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Executive Summary 
 
WP6 continues to focus on interaction dynamics of social interaction during robot-
human play and the prerequisites for gesture and non-verbal communication between 
robots and humans, as well as the realization of these capabilities in a robot. User 
studies are used to gain understanding of the kinesics and dynamics of social 
interaction during robot-human play and its development in ontogeny. At the same time, 
techniques for achieving these capabilities in an autonomous robot through grounded 
sensorimotor experience and interaction histories are investigated. 
 
This deliverable brings together three areas of complementary research work relevant 
to gesture communication carried out by UNIHER: 
 
1. Timing and Non-verbal Cues in Interaction with a Humanoid Robot.  
2. Ontogeny of Humanoid-Human Interaction Capability.  
3. Robot-Mediated Play.  
 
Section 1 describes the Drum-mate work with the usage of gestures and turn-taking 
models in a call-and-response imitation based interaction game. Section 2 describes 
our work on Interaction Histories and the development of  Peekaboo interaction games, 
and their implementation on humanoid robots.    Finally section 3 describes research on
Robot-Mediated Play. 
 

1  T im i n g  a n d  N o n v er b a l  C u e s  in  I n t e r a c t i v e  P l ay  w i t h  
a  H um a n oi d  Robo t  

The first area of work applies Drum-mate, a human-humanoid drumming interaction 
game, designed to allow study of the kinesics and dynamics of interaction between a 
humanoid robot and human partners via a playful drumming experience. In this work, 
the aim is not to have the humanoid robot just replicate the human partner's drumming, 
but to autonomously engage with the human in a ‘social manner’. Specifically, we 
implemented a call-and-response turn-taking interaction inspired by games that children 
play. The game has several different versions where different issues in human-
humanoid interaction kinesics are studied. In the first version, the turn-taking behaviour 
of the humanoid is deterministic. Presence vs. absence of head gestures of the robot 
accompanying its drumming were used to assess the impact of non-verbal gesturing on 
the interaction. The second experiment presents a novel computational framework that 
facilitates emergent turn-taking dynamics; here the aim is to have turn-taking and role 
switching which is not deterministic but is emerging from the social interaction between 
the human and the humanoid. Therefore the robot is not just ‘following’ and imitating the 
human, but could be the leader in the game and being imitated by the human. Results 
from the 48 human-robot interaction experiments belonging to both studies are 
presented and analysed qualitatively (in terms of participants' subjective experiences) 
and quantitatively (concerning the drumming performance of the human-robot pair). The 
first results from 24 participants have been presented in three conference papers; 
“Drum-mate: A Human-Humanoid Drumming Experience” (Kose-Bagci et al., 
HUMANOIDS’07, 2007) and “Emergent Turn-Taking Dynamics in Drumming Games 
with a Humanoid Robot” (Kose-Bagci et al., IEEE RO-MAN’08, 2008a), and “Drumming 
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with a Humanoid Robot: Results from Human-Robot Interaction Studies” (Kose-Bagci et 
al., LAB-RS08 –invited talk with published extended abstract, 2008b). The results of the 
overall 48 participants are presented and discussed in a journal paper entitled as 
“Drum-mate: Interaction dynamics and gestures in human-humanoid drumming 
experiments” (Kose-Bagci et al., submitted). This article presents details of the 
implementation, including a simple but efficient novel method of detecting drumming 
beats, as well as experimental results. Results are consistent with the temporal 
behaviour matching hypothesis previously proposed in the literature which concerns the 
effect that participants adapt their own interaction dynamics to the robot’s. This 
hypothesis was tested with KASPAR, a child-sized humanoid robot, and we are working 
on the implementation of these methods also on physical and simulated iCub. Another 
version of the drum-mate game was tested with 68 primary school students, where the 
importance of physical embodiment, together with its relation with the 
presence/absence of non-verbal gestures was studied recently. We are still working on 
the statistical analysis of the results. 

1 . 1  G e s t u r e s  i n  H u m a n - H u m a n o i d  D r u m m i n g  
This section summarizes results of a study focusing on interaction dynamics of social 
interaction during human-robot play. The study is an exploratory investigation of a 
drumming experience between KASPAR, a humanoid robot, and human partners. The 
social interaction was mediated through a drumming call-and-response game and was 
systematically modulated by non-verbal gestures and cues. The results were 
statistically analysed in terms of the game performance as well as the evaluation of the 
game by the participants. 
The analysis of the first 12 participants (6 female, and 6 male) showed a clear effect 
due to the concomitant gestures during the interaction and also found significant results 
due to gender differences between the participants in terms of how they interacted with 
the robot under different gesture conditions (Kose-Bagci et al., 2007). Male participants 
tended to focus more on the accuracy of drumming rather than interaction as amount of 
gestures in the games increased since they are generally task-oriented. On the other 
hand, female participants tended to be more interaction-oriented, and enjoyed with the 
social interaction between robot and them, therefore preferred games with increasing 
amount of gesture. They also performed more drumming in these games, so gestures 
played a motivational role in the games. On the other hand it is observed that the 
subjective evaluation of the participants differed from their objective evaluation -- e.g. 
although the gesture+ condition had the highest error rate, it was mostly preferred by 
the participants. These results were confirmed when we repeated the experiments with 
12 more participants.  
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Fig 1. iCub playing with an electronic drum set 

 
Implementations on the iCub. Three versions of the drum-mate game were tested on 
iCub during VVV’08 summer school in Sestri Levante, Italy in July, 2008. The first game 
was a limited version of the drum-mate game (without gestures) with deterministic turn-
taking together with Audio Analyser module. The Audio Analyser module is the part of 
the game which analysis the drumming sound perceived by the robot and sending the 
pattern (number of drum bouts and durations between drum bouts) to an output port to 
be perceived by the drumming module. During the tests, iCub used an electronic drum 
set (Fig. 1), and a drum stick to hit the drum pads, which was grasped by its right hand 
(Fig. 2).  The second version of the game in the repository involves several facial 
gestures. When the iCub hears a human participant’s drumming and tries to play it in 
return, it also smiles. If the iCub cannot hear any human drumming when it is supposed 
to be the human’s turn then the iCub only puts on a sad face and passes the turn to the 
human again. At the end of the game (currently it is time-limited, in this version the time 
limit is 2 minutes), the iCub holds up its left arm and waves its left hand several times to 
announce the end of the game (Fig. 3). There is also a third version working together 
with the drummingEPFL module (developed by EPFL-B), and using this module as the 
drummer part. The drummingEPFL module normally takes the input (number of drum 
bouts to be played and the frequency) from a file and its not interactive (not analysing 
the human’s play and imitating it but play a fixed pattern).  The Audio Analyser module 
sends the number of drum bouts and the frequency to this drumming module and 
together they produce an interactive application from this collaboration. In the other two 
versions we used our own drumming module, which can be found with the name 
drummerUH in the repository. Morever, we have also made available a standalone 
version of Audio Analyser module to be used as sound analysing module by other 
applications (e.g. different drumming programs) when needed.   We also used the 
version of this module without the gestures together with the simulated iCub drummer 
implemented in the both WEBOTS simulator by EPFL, and the ODE simulator used in 
the summer school. We are still working on the improvement of the implementation of 
drum-mate game on the physical and simulated iCub. 
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Fig. 2 iCub grasping the drumstick, and hitting the drum pads 

 
Fig. 3 iCub smiling and waving its left hand at the end of the game. It uses the left hand 

to hit the drum pads with the drum stick. 

1 . 2  K i n e s i c s  o f  I n t e r a c t i o n  a n d  E m e r g e n t  D y n a m i c s  o f  T u r n -
T a k i n g  
In a further series of experiments, we studied emergent dynamics of turn-taking while 
regulating the manner in which the robot’s actions were produced. It is observed from a 
vast exploration of the current research domain that timing plays a fundamental role in 
the regulation of human-human interaction. In the first study described above, some 
predefined fixed time duration heuristics were used for synchronization and turn-taking. 
KASPAR decided that the human participant finished his/her turn of play, and started 
playing if the human partner was silent for a few seconds.  However, it was not always 
clear when the robot or human partner should initiate interaction in taking a turn. 
Parameters of turn-taking are not same for all participants, and  can even change for a 
participant during different games, so the same fixed time durations may not suit to all 
participants, or during whole game of a participants. Therefore deterministic turn-taking 
had a negative impact on the synchronization and interaction of the participants.  
 
In this second study, we instead used a probability-based algorithm to control timing 
and turn-taking. KASPAR used three different probabilistic computational models to 
decide when to start and stop its turn (KASPAR’s and human participant’s drumming). 
The parameters of these simple models (threshold, linear, hyperbolic) were based on 
the duration of the previous turn and on the number of beats played in the previous turn 
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by the interaction partners. The temporal dynamics of turn-taking (in this case the 
number of beats and play times) were not deterministic but emerged from the 
interaction between the human and the humanoid.  

 
Our research interests primarily focused on how different robot turn-taking strategies 
based on computational, probabilistic models impact the drumming performance of the 
human-robot pair, and the participants’ subjective evaluation of the drumming 
experience. From the results of the first 12 participants, we observed in terms of 
subjective evaluation a significant difference between the first and third games in terms 
of order. Human participants got used to the game as they played more (Kose et al. 
2008). In terms of observed behaviour, different models gave different amounts of 
playing time to KASPAR and the human participants, which affected participants’ 
preferences and their performances during the games. Most of the participants did not 
prefer a linear model because it gave them the least playing time, whereby KASPAR 
ignored them and played on its own which influences social interaction negatively. Also 
KASPAR is not just imitating the human participant’s drumming, but its drumming 
emerged from the probabilistic models and human participant’s play dynamics, so can 
play different rhythms than human. Thus, some of the participants preferred to replicate 
KASPAR’s drumming, and the “follower” and “leader” roles switched (unlike the first 
work (game with deterministic turn-taking), where KASPAR was always a “follower”, and 
humans were always “leaders”). The tests were, later repeated by 12 more participants 
(Fig. 4) and the results of the first group were confirmed.  
Analysis of the results showed an impact of the turn-taking model on the structure of the 
interaction in terms of duration and complexity of drumming by human participants as 
well as on their enjoyment of the interaction game; however, individual differences 
between participants played a strong role. Moreover participants’ behaviour changed 
over the course of (order controlled) exposure to the models, indicating that they may 
have adapted their interaction to perceived capabilities of the robot. 

 
Fig.4  Human participant playing drum-mate with humanoid KASPAR 

 
 
Both of the versions of the drum-mate work showed that participants were not passive 
subjects in this game, but unconsciously adapted their own behaviour to the capabilities 
of the robot. The results of these works also suggest that deeper study of human-robot 
interaction kinesics and recipient design is warranted in the area of ontogenetic robotics 
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where a robot develops by engaging in and sustaining social interaction with human 
partners.  
 
Further descriptions of the experiments and results are to be found in Appendix A and 
(Kose-Bagci et al., 2007, 2008a, 2008b, 2008c submitted). 
 

1 . 3  P h y s i c a l  E m b o d i m e n t  a n d  G e s t u r e s  
A version of the drum-mate game was tested with 68 primary school students, where 
the importance of physical embodiment, together with its relation with the 
presence/absence of non-verbal gestures was studied recently. Compared with the 
experiments with adults, simpler gestures were used, and the game duration was 
decreased to 2 minutes from 3 minutes. Deterministic turn-taking is used in the games, 
where half of the children played games with KASPAR making gestures during its 
drumming, and the other half of the children played games with KASPAR making no 
gestures, but just drumming. Also the time between turns was decreased to adapt the 
game better for children.   At the time of submitting this deliverable we are still working 
on the statistical analysis of the results. 
 
The human-robot interaction research described in section 1 will be further developed 
and completed in the final project year.  
 

2  O nt o g e n y  o f  H um a n oi d - H um a n I n te r a c t i o n  
C a p a bi l i t y   

The second area of work regards an architecture by which a robot can ontogenetically 
develop through social interaction and grounded sensorimotor experience. The early 
results were presented in a journal article (in Adaptive Behavior (Mirza et al., 2007)) 
detailing the architecture and experiments using the early interaction game, “peekaboo”, 
between a robot and human. The interaction history architecture was shown to be 
capable of supporting development of a turn-taking interaction in a robot which took 
appropriate actions or gestures based on its own grounded sensorimotor experience. 
Here we present the current state of research and implementation that brings together 
the interaction history architecture onto the humanoid KASPAR and onto the iCub to 
develop the capability to play the early social interaction game, “peekaboo”, acquired 
via appropriate interaction with a human social interaction partner. 
 
