0.2,
β = 2.5 andω = 2.5.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

Inputs

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0
0.2
0.4
0.6

Firing rates

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

100

110

120
Limb trajectory

Fig. 15 Model by De Rugy and Sternad.A purely discrete command
S= SD of peakpD = 1 (top panel) leads to strongly damped oscillations
of the neurons (middle panel), resulting in a discrete movement of the
limb (bottom panel). Hereγ = 0.5, I = 0.08, h = 5, τ = 0.05, τ ′ =
0.125,taus = 0.2, β = 2.5 andω = 2.5.
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Fig. 16 Model by De Rugy and Sternad.A combined command
S= SR +SD with SR = 1 andpD = 1 (top panel) leads to a perturbed
oscillators behavior of the neurons (middle panel), resulting in a rhyth-
mic movement around a varying offset (bottom panel). Hereγ = 0.5,
I = 0.08,h= 5, τ = 0.05,τ ′ = 0.125,taus = 0.2, β = 2.5 andω = 2.5.

Mathematical model. The torques are obtained through the fol-
lowing equations:

{

Ti = hTmax(0,xi)
Tj = −hTmax(0,x j )

wherehT is the gain for the torques.

Finally the action of the torques on the movement of the
joint θ is deduced from the dynamics of the limb.

Mathematical model. The dynamics of the limb is governed by
the following equation

I θ̈ + γθ̇ − (Ti +Tj) = 0

whereI is the inertia of the limb andγ is its damping.

Fig.14 illustrates the output of the model for a rhyth-
mic command (that is a constant input). The oscillating fir-
ing rates are transformed into a smooth, sinusoidal trajectory
through the dynamics of the limb. In Fig.15, it is shown that
a purely discrete movement can be obtained using a peak
motor command. Finally, in Fig.16, the combination of both
command signal and the resulting, combined trajectories are
shown.

In this model, there is an the entrainment effect that
emerges from synchronization effects between the two
Matsuoka neurons. The distribution of the offset, as well as
the phase lag observed in human subjects was successfully
reproduced by this model (De Rugy and Sternad (2003)).
Note that this model has been extended by Ronsse et al
(2009) so to integrate reafferent signals and so to capture
bimanual features.

7.5 Discussion on the models

We have presented here several models based the concept of
motor primitives. Indeed the important common feature of
these models is that simple, non patterned commands from

the brain are turned into complex outputs governed by the
dynamics of the system. So even though the outputs of the
models are not at the same representation level, they can
quite easily be be modified to account for another level of
representation: as for instance De Rugy and Sternad (2003)
extended the model of firing rates of neurons of Matsuoka
(1985) to limb control by extending the system to the mus-
cles and the limbs dynamics.

A viable model should be able to reproduce the inter-
action observed in humans between discrete and rhythmic
movements that we have mentioned in Sec.4. As it was
said before, there are two main studies on the subject by
Adamovich et al (1994) and Sternad et al (2000), and they
come to different conclusions. While they both agree that

(a) the rhythmic movement is inhibited by the discrete one;
(b) the phase of the rhythmic movement is reseted after the

discrete one;
(c) the frequency tends to be higher after the discrete move-

ment (transient phenomenon according to Sternad et al
(2000));

Adamovich et al (1994) conclude that

(d1) the discrete trajectory is not influenced by the rhythmic
movement.

which is refuted by Sternad et al (2000), as they have ob-
served that

(d2) the rhythmic movement influence the discrete one, more
precisely lower frequencies of oscillations lead to longer
discrete movements.

In both the Two/Two and One/Two hypotheses, the ques-
tion of the combination of the two movements is left open;
more precisely the interaction has to happen at a lower level
of the generation process, that is at the muscular level, as
proposed for instance by Adamovich et al (1994) or by
Staude et al (2002). Adamovich et al (1994) postulate that
discrete and rhythmic movement cannot co-occur, i.e. that
any movement can be seen as a sequencing of discrete or
rhythmic movements. According to them, the mutual influ-
ence observed is due to the overlapping of the kinematic out-
come of the two movements: indeed they postulate that the
kinematic outcome of a movement lasts longer that its gen-
eration. Note that this view is not shared by Sternad et al
(2000), as was discussed before (see Section 4) . Staude
et al (2002), for their part, propose that complex movement
arise from the summation of the two movements subject to a
threshold-linear mechanism; it is interesting to note thatthis
simple model achieves to model the entrainment effect pre-
sented in Sec.4 (please refer to Staude et al (2002) for more
details).

In the One/One and Two/One hypotheses, the distinction
between discrete and rhythmic movements is assumed to be
an artifact of movement categorizations, both movements
being in fact generated through the same process. In these
models, the notion of interaction of the two movements
is an ill-posed problem, as they indeed emerge from the
same process. Note that a viable model should be able to
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reproduce the observations presented above, these being
consequences of the dynamics of the motor primitives, as
for instance the phase entrainment in the model by De Rugy
and Sternad (2003).

In conclusion, we have presented different dynamical
systems that can successfully produce discrete and rhythmic
movements, even though the interaction of the two move-
ments is usually not addressed (with the exception of the
model by De Rugy and Sternad (2003)). We believe that
such systems can be used to better understand the complex
problem of movement generation and to possibly determine
the possible control architecture underlying the production
of both discrete and rhythmic movements.

8 Conclusion

In this review, we have presented concepts relevant for the
modeling of the generation of discrete and rhythmic move-
ments. The purpose of such a modeling is twofold: first, to
bridge two different approaches in motor control, originally
dedicated uniquely to either discrete or rhythmic move-
ments, and second, to define a global model of the motor
structure applicable to robotics.

Because we choose to take a functional approach, most
of the results that we have presented come from animal stud-
ies. If this results can not necessarily be generalized to hu-
mans in a straight forward way, we believe that they can pro-
vide insights on the processes underlying discrete and rhyth-
mic movements generation in humans.

Indeed synergies of muscles have been observed in hu-
mans (as reviewed in Sec.5), which indicates that movement
may be built through the combination of spinal building
block of movements that we call motor primitives. Such an
assumption has great implications in the analysis of discrete
and rhythmic movements, in the sense that the intrinsic dif-
ference between them may lie at the spinal level rather than
in the high level commands used to encode them. Indeed,
evidences have been presented that both discrete and rhyth-
mic movements could results from spinal motor primitives
elicited by simple, non patterned brain commands, suggest-
ing that the two types of movements may simply emerge
from difference in the topologies (oscillating or not) of the
spinal network underlying them.

We have concluded this review with some possible mod-
elings of rhythmic and discrete movement within this frame-
work of modular movement generation. We have proposed
four categories of models with respect to the representation
of discrete and rhythmic movements at both the planning and
the execution levels. For each of this models, existing math-
ematical formulations were presented that were capable of
generating both discrete and rhythmic movements.
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