Thus in the fourth project year work on interaction histories has continued in WP6. This 
research has been developed at UNIHER and resulted in a successfully defended PhD 
thesis (May 2008) by Dr. N. Assif Mirza, who then continued this work at IIT in the last 
quarter of the project year. Specifically, work has been continuing to move towards a 
demonstration of the Peekaboo developmental capability on the iCub platform while 
also preparing the Interaction History Architecture (IHA) for inclusion in the iCub 
released software code as part of the Cognitive Architecture. 
 
Peekaboo on a humanoid was demonstrated using the KASPAR expressive-humanoid 
robot platform of UNIHER, and software delivered in D6.3 with results reported in D6.4 
(April 2008).  Appendix B (Mirza et al. Artificial Life XI, 2008) addresses the validation of 
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the prospective ability of the IHA, while Appendix C (Mirza et al. 2008, submitted) briefly 
reports on the humanoid deployment of this architecture and peekaboo demonstration 
on the humanoid KASPAR platform); see deliverable D6.4 (note: Appendix C comprises 
a concise conference paper version of D6.4) and (N. A. Mirza, PhD thesis, 2008) for 
extensive details and more in-depth discussion and analysis of the peekaboo 
experiments with KASPAR). In the latter experiments, audio data was added to the 
sensory data available to the IHA and both audio and face-detection sensor data were 
used to provide a simple reward signal that peaked only when a face was seen along 
with a loud vocalization (peekaboo!).  KASPAR was also able to provide feedback to the 
human interaction partner using facial expressions which directly reflected the level of 
reward it received. Results showed that KASPAR was able to deploy a series of actions 
in repeating sequence such that it was able to receive a high reward. The timing of the 
encouragement provided by the interaction partner was important in how the 
development proceeded, and delaying or preempting the encouragement would not 
result in the development of the capability to play peekaboo in the robot. 
 
The entire Interaction History Architecture software tree has been re-engineered to 
bring it in line with the prevailing standards for iCub module development (see D6.3). 
The modules are listed in Table 1.  Additionally run scripts were developed for the 
architecture. 
 
TABLE 1: IHA Module List 
Module Name Type Description 

Debug Library Facilitates printing of debugging and log messages 

Actions Library 
Reads and Interprets scripted actions and behaviours 
from sequence files 

Action Selection Module 
Takes a Neighbourhood list as input and chooses an 
Experience and Action to execute 

Experience Metric Space Module 
Takes sensor data as input and creates a history of 
experiences and places them in a metric space. 
Output is a Neighbourhood list. 

ICub Control Module Control for ICub Robot 

IHA Face Detect Module OpenCV facedetect 

Motivation Dynamics Module 
Takes sound sensor data and face detector output 
and produces a reward value at every timestep 

Sensor Motor Interface Module 
Collects all sensor information and outputs a 
consolidated Sensorimotor output 

Sound Module 
Takes YARP streamed sound data as input and 
creates a single valued output for the sound sensor. 

Sensor File Writer Executable Writes streamed sensor data to a file. 

Sensor File Reader Executable Reads sensor data file and streams it to a YARP port. 

 
The iCub control module has been tested on the existing iCub ODE simulator 
(iCub_YAIS). Testing on the new ODE simulator (iCub_SIM) and testing on the iCub 
hardware platform are under completion. 
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3  R o b o t - M e di a te d  P la y  

 
This third area addresses robot mediated play in the context of autism. Here, we have 
both focused on (1) developing new approaches for designing the play sessions 
between a child with autism and an autonomous robot (Sony Aibo), (2) developing new 
computational methods to enable the robot to recognize and adapt online to the play 
styles of the children, and (3) testing the influence of an adaptive robot (vs. a reactive 
robot) on the child’s play styles. 
 
In (1), we have developed a new approach inspired by non-directive play therapy, 
where the experimenter takes part in the experiments. The child is the leader for the 
choice and the rhythm of play, but the experimenter can regulate the interaction under 
specific circumstances detailed in (François et al., 2008a). The method has been tested 
through a long-term case study with 6 children. Results have been analysed along three 
dimensions, respectively Play, Reasoning and Affect and show that each child did 
progress in at least one of the three dimensions. Triadic play (child–robot--
experimenter) was encouraged and children showed more and more initiative taking 
and proactive behaviours.  
 
Research on (2) focused on computational methods that can enable a robot to adapt to 
different interaction styles.  Here we developed a novel method for the recognition of 
tactile play styles, the Cascaded Information Bottleneck Method (François et al 2008b). 
We applied this method to the recognition of both the gentleness and the rhythm of the 
interaction. This method builds upon the Information Bottleneck Method, developed by 
Tishby and collaborators in (Tishby et al. 1999). It was tested both under laboratory 
conditions and in a real setting for robot –mediated play (i.e., a school with children with 
autism). Results showed a good capability of the method to make use of an existing 
temporal structure of the data, both for short term and long term scale events.  
 
In work on (3), we have recently conducted a case study in the school with seven 
children with autism to compare the effect of a reactive robot versus an adaptive robot 
(using the Cascaded Information Bottleneck Algorithm in real-time). Results are 
currently being analysed. 
 
Here we focus on robot-mediated play for children with autism and address three main 
directions: 
(1) The design of new approaches for the play sessions – in other words: how are the 
play sessions best organized?; what precisely is the role of the experimenter in robot-
mediated play?; what principles structure and regulate robot-mediated play sessions?  
(2) The development of new computational methods to enable real-time recognition and 
adaptation of a robot to interaction styles. 
(3) The investigation of the influence of the mode of an autonomous robot (reactive or 
adaptive) on the children’s play styles through case studies. 
The robot used in this study was the Sony Aibo robot which is safe to be used in this 
application. The work has been approved by the ethical committee of University of 
Hertfordshire. 
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3 . 1  A  n e w  a p p r o a c h  f o r  t h e  p l a y  s e s s i o n s  i n s p i r e d  b y  n o n -
d i r e c t i v e  p l a y  
 
We have developed a new approach inspired by non-directive play therapy, where the 
experimenter takes part in the experiments. The child is the leader for the choice and 
the rhythm of play, but the experimenter can regulate the interaction under specific 
conditions detailed in (François et al. 2008a). This approach is very much child-centred 
and encourages the children to progress differently, according to their specific needs, 
abilities and preferences. The progress of the children is analysed according to three 
dimensions: “Play”, “Reasoning” and “Affect”. “Play” is addressed through a play grid 
which classifies play situations in different levels, and enables to qualify the progress of 
the children qualitatively. The dimension “Reasoning” is analysed mainly according to 
the quadrology developed by Kahn et al. in (Kahn et al. 2003). The dimension of “Affect” 
is characterized by only obvious signs of like/dislike. 
The method has been tested through a long-term case study with 6 children with 
autism. Results show that triadic play (child – robot - experimenter) was encouraged 
and children showed progressively more initiative-taking and proactive behaviours. 
Moreover, with respect to Play, children can be categorized into three groups. The first 
group is constituted by children mostly engaged in dyadic play with the robot. The 
second group is constituted by those initially playing solitarily and communicating mostly 
non-verbally but progressively experiencing more complex situations of verbal play and 
few pre-social or basic situations of play. The third group is constituted by the children 
who managed to play socially. Results shows that: a) children from the first group 
tended to progressively experience longer periods of uninterrupted play with the robot 
and started engaging in basic imitation during the last sessions; b) children from the 
third group and, at a more basic stage, those from the second group, tended to 
experience higher levels of play gradually over the sessions and constructed more and 
more reasoning related to the robot; they sometimes demonstrated specific reasoning 
on real life situations, too. Children from the second and third group tended to express 
verbally or physically some interest in the robot, including on occasions interest 
involving Affect. 
  
 

3 . 2  A  c o m p u t a t i o n a l  m e t h o d  f o r  r e a l - t i m e  r e c o g n i t i o n  o f  
H u m a n - R o b o t  I n t e r a c t i o n  S t y l e s  
The second part focused on computational methods that can enable a robot to adapt to 
different interaction styles.  Here we developed a novel method for time series analysis, 
and more particularly, the recognition of tactile play styles, the Cascaded Information 
Bottleneck Method (François et al., 2008b). This method, which adopts an information 
theoretic approach, builds upon the Information Bottleneck Method, developed by 
Tishby and al. (1999). It relies on the principle that the relevant information can be 
progressively extracted from the time series with a cascade of successive bottlenecks, 
sharing the same cardinality of bottleneck states, but trained independently. This 
method is capable of extrapolating unseen cases - that is, time series which have not 
been used for the training- by an appropriate local extrapolation measure. 
We applied this method to the recognition of both the gentleness and the rhythm in the 
kinesics of the interaction. It was tested offline both under laboratory conditions and in a 
real setting of robot-mediated play (i.e. in a school with children with autism). Results 
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showed a good capability of the method to make use of an existing temporal structure of 
the data, both for short term and mid-term time scale events (the percentage of mid 
term events correctly classified was 92% under laboratory conditions and 93% with data 
from child-robot interactions). The algorithm is capable of recognizing short term events 
very well with a very short delay (average of 0.17 seconds). 
This methodology is entirely generic for applications with socially interactive robots (we 
only used the Aibo, but the approach is also applicable to other robots, including 
humanoids robots). Note, this method will be further developed and applied to 
humanoid robots as part of the final year of Robotcub and as part of the FP7 project 
RoboSkin that will probably start in 2009. 
 

3 . 3  I n f l u e n c e  o f  a n  a d a p t i v e  r o b o t  ( v s .  a  r e a c t i v e  r o b o t )  i n  
c h i l d r e n ’ s  p l a y  
 
We have recently conducted a case study in the school with seven children with autism 
to compare the effect of a reactive robot versus an adaptive robot (using a real-time 
algorithm). Here we want to see whether it is possible to guide the child towards more 
balanced levels of interactions by introducing a robot capable of reacting differently 
according to different tactile play styles. Again, here the robot used for the experiments 
is the Aibo robot, which reacts autonomously to tactile stimulations.  The robot is on a 
“reactive mode” if it reacts in the same way whatever the intensity of the stimulation (i.e. 
whatever the stimulation is gentle or strong and whatever the rhythm of the interaction). 
In contrast, a robot is said to be in “adaptive mode” if it reacts differently according to 
the gentleness and the rhythm of the interaction, based on a reward for good frequency 
and a reward for gentle behaviours.  Results of these experiments are currently being 
analysed. 
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Abstract 
We summarise two human-robot interaction studies 

investigating a drumming experience with Kaspar, a 

humanoid child-sized robot, and human participants. Our 

aim
1
 is not to have Kaspar just replicate the human’s 

drumming, but to engage in a ‘social manner’, i.e. in a 

call and response turn-taking interaction. The 

interactions are discussed in terms of imitation, turn-

taking, and the effect of gender differences. This research 

is part of a project into developmental robotics with a 

particular emphasis of our work on gesture 

communication. 
 

1. Introduction 
 

    We present two exploratory studies investigating a 

drumming experience with Kaspar [1] and human 

participants. The primary goal of this work is to achieve 

(non-verbal) gesture communication between child-like 

humanoid robots and human beings, whereby drumming 

served as a test bed to study key aspects such as turn-

taking and non-verbal gestures. 

    In the first presented study, turn-taking is deterministic 

and head gestures of the robot accompany its drumming to 

assess the impact of non-verbal gestures on the interaction 

[2]. The second study focuses on emergent turn-taking 

dynamics; here our aim is to have turn-taking and role 

switching which is not deterministic but emerging from 

the social interaction between the human and the 

humanoid [3]. Therefore the robot is not just „following‟ 

and imitating the human, but can be the leader in the game 

and being imitated by the human. Details of the two 

studies summarized in this paper as well as related work 

can be found in [2,3]. 

                                                 
1 Acknowledgements: This work was conducted within the EU 

Integrated Project RobotCub ("Robotic Open-architecture 

Technology for Cognition, Understanding, and Behaviours"), 

funded by the EC through the E5 Unit (Cognition) of FP6-IST 

under Contract FP6-004370. 

 

 

2. Using gestures as social cues 
In this first study human participants played a rhythm 

which Kaspar tried to replicate, in a simple form of 

imitation (mirroring), by hitting the drum positioned in its 

lap. Then the human partner played again. This 

(deterministic) turn-taking continued for the fixed 

duration of the game. Kaspar did not imitate the strength 

of the beats but only the number of beats and duration 

between beats, due to its limited motor skills. Our primary 

focus was to study the possible impact that utilizing social 

gestures would have, not only on the game itself (in terms 

of performance), but also on the participant‟s subsequent 

subjective evaluation of the game. 

    We studied three conditions with increasing amounts of 

gesturing. In the first condition Kaspar did not use any 

gestures. Kaspar only imitated the drumming. This 

condition was called no-gesture. In the gesture game, 

simple head gestures and eye blinking were included in 

Kaspar's movements. Kaspar started drumming with one 

of the fixed gestures. If the human partners did not play 

their turn, then Kaspar as well did not do anything and the 

turn passed to the partner. In the gesture+ condition, 

Kaspar simply repeated the sequence of gestures without 

playing even if the partners did not play their turn. 

Tests and results: The 3 conditions with all possible 

orders were tested with 12 adult participants (6 male and 6 

female) who worked in computer science or similar 

disciplines at the University, and were overall not familiar 

with robots. .  

According to the questionnaires, for the least preferred 

game type, there were significant differences due to 

gender (χ
2
(1,11)=4.75,p= .03). This difference manifests 

as males predominantly choosing the gesture+ game type 

as their least preferred game type, while females 

predominantly chose the no-gesture game type as their 

least preferred game (Fig. 1). 

According to the observed behaviours, although the 

error rate (describing how well Kaspar can replicate a 

human‟s drumming) in gesture+ was less than in the 

gesture condition, male participants liked it the least 
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overall. In contrast, although the error rate in gesture+ 

was the highest, female participants liked it more than the 

no-gesture game which had the lowest error rate (Table 

1). 

 

  

Fig. 1 A screen shot from the experiments (left) . Least preferred game 

type according to gender (right)  

Table 1 Observed behaviour according to game type 

Game type Avg. error 

 Males females 

no-gesture 2.5 ± 2.7 2.7 ± 2.5 

gesture 3.9 ± 3.6 3.1 ± 3.8 

gesture+ 3.0 ± 2.9 3.5 ± 3 

 

While an exhaustive description of the qualitative 

analysis of the participants‟ responses is beyond the scope 

of this abstract, the above results are due to differences in 

task vs. interaction orientation between participants. Male 

participants tended to be more task oriented, while female 

participants tended to evaluate the interaction as a whole. 

 

3. Emergent turn-taking dynamics 
Timing plays a fundamental role in the regulation of 

human-human interaction. In the first study described 

above, some predefined fixed time duration heuristics 

were used for synchronization. Kaspar started playing if 

the human partner was silent for a few seconds.  However, 

it was not always clear when the robot or human partner 

should initiate interaction in taking a turn. In this second 

study, we instead used a probability-based algorithm to 

control timing and turn-taking. The temporal dynamics of 

turn-taking thus emerged from the interaction between the 

human and the humanoid. Three simple models 

(threshold, linear, hyperbolic) were used to control the 

starting and stopping of the robot‟s drumming beats. This 

response was based on the duration of the previous turn 

and on the number of beats played in the previous turn by 

the interaction partners.  

Our primary research interests were to study how 

different robot turn-taking strategies based on 

computational, probabilistic models impact the drumming 

performance of the human-robot pair, and the participants‟ 

subjective evaluation of the drumming experience. From 

the results of 12 participants, we observed in terms of 

subjective evaluation a significant difference between the 

first and third games in terms of order. Human 

participants got used to the game as they played more. In 

terms of observed behaviour, different models gave 

different amounts of playing time to Kaspar and the 

human participants, which affected participants‟ 

preferences. Most of the participants did not prefer a 

linear model because it gave them the least playing time, 

whereby Kaspar ignored them and played on its own 

which influences social interaction negatively. Some of 

the participants preferred to replicate Kaspar‟s drumming, 

and the “follower” and “leader” roles switched (unlike the 

first work (section 2), where Kaspar was always a 

“follower”, and humans were always “leaders”).  

 

4. Conclusion 
   We presented the result of interaction games with 24 

participants. Due to the small participant sample size the 

analysis is only descriptive.  

    In the first study Kaspar just repeated the beats 

produced by the human partner, and made simple fixed 

head gestures accompanying its drumming. The human 

partners‟ in return, perceived these simple behaviours as 

more complex and meaningful. Note, while Kaspar's drum 

playing did not change over time, and stayed the same in 

different games, the participants learned the limits of 

Kaspar and the rules of the game, and adapted themselves 

to the game better (future work will investigate this 

adaptation in more detail), so the success rate improved 

over time. It seems that participants were not passive 

subjects in this game, but unconsciously adapted their own 

behavior to the capabilities of the robot. In the second 

study involving emergent turn-taking dynamics, although 

we used very simple models, we were able to observe 

some very successful games in terms of coordinated turn-

taking, and role switching emerging from social 

interaction between the human and the humanoid. These 

gesture communication studies can possibly be extended 

for use in the other robotic fields, e.g. entertainment, 

service robots, and educational/therapy robots. 
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Abstract

Operational definitions and applications of the sensorimotor
experienceof an artificial embodied organism are presented
along with a mathematical metric for distance between expe-
riences based on Shannon information. We describe a simple
robotic experiment that illustrates how an artificial embodied
agent can use its own history of experience combined with the
experience metric to predict future experience. Present senso-
rimotor experience is used to find the most similar past expe-
rience using the geometry of its growing and changing expe-
rience metric space. This is then used to ground the ontogeny
of autonomous prospective capability in interacting with the
environment, e.g. to anticipate forthcoming changes in envi-
ronment based on temporally extended past experiences.

Introduction
Increasingly, the importance of embodiment and situated-
ness within complex and rich environments are becoming
recognized as a crucially important factors in engendering
intelligence in an artifact (cf. for example Clancey (1997);
Pfeifer and Bongard (2007), and the philosophical posi-
tion regarding ‘structural coupling’ of Maturana and Varela
(1987)). Living organisms in particular experience and re-
experience particular recurring patterns of trajectories of in-
teractions with the environment through their sensing and
acting; and these habitual trajectories can form the basis
of prospection, further development, and adaptation (Varela
et al., 1991).1

Moreover, it is in how an artificial agent develops its capa-
bilities over its life-time of interactions (ontogeny) that is im-
portant in building agroundedintelligence, able to adapt to
unknown and changing environments (including long- and
short-term variations in its embodiment and in its sensory
or motor repertoire). Especially given the complexity of in-
teractions in natural environments, and the richness of sen-
sors available to modern robots, whose properties change

1This work was conducted within the EU Integrated Project
RobotCub (“Robotic Open-architecture Technology for Cognition,
Understanding, and Behaviours”), funded by the EC through the
E5 Unit (Cognition) of FP6-IST under Contract FP6-004370.

over time in different environments or with changing em-
bodiment, it is largely infeasible and impractical to attempt
to foresee and model the situations a robot (or other artifi-
cial agent) may encounter and how to adapt to them in ad-
vance (e.g. Brooks (1999)). Instead, autonomous methods
for bootstrapping development without prior knowledge of
the structural coupling relationship based on enactive con-
struction and development of intelligence behaviour warrant
investigation, both from the perspectives of engineering ap-
plications as well as from the viewpoint of a generalized bi-
ology. Building on basic ‘phylogenetic’ capabilities, such an
approach is hypothesized to allow for a basic of autonomous,
enactive development in embodied models of developmental
cognitive systems with expanded temporal horizon of their
perception and action (Nehaniv et al. (2002),Vernon et al.
(2007), Mirza et al. (2007)).

Our goal is to research methods that can be used by an ar-
tificial embodied agent to develop its capabilities through its
ongoing interactions with its environment, while scaffold-
ing its adaptation on the basis of previous experience and
previously achieved adaptation. In earlier work we intro-
duced formal mathematical metrics on sensorimotor experi-
ence and its geometry, as well as heir use as part of a de-
velopmental architecture for robots that bases future action
on previous experience (Nehaniv, 2005; Mirza et al., 2005a,
2007). In this paper we present results from a robotic ex-
periment that illustrates how a history of embodied experi-
ence, combined with a metric measure for comparing expe-
riences, can be used to predict temporally extended future
experience. This is an important result for our developmen-
tal architecture as it demonstrates the efficacy of the metric
measure, and in turn its suitability for directing future action
and behaviour based on the individual’s past experience.

Other Related Work. Olsson et al. (2006) use informa-
tion distance to develop basic sensorimotor maps in interac-
tion with the environment, beginning from raw uninterpreted
sensors. Independently of our work, Oates et al. (2000) have
also described experiences as a time-series of multi-variate
sensorimotor data (which is essentially identical to our op-
erational definition of experience), but computing distance
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between time-series and clustering experiences to produce
prototypes. Experiences are associated with the actions that
initiated them, so robot can generalize about potential out-
comes of its actions. Distances between experiences are cal-
culated by using Dynamic Time Warping followed by mea-
suring the area between the curves, and clusters formed by
taking averages of time-warped experience curves. In con-
trast, our framework uses an information-theoretic metric on
such experiences.

Kaplan and Hafner (2005) use information distances be-
tween sensors in an Aibo robot to compare simple be-
haviours of the robot. In that method, rather than reducing
the dimension by summation within groups as we have done,
they consider distances between different behaviours as dis-
tances between the full matrix of distances between all sen-
sors. Long continuous examples of each behaviour (1000
timesteps) are used, and the whole sequence used rather
than a moving window. The resulting distances between be-
haviours are shown as a projection onto a two-dimensional
map, and they find that similar behaviours group together.
This research supports the view that robot behaviour can
be clustered using information relationships between sensor
time-series. However, the incremental formulation of our
approach allows us to propose a system that can be used for
ontogeny, and the use of the experience metric allows for
better comparison of past behaviour and experience.

Continuous Case-Based Reasoning (CCBR) (Ram and
Santamaria, 1997) has many similarities to the approach de-
scribed here. However, in our approach the information
metric allows for a more robust comparison of sensorimo-
tor details concentrating on the statistics of the particular
time-series, and so better able to recognize regularities in
time-series than a simple Euclidean metric. Also, the met-
ric nature of the space is also able to recommend a number
of increasingly distant matches (neighbours) and is able to
weight their similarity along with a qualitative value from
the environmental feedback to provide, potentially, more ap-
propriate actions.

Sensorimotor Experience and Metric
A robot or other embodied agent’s entire view of the world
is experienced through its sensors, including those that mea-
sure internal factors such as temperature, actuator positions,
and other more general internal variables. Any sensor can be
modelled as a random variableX changing with time, tak-
ing valuesX(t) ∈ AX = {x1, . . . , xm} from a probability
distributionPX . Time is taken to be discrete (i.e.t will de-
note a natural number). A robot’s experience, then, can be
considered as the stream of all readings(X1(t), . . . , Xn(t))
from all these variablesX i over a given time period (i.e.
t ∈ [t′, t′ + h] for sometemporal horizonh > 0). This is
a purely operational sensorimotor view of experience and,
by itself, says nothing about the quality or meaning of that
experience.

Formally, an agent’sexperiencefrom time t over a tem-
poral horizonh can be defined as

E(t, h) = (X 1

t,h, . . . ,XN
t,h) (1)

whereX 1

t,h, . . . ,XN
t,h is the set of random variables avail-

able to the agent constructed or estimated according to time-
series of sensorimotor readings fromN sensorimotor vari-
ables (X1, . . . , XN ) ending at timet with a horizonh
timesteps (from timet − (h − 1) to t).

Experience Metric
Given a definition of Sensorimotor Experience and the in-
formation metric, a formal measure of distance between ex-
periences can be defined. This is useful as it allows a direct,
scaled comparison between different sets of sensorimotor
readings of a robot or agent. A metric for comparison of
sensorimotor experiences is important as it is then possible
to talk of proximity and distance between different experi-
ences in a quantitative and geometrically meaningful way.

Figure 1:Experience Metric.A visual illustration of the ex-
perience metric. Each experience is shown as a collection of
sensor readings of lengthh starting at timet andt′. The in-
formation distance between each respective sensor over time
is summed to give the Experience Metric.

We define theExperience Metric, a metric on experiences
of temporal horizonh, as

D(E, E′) =
N∑

k=1

d(X k
t,h,X k

t′,h) (2)

whereE = E(t, h) andE′ = E(t′, h) are experiences of an
agent at timet andt′ over horizonh, andd is the Crutchfield-
Rényi information metric (Crutchfield, 1990), or more sim-
ply, theinformation distancebetween jointly distributed ran-
dom variables. That is,d(X ,Y) = H(X ,Y) − I(X ,Y),
whereH denotes entropy andI denotes mutual information
(see (Cover and Thomas, 1991) for an introduction to these
concepts of information theory)2. D is measured inbits; see
also Figure 1. ThatD is a metric follows from the fact that
the metric axioms (equivalence, symmetry, and the triangle

2d(X ,Y) = 2H(X ,Y) − H(X ) − H(Y) and is estimated
directly from the frequency distributions of binned sensor values.
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inequality) hold for each of the components in the summa-
tion, sinced is a metric (Nehaniv, 2005). For a visual proof
thatd (and henceD) is a metric, see (Nehaniv et al., 2007).

Earlier Experiments
In Mirza et al. (2005b) we describe an experiment showing
ball-path prediction using the experience distance measure.
In that experiment an Aibo robot (see Figure 2 and below)
remained stationary while a ball was moved in view of its
head mounted camera. The predicted ball path was plotted
in real-time overlaid on the images from the camera. This
experiment illustrated that sensor experience can be used to
match experience successfully. This experiment builds on
that result, but uses the full embodied experience to match
previous experience. The camera images do not, by them-
selves, give information about the position of the ball so self-
experience is important.

Experiment
Interactive Path Prediction
A simple robotic experiment was devised that would illus-
trate how an artificial embodied agent can use its own his-
tory of experience combined with the experience metric de-
scribed above to predict future experience. The robot fol-
lows the motion of a ball moved in front of it by using a sim-
ple reactive behaviour to adjust its head motors to attempt to
centre the ball in its field of vision. The robot continually
builds a metric space of experiences from its ongoing senso-
rimotor experience, including its own proprioceptive sense
of movement arising through interaction with the environ-
ment. A closest historical experience, in terms of experi-
ence distance, to the current one is then found. Experiences
temporally following the historically closest experience then
provide a model for anticipation of future experience. How
good this model is depends on both the predictability and
consistency of the environmental interaction as well as how
“good” the historical matching is. Thus, the analysis of the
experiment focuses on measuring how well matched the his-
torical experience is to the current one. Note that predicting
the trajectory of the tracked object corresponds to prospec-
tion regarding part of a future temporally extended interval
of sensorimotor experience.

It is important to note that, the robot is not matching cur-
rent ball position with previous ball position, rather all sen-
sory and motor variables are used as information sources to
detect similarity between experiences.

Implementation and Experimental Setup
The robot used was a Sony Aibo ERS-7. The control and
sensory collection software was implemented in Java with
URBI (Baillie, 2005) providing the robot control layer and
ball detection. Sensor readings are sent over wireless to a
personal computer approximately every 80-120ms. Recep-
tion of each frame of data defines atimestep. Video images

were received from the robot head camera approximately ev-
ery 400ms, however visual sensors were computed at the
rate of the sensor data using the most recent image from
the camera. Experiences were formed from data streams
from 33 internal sensors (including proprioceptive motor po-
sitions and infrared distance measurements, and 9 sensors
formed from average pixel values in a3 × 3 grid over the
image.

Figure 2:Sony Aibo ERS-7, and Pink Ball

The robot was stationary in a “sitting” position, with the
head pointed forward (Figure 2). A pink ball was moved in
the air in view of the robot’s head camera at a distance of
approximately 30cm. No particular effort was made to “san-
itize” the environment to aid ball-detection against the back-
ground. Thus, it is likely that other items in the environment
provided potentially useful information about any interac-
tion. The robot executes a continuous reactive behaviour to
follow the motion of a ball with its head. The algorithm is
simple, making appropriate incremental adjustments to the
neck, headTilt and headPan motors, such that the position of
the ball is brought closer to the centre.

The metric space creation and prediction was imple-
mented in Java and ran on-line in real-time. The horizon
length of the experiences wash = 20 timesteps or approx-
imately 1700ms. The data was quantized intoQ = 10 bins
in the probability distribution estimation algorithm.

The ball was moved such that the time for the ball to de-
scribe a circle (or to move horizontally or vertically for a
complete cycle) was 6-7 seconds. Thus the horizon length
was shorter than, but of the same order of magnitude as, a
single cycle of the repeated behaviour and the experiences
would comprise approximately a half of a cycle.

The full interaction sequence lasted 965 timesteps (∼ 84
seconds) constituting 945 experiences of horizon lengthh =
20. The movements of the ball consisted of a number of hor-
izontal and vertical movements, and a number of clockwise
circles; see Table 1.
Visualizing Ball Path: A projection of the current ball po-
sition relative to the robot is plotted in two dimensions by
estimating the direction in which the head is pointed from
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Table 1: Path Prediction Experiment - Sequences of Move-
ments (TS denotes time step number)

Start TS End TS Movement Type Iterations

91 185 Horizontal, Left to Right 2 full

201 272 Vertical movements, Top to
Bottom

2 full

283 361 Horizontal, Right to Left 1 full

376 453 Vertical, Top to Bottom 2 full

463 534 Horizontal, Right to Left 1 full

548 593 Vertical, Top to Bottom 1 full

607 852 Circular, Clockwise 4 full

866 929 Vertical, Bottom to Top 2 full

Figure 3: Ball Path Traces. The diagram shows the parts
of the ball path diagrams used to visually analyse the traces
of the ball in a neck-centred coordinate system derived from
motor positions. See Figures 6 and 7.

the positions of three motors contributing to head motion.
The coordinates for the ball position in the plot are given by:

(x, y) = (W × headPan, H × (headT ilt + neck)/2)

where W and H are the image width and height, and
headPan, headT ilt andneck are the motor values at any
instant normalized into the range(0, 1). See the explana-
tory diagram of Figure 3. Note that the plots are created
for analysis of the experiments, and this abstraction of the
sensoriomotor flow isnot available to the robot. Instead it
allows us as external observers to gain insight into what the
robot ‘expects’ will happen in an interval of the near future
based on its own previous experiences, and how accurate
these expectations are (again to an external observer).
Error Measurements: Two different measurements of path
error were used. The first measured the sum of the Euclidean

distance between each corresponding point of the paths. The
second calculated a vector direction for each path and re-
turned the angular difference in radians between the vectors
as the error.

Table 2: Improvement of Experience Matching Over Time

Type Iteration Number Total Percentage

< π/4 Number < π/4

HORIZ 1 0 41 0.0%

HORIZ 2 27 73 37.0%

HORIZ 3 25 75 33.3%

HORIZ 4 27 72 37.5%

VERT 1 0 34 0.0%

VERT 2 8 51 15.7%

VERT 3 15 30 50.0%

VERT 4 42 61 68.9%

VERT 5 32 52 61.5%

VERT 6 27 49 55.1%

CIRCLE 1 9 65 13.8%

CIRCLE 2 13 54 24.1%

CIRCLE 3 27 66 40.9%

CIRCLE 4 31 63 49.2%

Results and Analysis
Figures 4 and 5 show, using different methods of error es-
timation, the error between the current path and the path
corresponding to the nearest previous experience in terms
of information distance. Figures 6 and 7 show traces of the
paths from experiences in regions where horizontal and ver-
tical movements were taking place. As can be seen from the
traces, which are selected from regular intervals, it is often
the case that the paths are similar and so the experiences are
well matched. However, the objective measure of error in-
dicates that the actual path is not exactly the same. This is
to be expected as there do not exist anypreciselyidentical
experiences in a real situation.

The opposite direction path (but of the same type) is regu-
larly matched. As the sensors are not biased left or right, and
the experience distance measure is the sum of information
distances between variables, then a symmetric error such as
this is likely. Indeed, such experiences areinformationally
very close to their ‘opposites’. Out-of-phase periodic vari-
ables can have a small or zero3 information distance.

In terms of angle, the error is less thanπ/4 (i.e.closer to
parallel than orthogonal) 55.13% of the time and is greater

3Variables that have a zero information distance arerecoding
equivalentand are not necessarily identical (see Crutchfield, 1990).
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Figure 4: Euclidean distance (error) between the paths of theball during the current and nearest previous experience. The error
is often exaggerated as experiences of paths of the same type but opposite direction are often matched. The top part of the
graph shows the behaviour (See Table 1). ThePath Error (pixels) in this case is the sum of the Euclidean distance between
corresponding points. Temporal horizonh = 20, number of binsQ = 5.

than3π/2 (i.e.closer to opposite than orthogonal) 29.21%
of the time. This indicates that the path and therefore the
experience is generally well matched, however due to the
nature of the measure, experiences from the opposite phase
in a cycle are often selected. This error is compensated
for in Figure 5 by reflection aboutπ/2. It is interesting to
note the opposite phase corresponds to time-reversed mo-
tion, and that the present metric relies on probability distri-
butions constructed from sensorimotor flow and that these
distributions do not encode the directionality of time.

Examining the progression of the error over time in these
data, one would expect to see an improvement as the same
kinds of behavioural interaction are re-experienced. How
the matching of experiences improves over time is exam-
ined, referring to Table 2 and Figure 5. During the hori-
zontal motions after one full cycle, 37% of experiences can
be matched to similar ones in the history. Vertical motions
show that the success rate peaks at 68.9% with the 4th pre-
sentation. The success rate drops slightly thereafter as there
are more experiences to select from. The Circle movements
also show marked improvement as experience grows. The
initial 13.8% success rate of the very first circular motion
reflects the fact that parts of the circular motion are being
matched with previous horizontal and vertical experiences,

with some limited success, even before any such motions
had been observed.

Conclusions
The work describing the construction and use of information
metrics for the comparison of robot behaviour demonstrates
achievement of a degree of temporally extended prospec-
tion by an embodied agent, based on its raw sensorimo-
tor experience. The experience metric was first described
in (Mirza et al., 2005a) and with mathematical proofs of
the mathematical metric properties along with some alter-
native metrics on experience in (Nehaniv, 2005). As men-
tioned, an operational formulation of experience (but not of
the metric) was previously described in (Oates et al., 2000).
A non-metric measure of distance between experiences was
described there that used the area between time-warped ex-
perience curves. The fact that independent research groups
both developed essentially the same notion operationalizing
an agent-centred definition of experience suggests that this
definition is a natural one.

Experiments were described that use fairly large numbers
of robotic sensors to describe robotic experience such that
a simple sort of prediction can be achieved by the matching
of present experience with experiences in the history and
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and nearest previous experience. The graph shows the error reducing, on average,within a given behaviour sequence. The top
part of the graph shows the behaviour (See Table 1). Theangle error is the difference in radians between the vector direction
of each path. For errors> π/2, π − error is shown (reflection aboutπ/2). Temporal horizonh = 20, number of binsQ = 5.

extrapolating forward from the matched past experience. It
was found thatproximity in terms of experience metric cor-
responds well with an external observer’s notion of similar-
ity of experience.Future research may consider using the
anticipated experience for active perception and in human-
robot interaction.

The sensorimotor variables were treated by the au-
tonomous robot in an uninterpreted “agnostic” manner, that
is, no sensor is regarded as being different from any another
or special in any way, in terms of finding close experiences.
This performance was achieved despite many of the sensors
not providing any seemingly useful information about the
current experience. Proprioceptive motor experience was
important in this experiment in determining the experience
and matching it to the appropriate past experience.

The capability of the experience metric to find suitable
matching experiences was found to increase as more ex-
amples of a particular type of behaviour were presented.
This appears to level-off, and potentially become worse as
more examples are presented. However, the experiments de-
scribed had too short a run time for a definitive conclusion
to be drawn on the latter observation. Another important as-
pect of the experience metric is that it appears to confuse a
behaviour with its ‘opposite’ (phase-shifted or time-reversed

counterparts), as these are informationally nearly identical.
This can be seen clearly in both the simple and interac-
tive ball-path prediction experiments as opposite direction
of path.

Needless to say, the ontogeny of prospective ability of
children and other mammals is an extended process lasting
years and we cannot yet hope to mirror its complexity and
success in artificial systems, although the work presented
here suggests that we have made a small start in this direc-
tion.
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Abstract— We present experimental results for the humanoid
robot Kaspar2 engaging in a simple “peekaboo” interaction game
with a human partner. The robot develops the capability to
engage in the game by using its history of interactions coupled
with audio and visual feedback from the interaction partner
to continually generate increasingly appropriate behaviour. The
robot also uses facial expressions to feedback its level of reward to
the partner. The results support the hypothesis that reinforcement
of time-extended experiences through interaction allows a robot
to act appropriately in an interaction.

I. I NTRODUCTION

This paper reports the results of an experiment showing a
humanoid robot (Kaspar2 - Fig 1) using its history of inter-
action to acquire the ability to engage in the early interaction
game “peekaboo” with a human interaction partner. The robot
is a simple upper-body humanoid that can display a range
of facial and bodily expressions. The peekaboo engagement
is developed by the robot using the Interaction History Ar-
chitecture, a developmental control architecture based on the
grounded history of sensorimotor interactions.

In earlier experiments (see [1]), this architecture was shown
to be capable of supporting development of a turn-taking
interaction in a non-humanoid robot which took appropriate
sequences of actions or gestures based on its own grounded
sensorimotor experience. This new experiment uses interac-
tion history-based control architecture, relying on temporally
extended grounded sensorimotor experiences, deployed on an
expressive an expressive humanoid for the first time. The
humanoid embodiment enhances the richness of the possible
interaction for instance by adding the ability to feedback re-
ward through facial gestures. An audio modality is also added
to the visual and other sensorimotor data, and is employed in
perception of reward along with face recognition. Furthermore,
for the first time in a robotic platform, we show how continual
modification of the space of experiences through merging
and forgetting builds a more adaptive and focused interaction
history.

A. Interaction Histories

We define an interaction history for an embodied agent as
the temporally extended, dynamically constructed, individual
sensorimotor history of an agent situated and acting in its

Fig. 1. The Kaspar2 robot (University of Hertfordshire) has two 5 DoF
arms, a 3 DoF neck, two coupled 2 DoF eyes containing colour cameras and
a flexible face actuated by two further motors at the mouth.

environment, including the social environment, that shapes
current and future action[1]. The history is grounded in the
sensorimotor coupling of the agent with its environment and
therefore the development of the action capabilities of an agent
based on such a history are also grounded and meaningful from
the agent’s perspective.

This aligns with the “embodied cognition” hypothesis, that
“cognition is a highly embodied or situated activity and
suggests that thinking beings ought therefore be considered
first and foremost as acting beings.”[2]. Lakoff & Johnsson
[3] also argue that all cognition, including representations and
memory of categories, eventually grounds out in embodiment
and Glenberg [4] also argues that the purpose of perception
and memory for the natural environment is to guide action,
and that even abstract concepts can be interpreted in terms
of physical actions and properties. In general we can say that
memory manifestsitself as embodied action of some kind.
That is, it is in actions resulting from recall that one witnesses
memory and that recall itself is dependent on embodiment.

Autonomous embodied artificial agents that make use of
interaction histories in guiding their actions can be thought of
as extending their temporal horizon beyond that of a simple
reactive agentand becomepost-reactivesystems when acting
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with respect to a broad temporal horizon by making use of
temporally extended episodes in interaction dynamics [5].

We hypothesize that a dynamically constructed history that
is used to generate and select actions in an embodied agent
can also serve as the basis forontogenetic developmentof
the agent. Self-organization (merging and deletion of) ex-
periences in the history can provide abstraction as well as
anticipation [6]. Development in this case can be seen as
the increasing richness of the connections of experience with
action, mediated by suitable mechanisms. Such a history can
facilitate incremental development at the borders of experience
(cf. Vygotsky’s “zone of proximal development” [7])

Fig. 2. Schematic of the Interaction History Architecture

I I. I NTERACTION HISTORY ARCHITECTURE

The Interaction History Architecture is shown schematically
in Figure I-A. The approach is as follows:

1) to continually gather sensorimotor data and find “suit-
able” episodes of sensorimotor experience in the history
near (in terms of the experience metric) to the current
episode;

2) depending on the course of subsequent experience, to
choose from among actions that were executed when
these episodes were previously encountered;

3) where no suitable experiences are found, to choose ran-
dom actions.

There are two key aspects of this architecture. The first is the
metric space of experiencewhereby new experiences appear
as points in a growing and changing high-dimensional metric
space. The metric space is enhanced withquality information,
potentially received from the environment, from internal drives
or from other sources such as affective state. Each experience
is also associated with actions executed during the experi-
ence. The second is theaction selectionsystem. This “closes
the perception-action loop” and also closes an internal loop
feeding back and modifying the experience space. The quality
associated with each experience combined with proximity in
the metric space is used to select experiences from the history
and select actions associated with those experiences.

A. Interaction History Space

Briefly1, the Interaction History Spaceconsists of:
Sensorimotor Experiences: Time-series of sensor readings
from all available sensors of a robot, from timet to another
time t + h whereh is thehorizon lengthof the experience.
The Experience Metric: A metric measure of distance
between sensorimotor experiences. Based on an information-
throetic measure of distance between sensor time-series
viewed as values of random variables. (Crutchfield-Rényi
Information Metric [8]).
Next Action information: The next action executed after an
experience is associated with that experience.
Quality information: A value representing environmental
reward received after the experience (for a particular time
span).

Thus the metric space of experience in the Interaction
History Architecture, theinteraction history space, can be
described by the tuple(ǫ, D, q, a), whereǫ is a collection
of quantized “experiences”,D is the a matrix of distances
between elements ofǫ, q is a vector of quality values anda
a vector of actions.

The metric space is constructed continuously as the robot
experiences its environment. A new experience is created every
Granularity G timesteps, and consists of Horizonh timesteps
counting back from the current timestep. Whereh > G the
experiences will overlap. Each sensor reading is quantized
into Q evenly-sized bins. Each new quantized experience
is compared to other experiences in order to determine its
neighbours. This process, if all experiences are compared,
results in a distance matrix between experiences which defines
the structure of the metric space as it is experienced by an
individual robot.

B. Action Selection

A simple mechanism is adopted for action selection
whereby the robot can execute one of a number of “atomic”
actions (or no action) at any timestep. The actual action
selected will either be a random selection of one of the atomic
actions, or will be an action that was previously executedafter
an experience in the history. Both “quality” and proximity
to the current episode in the space affect the chance of an
historical experience (and therefore action) being selected.

This process ensures the robot may still choose a random
action as this may potentially help to discover new, more
salient experiences This has the advantage of emulating body-
babbling, i.e. apparently random body movements that have
the (hypothesized) purpose of learning the capabilities of the
body in an environment [9]. Early in development, there are
fewer, more widely spread experiences in the space, so random
actions would be chosen more often. Later in development, it
is more likely that an the action selected will come from past
experience.

1For further details see [1].



An advantage of this approach is that behaviour can be
bootstrapped from early random activity, and later behaviour
built on previous experience.

1) Roulette-Wheel Action Selection:An experience is se-
lected fromK candidate experiencesnear to the current expe-
rienceEcurrent. The chance of random action selection is also
represented in that list. The probabilities are calculated using
a “gravitational model” where each experience is represented
as a point mass a particular distance fromEcurrent. The
probability of selecting an experienceEi from E1, . . . , EK

is:
pi =

miqi

D(Ecurrent, Ei)
2

(1)

whereqi is thequality valueof Ei, mi is the mass (i.e. how
many experiences have been merged into this experience) and
D(Ecurrent, Ei) is the experience distance2.

The chance of random is added to the list as:

p0 =

∑K

i=1
pi

(rmax/τ)
2

(2)

wherermax is the radius of the ball that includes the ranked
experiences andτ is a temperaturefactor, that controls the
chance of random action selection.

Then the weighting on the “roulette wheel” is given by:

wi =
pi∑K

i=0
pi

(3)

C. Update of Environmental Reward

The quality valueq has bearing on the selection of the
experience, and in turn on the action-selection process. The
quality value is intended to reflect how useful the experience
is in terms of positive or negative environmental feedback,
and is derived directly from the internal reward function or an
external reward measured by the robot’s sensors.

In the simplest case, the immediate (instantaneous) reward
received from the environment is associated with the current
experience. An alternative scheme is for the quality associated
with an experience to be dependent not only on the current
reward, but also on the future reward. In the present imple-
mentation thefuture rewardfor an experienceEt,h for some
given horizonhfuture is the maximum reward over the next
hfuture following the experience.

D. Merging and Deletion of Experiences in the Interaction
History Space

It is necessary to employ strategies such asmerging and
forgetting if storage and computation requirements are to be
controlled. However, employing such a strategy also provides a
powerful mechanism for continually changing and adapting the
experience space and is therefore of fundamental importance.

The merging strategy is to merge any two experiences
closer than a thresholdTmerge. Tmerge was fixed for the
most part, however alternative strategies were trialled during
development of the algorithm, including adapting the threshold

2The “Experience Metric” -see [10].

such that the maximum number of experiences in the space
remained constant.

The meta-information associated with experiences that are
merged are also assimilated. Actions from both merged ex-
periences are accumulated, resulting in an action probability
distribution; the quality values are averaged; and, a weight
value, indicating the number of experiences that have been
merged together, is set to the sum of the weights of the merged
experiences.

Experiences may also be deleted, that is, forgotten. There
are a number of different strategies to decide which expe-
riences should be forgotten, and the one used here is to
forget those experiences which have lower quality values and
thus will have little or no impact on future action selection.
Specifically, experiences older thanhfuture with a quality less
than or equal toTpurge will be deleted.

III. D EVELOPMENT USINGINTERACTION HISTORIES

THROUGH PLAYFUL INTERACTION

We describe an experiment that illustrates how a robot can
develop action capabilities based on its history of interaction
with the environment through the use of the architecture
presented. The scenario is a simple communicative interaction
game, “peekaboo”, that uses simple non-verbal gestures. The
peekaboo game as a research tool is discussed, followed by a
description of an experiment using an upper-body humanoid
robot that uses its interaction history to develop the capability
to engage in a peekaboo interaction with a human partner.

A. Peekaboo as a Research Tool

The development of gestural communicative interaction
skills is grounded in the early interaction games that infants
play. In the study of the ontogeny of social interaction, ges-
tural communication and turn-taking in artificial agents, it is
instructive to look at the kinds of interactions that children are
capable of in early development and how they learn to interact
appropriately with adults and other children. A well known
interaction game is “peekaboo” where classically, the caregiver
having established mutual engagement through eye-contact,
hides their face momentarily. On revealing their face again
the care-giver cries “peek-a-boo!’, “peep-bo!”, or something
similar. This usually results in pleasure for the infant which, in
early development, may be a result of the relief in the return
of something considered lost (i.e. the emotionally satisfying
mutual contact), but later in development also may be a result
of the meeting of an expectation (i.e. the contact returning as
expected along with the pleasurable and familiar sound), and
the recognition of the pleasurable game ensuing [11].

Bruner and Sherwood [12] studied peekaboo from the view-
point of play and learning of the rules and structures of games.
They also recognize that the game relies on (and is often
contingent with) developing a mastery of object permanence
as well as being able to predict the future location of the
reappearing face.

In relation to the development of social cognition in in-
fants, “peekaboo” and other social interaction games, that are



characterized by a building and then releasing of tension in
cyclic phases, are important as they are considered to con-
tribute developmentally to infant understanding and practise
of social interaction. Peekaboo provides the caregiver with the
scaffolding upon which infants can co-regulate their emotional
expressions with others, build social expectations and establish
primary intersubjectivity [13].

B. Peekaboo with the Humanoid Robot Kaspar2

We describe an experiment that demonstrates how a robot
can use its history of interactions with a human partner to
engage in the peekaboo game. The implementation audio used
both as an extra sensory modality as well as an additional
environmental reward feedback for the peekaboo game that
results directly from the human-robot interaction.

1) Method: The robot and human partner3 were positioned
facing each other at a distance of a few feet, with their eye-
level at approximately the same height. The robot control
software was started with the interaction history containing
no previous experiences. Interaction then commenced with
the robot executing various actions and the human offering
vocal encouragement when it was thought appropriate. The
interaction then continued for approximately two to three
minutes.

Three different conditions were tried. Firstly, any hiding
action was encouraged with a call of “peekaboo” when the
robot revealed its face again. The second condition encouraged
an alternative actionand the final condition was to offer no
vocal encouragement at all during the interaction.

The experimental hypothesis was that encouraging the hid-
ing action would result in a higher rate of peekaboo sequences
than would be expected from random action selection. Fur-
thermore, this should also be the case when other actions are
encouraged instead. Finally, this hypothesis was also tested by
the no-encouragement condition with the expectation that no
action would be selected in preference to any other.

2) Interaction History Architecture Components and Set-
tings: Metric Space of Experiences: The sensor rate during
these experiments resulted in an average timestep length of
approximately 300ms. Experiences were created everyG = 2
timesteps - permitting real-time creation of the metric space,
quantizing the sensor data intoQ = 5 bins. The horizon
h for experiences was either16 or 20 depending on the
run. Quality was assigned to experiences as the maximum
environmental reward received in the subsequenthfuture = 32
or hfuture = 40 timesteps (again, depending on the run).
These values were chosen as reasonable values, the horizon
approximately matching the duration of a single behavioural
sequence.

The thresholds for merging and deletion were set at
Tmerge = 0.6bits and Tpurge = 0.9bits respectively. With
these values, a combination of the merging and forgetting

3Note that for all these experiments the lead author took the role of the
human partner and so was fully aware of the capabilities of the robot and of
the software.

processes resulted in a manageable sized metric space for real-
time operation.
Action Selection: The closestK = 4 neighbours of the
current experience within a radius ofrmax = 2.0bits of
Ecurrent were considered in the action-selection process.

3) Motivational Dynamics:In this experiment, motivation
feedback (reward) is provided through two mechanisms: ob-
servation of a face, and audio feedback.
Face: Human-like faces were detected in the robot’s camera
image4 and this provided direct positive rewardRf , con-
strained to be in the range[0, 1]. Habituation causes this reward
to drop-off over time.
Sound: Sound was captured from a microphone, and used
both as an additional sensory signal as well as providing
further environmental reward. The sum of the amplitudes of
the sound signal samples over the period of a timestep,εsound,
provides a new sensory input to the robot and is normalized
to the range [0,1].
Resulting Reward Signal: The final reward signalR gener-
ated by the robot in response to it’s environmental interaction
is a combination of the sound and face reward signals.R =
max(1, α(Rf +Rs)) whereα, in the range [0,1] attenuates the
reward signal and is set at0.75 for this experiment meaning
that neither reward signal on its own can result in a maximum
R, but requires support from the other reward signal.

4) Experimental Materials and Methods:Robot: The
robot used was the upper-body humanoid Kaspar2 robot cre-
ated at the University of Hertfordshire, see Figure 1. The robot
has 17 individually controlled DC servo motors: three in the
neck controlling head orientation, two controlling the coupled
eyes, two controlling the mouth for facial expression, and five
controlling each arm. The interaction history architecture and
control software was written in C++ as multiple interacting
modules, with the communication layer and abstraction of
hardware control provided by the YARP framework [15].
Actions:

A total of 17 actions were available to the robot, and
these can be considered in 3 groups: movement actions, facial
expressions and resetting actions. These are listed in Table I.
The types of action that the robot can execute at any time
depends on which action was last executed. This is so that the
robot does not attempt to execute actions that could possibly
damage it. The configuration therefore defines the set of next
actions possible after any given action and the action selection
process is responsible for ensuring that these conditions are
met.

5) Defining a Peekaboo Sequence:A “peekaboo” sequence
is defined to be a sequence of actions beginning with the robot
hiding its face (action 6 - HID), followed by any number of
“no-action” actions (action 7 - NA) and ending with the robot
back in the resting position (action 0 - Rst). Furthermore, for
the purposes of evaluating the results of this experiment the
actions should be selected from previous experience rather
than executed randomly.

4Using the OpenCV library implementation [14] of Viola-Jones HAAR
cascades.



TABLE I

KASPAR2 PEEKABOO: ACTIONS

Group Number Action Description

Movement
Actions

3 HL Head Left
4 HR Head Right
6 HID Hide Head with Hands
8 RAU Right Arm Up
9 LAU Left Arm Up
12 RAW Wave Right Arm
13 LAW Wave Left Arm
14 TR “Think” Right - raise

right arm to chin and
look right

15 TL “Think” Left - raise left
arm to chin

Facial
Expressions

1 Smi Smile
2 Neu Neutral
16 Frn Frown

Resetting
Actions

0 Rst All motors to resting po-
sition

7 NA No Action
5 HF Head to forward posi-

tion
10 RAD Right Arm Down
11 LAD Left Arm Down

To measure the relative amounts of peekaboo in any given
period of behaviour,psel(A

HID), the percentage of times the
hiding action wasselectedas compared to other “movement”
actions, was used as a measure and is calculated as follows.
GivenN possible actions{A1, A2, . . . AN} and a period of be-
haviour consisting ofK actions executed (selected or random),
actionAn will be executedF (An) = Frand(A

n) + Fsel(A
n)

times, whereFrand indicates the frequency of random execu-
tions andFsel the frequency of the action being deliberately
selected. Then the percentage of times the Hiding actionAHID

was selected is given byPsel(A
HID) = 100Fsel(A

HID)/K
Note that for the purpose of evaluating “peekaboo”, only
actions in the “movement actions” group were considered (see
Table I).

6) Success Criteria:To consider a run successful the en-
couraged behaviour should be executed repeatedly for some
extended period of the run. Remembering that the system
starts by executing random actions and building-up experience
before potentially using its history to execute the appropriate
action repeatedly, then we might reasonably consider the run
to be successful if the behaviour made up at least a third
to half of overall behaviours executed. Furthermore, a full
peekaboo cycle would be comprised of more than one (usually
2 or 3) selected actions that together make up the selected
behaviour. So from an action perspective if the encouraged
action was selected more than around10 − 15% of the time,
then the run could be considered successful. However, the
percentage of selection alone was not the sole criteria for
judging success. Instead, each trace was examined to see when,
if, and how often repeated behaviour was executed. Ultimately
however, some runs were still considered borderline - that is
they may have failed to satisfy some aspect of the criteria.
The comments in Table II offer explanations for the decisions
in these and other cases.

C. Results

TABLE II

IHA ON KASPARII: EXPERIMENTAL RUNS SUMMARY

Run Typeh Comment HID
Chosen

Result

d0032 Pkb 16 HID executed early and
repeated

55.17% Success

d0033 Pkb 16 HID executed early and
repeated

41.18% Success

d0034 None 16 HID only twice randomly 0.00% Success

d0035 Alt
HL

16 HL action chosen of-
ten. HID also chosen.
HL=36.59%

14.63% Success

d0036 Pkb 16 HID chosen often. 42.11% Success

d0037 Pkb 16 3 HID actions selected,
but RAW selected more
often

13.64% Fail

d0038 Pkb 16 No random HID to en-
courage.

0.0% Fail

d0039 Pkb 16 Run too short 12.50% ?

d0041 Pkb 16 Mixed actions - some
HID

5.49% Fail

d0042 Pkb 16 Mixed actions 9.68% Fail

d0043 Pkb 16 HID only twice 1.09% Fail

d0044 Pkb 16 HID throughout 18.87% Success

d0045 None 16 Few random HID actions 0.00% Success

d0046 Alt
HL

16 HL chosen many times
HL=11.84%

2.63% Success

d0049 Pkb 20 Few HID actions 3.26% Fail

d0050 Pkb 20 HID chosen often 26.32% Success

d0051 Pkb 20 HID chosen often 19.32% Success

d0052 Pkb 20 HID not chosen enough
for success over run.
However, regular peeka-
boo was begining to oc-
cur at the end.

4.96% ?

d0053 Pkb 20 HID chosen often 17.46% Success

d0054 Pkb 20 HID chosen often 61.76% Success

d0055 Alt
TR

20 TR (Think-Right) encour-
aged. TR=26.00%

0.00% Success

d0056 None 20 Some HID chosen 2.53% Success

A total of 22 runs were completed. 16 of these for the
first condition (encouraging the Hiding action), 3 for the
second condition and 3 for the no-encouragement condition.
The results are summarized in Table II.In most of the exper-
imental runs it was fairly straightforward to estimate whether
the experiment successfully supported, or clearly failed, the
hypothesis that the interaction history would result in increases
in frequency of the encouraged action. However, in 2 of the
runs, this was not possible (“?” in Table II). In run d0039,
the hiding action was the only one to be selected (rather than
chosen randomly) however the run was too short for successful
evaluation. In run d0052, the figures for the whole run do not



indicate success, however, the results are borderline as the
peekaboo behaviour was clearly beginning to occur towards
the end of the run.

Where a result could be determined, 14 out of 20 runs
(70%) were successful. In the following sections representative
results from each condition are discussed.

1) Peekaboo Encouragement Condition:Figure 3 shows for
the first run (d0032), how the motivational variables (face,
sound and resultant reward) vary with time, along with the
actions being executed . The interaction partner encourages
the first “peekaboo” sequence (“hide-face” on the diagram).
Note that a “peekaboo” action is actually a combination of the
action to hide the face (action 6), any number of “no-action”
actions (action 7) and an action to return to the forward resting
position (action 0) (for clarity only the primary action is shown
on the trace). This results in a maximal reward shortly after
the hide-face action, and as the interaction partner continues
to reinforce the peekaboo behaviour with vocal reward, this
pattern can be seen repeated throughout the trace.

As the chance of choosing a random action rather than
selecting one using the history gradually declines the early
part of the run will be more exploratory (have more randomly
selected actions) whereas towards the end of the run, actions
will be more likely to be deliberately selected using past
experience. It can be seen that during the first half of the
run various different actions are tried, but during the second
half of the run, the “hide-face” action is chosen regularly.

The timing of the motivational feedback given by the
interaction partner to the robot is important in determining
what actions are executed. In Figure 4 from run d0050, the
encouragement for the hiding action (and subsequent actions to
return the robot to the resting position) is only receivedafter
the robot additionally turns its head to the side. The result
is that when the robot decides to repeat the hiding action, it
generates experiences which are likely to generate the actions
that were executed following the original hiding action,i.e. the
robot hides its face, returns to face the front and immediately
turns its head to the side.

This behaviour (of the architecture) is an important part
of how not just single actions are repeated, but instead how
sequences of actions and robot behaviour are replayed, and it
is this that encourages a fuller development of capabilities of
the robot. It is important to note also that a specific sequence
of actions are not learnt, instead it is the continuing generation
of experience through the structural coupling of the embodied
agent and its environment that drives this observed repeated
behaviour. This can be clearly seen from Figure 4 in that the
timing of the subsequent head-turn following a hiding action
is not always the same, and indeed does not always occur.

2) Alternative Action Encouragement Condition:To il-
lustrate that the operation of the interaction history is not
limited to the peekaboo behaviour, the interaction partner also
encouraged certain alternative actions rather than hiding. In
two cases the “head left” (HL) action was encouraged (once
also with a different call of “hello!” instead of “peekaboo!”)
and in one case the “think right” (TR) action was encouraged

instead. In each of these cases the predominant action after
some time was the encouraged one.

3) No Encouragement Condition:The final condition
where the interaction partner offered no or very little en-
couragement resulted in various kinds of behaviour, none of
which reinforced any particular action over any other, other
than “doing nothing”.

Run d0045 was completed without an interaction partner
present and so offered no reward feedback at all. The result
showed some random actions being chosen at first but as time
goes on, “movement actions” are not chosen and the robot
executed actions that keep it stationary.

In the other cases where no encouragement was offered
(runs d0034 and d0056) the robot did receive some reward
albeit not a maximum reward. In these cases the robot did
have actions from recent behaviour to choose from, however,
the behaviour did not become repeated over the long term
as continual merging and purging of experiences that do not
result in near maximal reward resulted in only transitory
behaviour. Thus the modification of the space through merging
and deletion plays an important role.

D. Emergent Classes of Experience

Analysis of the results shows that there was an extensive
reduction in the number of experiences in the metric space
through forgetting and merging, usually reducing the number
of experiences by between 40% and 90%. Between 5 and
20% of experiences were merged, the others were deleted
(“forgotten”).

Examining a typical example; run d0033, a successful
peekaboo run, merged 15 experiences out of a total of 181
experiences and deleted 63. One experience that was merged
with many later ones was experience number 1 (the sec-
ond experience). That experience was merged with 8 other
experiences and was associated with action 6 (HID - the
“hiding” action). Often when the HID action was chosen, it
was experience number 1 which was found to be similar to the
current experience. Thus it is possible to say that a class of
experiences was emerging during this run that “represented”
to the robot that it should next execute the peekaboo “hiding”
action.

IV. RELATED WORK

The concept of an agent learning from its past experience is
one also used by the Case-Based Reasoning (CBR) approach
[16]. Extension to the continuous domain [17] and combi-
nation with a Reinforcement Learning approach, however,
brings the approach much closer to our IHA. However, in our
approach, the use of an information theoretic metric measure
to compare past experience with present experience can poten-
tially uncover different and more interesting relationships in
the history of experience as well as offering an ordered list of
near experiences to choose from. Furthermore, the application
to the social domain is unique and challenging.

Our approach is also related to reinforcement learning
[18], particularly those examples that use intrinsic motivation



Fig. 3. Kaspar2 Results d0032. Example of Peekaboo Encouragement Condition.The trace shows, against time, the detection of the face and audio
encouragement as well as the resulting reward. Along the top are shown the actions executed.

Fig. 4. Kaspar2 Results d0050. Showing a repeated action sequence.A multiple action sequence is encouraged and repeated here.

e.g. [19] [20] and memory-based approachese.g. [21] [22]
[23]. In contrast to traditional reinforcement learning, the
Interaction History Architecture approach uses temporally
extended experience rather than the instantaneous values of the
sensorimotor and internal variables (state). This distinction is

important as, particularly where there is an interaction partner
or other agents, the environment cannot be modelled as a
simple Markov Decision Process.

[24] also studies the acquisition of a peekaboo-style com-
municative ability although in a virtual agent. The human



caregiver hides the face instead of the robot while also saying
“peek-a-boo” as reassurance and surprise. The model matches
simplified state (internal emotion state, face sensor and reward)
to predict when to expect a reward. Our work thus differs from
this in many important ways, the most significant being the
generality of our approach, using complex sensor stream and
episodes of experience, and the potential to develop and adapt
action capabilities over ontogeny.

V. FUTURE WORK

While short term behaviour acquisition is illustrated here,
future research work should look at how behaviour can be
altered over the long term in response to changing encour-
agement and reward by the interaction partner. Furthermore,
showing how different behavioural responses can be developed
for different experiences would be important next step.

Further experiments should also utilize interaction partners
that do not have prior knowledge regarding the operation of
the robot and software.

VI. CONCLUSION

The Interaction History Architecture was implemented for
the upper-body humanoid robot Kaspar2. The peekaboo inter-
action game was used to evaluate the architecture in terms of
how the robot could use its own personal interaction history
to develop the capability to engage in the game. Results
show that giving appropriate encouragement to the robot as
it executes certain series and groups of behaviours can result
in those behaviours being selected in preference to others
in equivalent conditions. This result supports the hypothesis
that encouraging the hiding action would result in a higher
rate of peekaboo sequences than would be expected from
random selection. Furthermore, encouraging alternative action
sequences resulted in those actions being repeated, inviting the
conclusion that this behaviour of the architecture is general
and not limited to the peekaboo game. Additional support for
the hypothesis was found in the conditions that offered no
encouragement. In these cases no single action or sequence
was selected in preference to any other, emphasizing the
importance of the interaction of the environment with the
robot in producing a history of interaction that can be used
to develop action capabilities.

It was found that classes of experiences emerged through
the process of merging of experiences as the interaction pro-
gressed. These classes of experience and their associated next-
action can be said to be emergent, grounded “representations”
that have “meaning” from the robot’s own perspective in the
actions they generate.
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Abstract

This paper analyses a long-term study with 6 children with autism over 10 sessions
in the context of play with a robotic pet. The study draws inspiration from non-
directive play therapy. The sessions relied on free-play with a mobile autonomous
robotic pet and the trials involved one child at a time. Besides, the experimenter
took part in the experiments and strongly encouraged the child’s proactivity and
initiative-taking with respect to the choice of play, the rhythm of play and verbal
communication. Beyond inspiration from non-directive play therapy, a regulation
process was introduced: the experimenter could occasionally regulate the current
situation of play or non-play in order to a) confer an appropriate pace to the game
if the child was “standing still”, b) guide the child towards other play styles un-
der appropriate circumstances. The profile of each child was analysed according to
three dimensions: Play, Reasoning and Affect. Results suggest a spectrum of profiles
according to these three (intertwined) dimensions. Moreover, with respect to play
and more specifically solitary vs. social play, children can be categorized into three
groups. The first group is constituted by children not playing or mostly engaged
in dyadic play with the robot. The second group is constituted by those initially
playing solitarily and communicating mostly non-verbally but progressively experi-
encing more complex situations of verbal play as well as few pre-social or basic social
situations of play. The third group is constituted by the children who managed to
play socially (i.e. play in a triad including both the robot and the experimenter).
Results show: a) children from the first group tended to progressively experience
longer periods of uninterrupted play with the robot and started engaging in basic
imitation during the last sessions; b) children from the third group and, at a more
basic stage, those from the second group, tended to experience higher levels of play
gradually over the sessions and constructed more and more reasoning related to
the robot; they sometimes demonstrated specific reasoning on real life situations
as well. Last but not least, children from the second and third group tended to ex-



press verbally or physically some interest in the robot, including on occasion interest
involving affect.

Key words: Human-Robot Interaction, Robot-Mediated Therapy, Non-Directive
Play Therapy, Autistic Spectrum Disorders.

1 Introduction

This study is part of the Aurora Project 1 , an ongoing long-term project which
investigates the potential use of robots to help children with autism overcome
some of their impairments in social interactions (Dautenhahn and Werry, 2004,
2000).

Children with autism have impairments in communication, social and imagi-
nation skills. Autism is a spectrum disorder and children with autism have very
different abilities and skills. From the perspective of this study, any robotic-
mediated therapy needs to be able to adapt to each child with respect to
his/her specific needs and abilities. The advantage of enabling the child to
interact with a robotic platform is to reduce the complexity of the interaction
and to create a relatively predictable environment for play to begin with, so
that it can be easier for the child with autism to feel at ease. It also aims at
enabling the child to understand better the interaction taking place.

The Aurora Project is constituted of two main streams of research. One stream
focuses on the robot as an autonomous toy and notably addresses the ques-
tion of on-line recognition and adaptation to human-robot interaction styles
(François et al., 2007) . The second one focuses on the potential role of the
robot as a mediator (Davis et al., 2005; Robins et al., 2005), i.e. as a salient
object that helps children interact with other children or adults. This sec-
ond stream has largely explored the use of imitation in child-robot interaction
(Robins et al., 2005b, 2004) . The study presented in this paper shows a differ-
ent perspective on robot-mediated therapy, which is not “task-oriented” but
rather draws inspiration from non-directive play therapy (Axline, 1946, 1947;
Ryan, 1999; Josefi and Ryan, 2004). In this study, the experimenter takes
part in the experiments and strongly encourages the child’s proactivity and
initiative-taking with respect to the choice of play, the rhythm of play and

∗ Corresponding author.
Email addresses: d.francois@herts.ac.uk (Dorothée François),

s.d.powell@herts.ac.uk (Stuart Powell), k.dautenhahn@herts.ac.uk (Kerstin
Dautenhahn).
1 http://www.aurora-project.com/
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verbal communication. While a task-oriented approach might expect the child
to complete a specific task, such as for instance performing imitation, our ap-
proach, here, inspired by non-directive play, enables the child to proactively
experience various situations of play, from simple exploration of the robot’s
features and capabilities to more complex situations of play, possibly involving
an understanding of the notion of causality as well as an ability to actually
play symbolically, or take on a specific role in play. Furthermore, at any mo-
ment, the child can appeal to the experimenter’s participation in play, thus
enabling the child to experience triadic play. Though, as will be explained in
Section 3, beyond inspiration from non-directive play therapy, the approach
presented in this paper introduces a regulation process. This process notably
enables the experimenter to regulate the interaction proactively in order to
guide the child towards other play styles when needed or modify slightly the
rhythm of play if she feels the child is “standing still”. The study presented
in this paper explores the potential of this pioneering approach with respect
to robot-mediated therapy through a long-term study with 6 children with
autism. This study should be regarded as a preliminary exploration of the
feasibility of such a technique in the context of robot-mediated therapy for
children with autism. Several research questions are addressed:
a) Does such an approach of robot-mediated therapy, inspired by non-directive
play therapy, help the child experience higher levels of play and enable him/her
to develop new play skills?
b) Does this approach encourage the child to play socially?
c) Might this approach be appropriate for children who play solitarily and
speak mostly by onomatopoeia 2 ? Might it help him/her experience social
play? If not, what might be the additional requirements necessary for such
experience?

The remainder of this paper is structured as follows. The rest of Section 1
details both the motivation of this research and the core ideas of non-directive
play therapy. Related work is presented in Section 2. Section 3 explains the
method in terms of procedures and measures. Further to this, results are pro-
vided in Section 4 and discussed in Section 5. Implications for future work are
detailed in Section 6. The Conclusion (Section 7), closes the paper.

1.1 Motivation

Autism. Autistic spectrum disorders can appear in various degrees and re-
fer to different skills and abilities (Powell, 2000). Detailed diagnostic criteria
for autistic spectrum disorders are provided in the Diagnostic and Statistical

2 Onomatopoeia is a word that imitates the sound(s) associated with objects or
actions it refers to, e.g. ‘buzz’
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Manual of Mental Disorders (DSM-IV, 1994) 3 . In brief, the main impairments
highlighted by the National Autistic Society 4 are:
a) Impaired social interaction: difficulties to make sense of a relationship with
others, difficulties to guess or even understand what the other’s intentions,
feelings and mental states are;
b) Impaired social communication: difficulties with verbal and non-verbal com-
munication (e.g. facial gesture);
c) Impaired imagination notably resulting in difficulties to experience imagi-
native play.
As a consequence of the above impairments, children often seem to operate
in a world of repetitive patterns and some of them tend to restrict play to
solitary play.

Play. Play involves many aspects of human development. This is reflected
by the coexistence of various definitions and multiple classifications of play.
Boucher (Boucher, 1999; Boucher and Wolfberg, 2003) suggests a particularly
relevant classification for this study which merges the notion of exploration
with the one of social interaction.

Play is a vehicle for learning (Chaillé and Silvern, 1996). Various types of
play enable children to construct some understanding, in the sense of active
construction of meaning. Play can thus develop skills in many fields such as a)
logical memory and abstract thought; b) communication skills and c) social
skills. Moreover, play is a medium for self expression (Boucher, 1999).

Children with autism and Play. It is arguable that children with autism
have a relative potential for play but often encounter obstacles, the causes of
which are still not clear. These impairments -among them, impairments in
socio-emotional inter-subjectivity, joint attention and theory of mind (Baron-
Cohen, 1997)- impair interactions in general and, more specifically, imply a
lack of spontaneous and social reciprocity during play. These three impair-
ments, in addition to the potential deficits in higher order representation, may
explain the difficulties encountered in symbolic and pretend play (Chaillé and
Silvern, 1996). It should perhaps be further noted that children with autism
often tend to perceive objects in their parts and not as a whole, which is part
of the weak central coherence theory (Fritz, 1989). This frequent inability may
also partly influence the way the child plays.

3 DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition)
was published in 1994 and is the last major revision of the DSM
4 NAS: http://www.nas.org.uk/
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1.2 Non-directive Play Therapy

This section summarizes the core ideas of non-directive play therapy as mainly
developed in (Axline, 1947) and explained and illustrated by case studies in
(Ryan and Wilson, 1996).

Non-directive play therapy has its roots in Rogerian client-centred therapy
with adults (Rogers, 1976), adapted to child therapy with a focus on play
as the principal medium of communication (in contrast to verbal exchange).
Rogerian theory relies on the idea that all human beings have a drive for self-
realisation; it means that any human being tends to develop towards maturity,
independance and self-direction. The individual needs to completely accept
himself/herself as well as be accepted by others.

In non-directive play therapy, the child, rather than the therapist, chooses
the type of play and the activity in general in the playroom. This contrasts
with other play interventions. Let us cite Axline who primarily developed
the method of non-directive play therapy (Axline, 1947): “Non-directive play
therapy is not meant to be a means of substituting one type of behaviour, that
is considered more desirable by adult standards, for another ‘less desirable’.
It is not an attempt to impose upon the child the voice of authority that
says ‘You have a problem. I want you to correct it’.” Few limitations in the
behaviour of the child are set, though, which refers to safety and security
reasons.

A relationship is progressively built up between the child and the therapist.
This relationship enables the child to share his/her inner world with the ther-
apist and, “by sharing, (the child) extends the horizons of both their world”
(Axline, 1947). Ryan et al. state that this relationship, with the help of the
therapist, progressively facilitates the child to choose freely the feelings he/she
wishes to focus on as well as the way how he/she wants to explore them (Ryan
and Wilson, 1996). Three mediums may be used for communicating these feel-
ings: action, language and play.

The therapist participates in the therapy. He/she observes, listens and answers
to the child. The therapist is reflecting the child’s feelings or emotionalized
behaviours in order to help him/her build a better understanding of him-
self/herself. The therapist’s role has been characterized by eight basic princi-
ples set out by Axline (Axline, 1947), see Fig. 1.

It should be noted that in the study presented in this paper, the experimenter
was not trying to engage in therapy; the study only drew inspiration from
non-directive play therapy, thus the context may be a therapeutic one, but the
experimenter, a human-robot interaction researcher, was not behaving exactly
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``The therapist must develop a warm, friendly relationship with the child, in which good   
rapport is established as soon as possible.'' 

2. ``The therapist accepts the child exactly as he is.'' 
3. ``The therapist establishes a feeling of permissiveness in the relationship so that the child feels 

free to express his feelings completely.'' 
4. ``The therapist is alert to recognize the feelings the child is expressing and reflects those feelings 

back to him in such a manner that he gains insight into his behavior.'' 
5. ``The therapist maintains a deep respect for the child's ability to solve his own problems if given 

an opportunity to do so. The responsibility to make choices and to institute change is the 
child's.'' 

6. ``The therapist does not attempt to direct the child's actions or conversation in any manner. The 
child leads the way; the therapist follows.'' 

7. ``The therapist does not attempt to hurry the therapy along. It is a gradual process and is 
recognized as such by the therapist.'' 

8. ``The therapist establishes only those limitations that are necessary to anchor the therapy to the 
world of reality and to make the child aware of his responsibility in the relationship.'' 
 

 

Fig. 1. Eight basic principles set out by Axline for practice of non-directive play
therapy: quotations from (Axline, 1947).

like a therapist. The experimenter was not applying strictly the eight principles
set out by Axline (Axline, 1947), see Fig. 1. She very much drew inpiration
from principles 1, 2, 3, 5 and 8, but she was not dealing with the fourth one;
and, concerning principles 6 and 7, she was considering these principles with
more flexibility. It is worthy of note here that this study is a first step towards
a proof-of-concept and required robotics expertise; in future, play therapists
may use this approach.

2 Related Work

2.1 Non-directive play therapy for children with autism.

Non-directive play therapy has been largely used for children and adolescents
with a wide variety of emotional and behavioural problems (Ryan, 1999, 2004;
Ryan and Needham, 2001). Only recently have researchers started to investi-
gate the feasibility of such techniques with children with autism. A pioneering
case study is presented in 2004 in (Josefi and Ryan, 2004). In that paper, Josefi
et al. present a long-term study with a 6-year-old-boy with severe autism by us-
ing the non-directive play therapy technique. Before starting the experiments,
the boy was mostly communicating non-verbally, and hardly controlled his
sudden excess of energy. He was described as never playing with his brother
and sisters and whenever he played, he only engaged in playing mechanically
with toys. The child attended 16 non-directive play therapy sessions of an
hour over a 5-month period in the child’s special school. The room was empty
except from specific materials selected for their “expressive, imaginative, re-
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laxing and interactive properties”. Results were analysed both qualitatively
and quantitatively. The findings showed an increase in the child’s autonomy
and initiative-taking. Besides, the child developed attachment to the therapist.
According to Josefi et al. it was shown that non-directive play therapy itself
may provide children with autism with: “(i) emotional security and relaxation,
(ii) an enhanced and attentive adult environment in which playing together is
emphasized, and (iii) the acceptance by therapists of children’s ability to in-
stigate therapeutic change for themselves under favourable conditions”. These
conditions constitute the basis for therapeutic progress as written in play liter-
ature (Axline, 1947). Besides, the child’s repertoire of play appeared to expand
and the child managed to concentrate progressively longer during the sessions.
During the last sessions the child proactively engaged in play requiring more
joint attention and direct social interactions with the therapist. He started to
become more and more interested in toys that have symbolic characteristics.
He also communicated more and more verbally with the therapist. It is per-
haps worthy of note here that the symbolizing capacities have similarities with,
and may overlap capacities, to learn language during normal development; in
return, it is very likely that learning a language requires some symbolizing ca-
pacities and processes. Though, repetitive and obsessive behaviours were not
considerably reduced. As a conclusion, Josefi et al. stated that non-directive
play therapy with children with autism may be complementary to behaviour
therapy, non-directive play therapy likely to be more efficient in the child’s
gaining autonomy, taking initiative, joining attention and developing social
and symbolic play, while behaviour therapy would be more efficient in reduc-
ing ritualistic and obsessive behaviours.

2.2 Robot-mediated therapy

Within the Aurora Project, Robins et al. carried out long-term studies analyz-
ing on the one hand the role of the robot as a mediator (Robins et al., 2005)
and on the other hand the role of the experimenter (Robins and Dautenhahn,
2006) which, by being part of the trials, can notably enable and facilitate tri-
adic interaction. In Robins et al.’s experiments, children interacted with the
small humanoid robot, Robota, which was either simulating a dance or be-
ing controlled remotely by the experimenter. Thus, there was no autonomous
reaction from the robot to the child’s interactions in their study. Moreover,
child-robot interaction situations taking place during these trials were mainly
concerned with encouraging imitation of gestures (position or movement of
arms and legs).
In a diffferent study, Werry et al. encouraged free-play with a mobile au-
tonomous robotic platform, Labo-1 (Werry et al., 2001). Its shape is rectangu-
lar (30cm wide by 40cm long) and it weights 6.5kg. The range of behaviours of
Labo-1 focused on mobility of the robot in addition to a rudimentary speech
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synthesiser unit; a typical behaviour of that robot was following the child
around the room or play approach and avoidance games whereby turn-taking
emerged from the interactions of the children with the mobile robot (Daut-
enhahn, 2007). The Labo-1 robot did not have any pure tactile sensors, but
infrared and heat sensors. In Werry et al.’s experiments, none of the exper-
imenters participated in the experiments; they only responded to the child
when the child initiated communication or interaction with them (Dautenhahn
and Werry, 2002). The child played therefore in a relatively unconstrained en-
vironment on his/her own with the robot (Werry and Dautenhahn, 1999), or
two children interacted at the same time with the robot (Werry et al., 2001).

Outside the Aurora Project, Kozima et al. used a small dancing creature-like
robot, Keepon, in a long-term study with children with autism, most of the
time in partly unconstrained conditions (Kozima et al., 2005). During these
experiments, the small creature-like robot was manually controlled by the
experimenter who was not part of the trials. Rather, carers were part of the
trials with the child. The experiments highlight the role of Keepon as a pivot
in triadic interaction by notably studying the emergence of joint attention.
This result reinforces the idea that child-robot interaction may be valuable
for children with autism with respect to being a medium towards possible
social interactions.

Long-term studies with the seal robot Paro have shown that specific everyday
life situations exist in which human-robot interaction can have a positive ef-
fect on well being of human beings; they may even be a significant factor of
performance in therapy. A first study conducted by Shibata et al. focused on
elderly people (Shibata et al., 2005): Paro was introduced on a daily basis into
the everyday life of some elderly people in two different institutions, in one of
them for a daily duration of 20 minutes over 6 weeks and in the second one
for 1 hour over more than a year. Elderly people were free to interact with
the robot. Results showed that on average interacting with Paro improved the
mood state of the participants and made them more active and more commu-
nicative with each other as well as with the caregivers. A second long-term
study with Paro designed engaging rehabilitation activities that would com-
bine physical and cognitive rehabilitation (Marti et al., 2005). The participant,
a child with severe cognitive and physical delays, interacted with Paro on a
weekly basis over three months as follows: Paro was introduced in the Bo-
bath protocol 5 . Results showed that the introduction of Paro in the Bobath
protocol may have strenghtened its efficacity with respect to this specific child.

5 The Boobath protocol (http://www.bobath.org.uk/) is a method used for the
rehabilitation of physical functional skills (Knox and Evans, 2002).
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2.3 Long-term child-robot interaction studies outside the therapeutic context

In the broader field of child-robot interaction, Tanaka et al. lead a long-term
study on human-robot interaction with a focus on the context of dancing
(Tanaka et al., 2006, 2005). The main purpose of this ongoing study, named
“Ruby Project”, is to find principles for realizing long-term interaction be-
tween a human and a robot. In the first year of the project, typically devel-
oping children, from age 18 to 24 months, encountered the Sony humanoid
robot QRIO at school, in a context of dancing. Off-line analysis of the inter-
actions between the children and QRIO showed that the children tended to
progressively adapt their behaviour to the robot’s characteristics. Besides, a
further analysis on 45 successive sequences of interaction of those children with
QRIO spanning 5 months (Tanaka et al., 2007) showed those children tended
to progressively consider QRIO as their peer rather than as a toy: The way
they touched the robot was reorganised so that, in the end, the distribution
of their touch towards the robot was converging to the one observed when
they were touching their peers. Note, this study relied mostly on design by
immersion, which means here that scientists, engineers and robots are present
in the everyday life environment of those children while shaping both hard-
ware and software and addressing scientific questions early in the development
process (Movellan et al., 2007). For instance, this design by immersion enabled
Tanaka et al. highlighting some basic necessary units for long-term human-
robot interaction, respectively “sympathy” between the human and the robot
and “variation” within the interaction styles (Tanaka et al., 2006).

3 Method

3.1 Participants

All the children taking part in the experiments have a diagnosis of autism and
are from the same school based in Hertfordshire, UK. This school is dedicated
to children between 4 and 11 years old with moderate learning difficulties.
Within the school an Autism Base exists which provides extra care and a spe-
cific education program for children with autism to start with in the school.
When the child gets older or when he/she has made sufficient progress (es-
pecially if he/she improved social skills) then the child can be integrated in
a more general class within the school, which gathers children with specific
needs and abilities but not only children with autism.

Two boys from the Autism Base, Child D (7 years old) and Child J (8 years
old) were invited to take part in the experiments. Both of them find it hard
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to express themselves verbally and their behaviour often includes repetitive
gestures or onomatopeia. While Child D is generally afraid of dogs and not
at ease with doors, Child J is described by the teachers and carers as ‘single-
minded’ thus he is very likely to have obsessions and repetitive behaviours.
He has a fascination for computers. Child E took part in the experiments too.
She is a 7 years old girl. During the experiments, she was part of the Autism
Base but in the process of being integrated to another class with children with
moderate learning difficulties but not only children with autism. She therefore
started to follow part-time the education program of this class and the rest of
the time stayed in the Autism Base. She masters verbal communication pretty
well and teachers describe her behaviour as proactively social, as far as play
at playtime is concerned. Therefore teachers suggested that she may currently
act as a catalyst for the other children from the Autism Base. Besides they
agreed she may rapidly need to be fully integrated in the new class so that
she can evolve in a different context which would play the role of a catalyst
in social skills with respect to her this time: this context would enable her to
activate more intensively social skills she recently developed in contact with
the children of the new class.

Three older children also took part in the experiments. All of them are inte-
grated in classes for general moderate learning difficulties. Child C, 10 years
old, is described by his teacher as a solitary child. In the class he even has his
own space, bigger than the one of other children (more than twice as big), and
his desk is on the extreme left-hand corner of the classroom in order to make
the distance between him and the other children sufficiently large. Child C un-
derstands pretty well when one addresses him verbally but mostly speaks by
onomatopeia. At school, he often uses the computer to do exercises, especially
exercises on words and writing. Two other children, Child H, 10 years old and
Child N, 9 years old, both from the same class, also took part in the study.
They communicate verbally and are not described as solitary children. Child
N is originally from Canada and therefore masters few basic french vocabulary
which is a relevant point since the experimenter is originally from France.

Note, other details, such as mental age of the children, was not available.

The study was carried out with approval of the University of Hertfordshire
Ethics Committee. The parents of all the children who took part in the study
gave written consent, including permission to videotape the children and uti-
lize photos in publications.
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Fig. 2. Aibo ERS-7.

3.2 Artifact

The main artifact used in this study is a white robotic mobile autonomous dog,
the Sony Aibo ERS-7 (Fig. 2). Aibo ERS-7 weights approximately 1.65kg and
measures approximately 180(w) x 278(h) x 319(d) mm. It is equipped with
a great variety of external sensors (e.g. infrared sensors, stereo microphones,
tactile sensors). In our study, tactile sensors play a major role, notably, the
head sensor, the chin sensor and the three back sensors. Aibo’s control pro-
gramming is achieved using URBI (Universal Real-Time Behaviour Interface
(Baillie, 2005)).

3.3 Procedures and Measures

3.3.1 Procedures

Experimental Setup. The experiments took place once a week, on Wednes-
day mornings, in the school for children with autism. Each child took part in
a maximum of ten sessions. Not everybody could take part in 10 sessions be-
cause some of them may have been away for a day or on a trip with their
class. Note, an exception was made for one child who showed some appre-
hension towards the robot: for this specific child, experiments were stopped
after 5 sessions and only restarted on the last day of the experiments when he
proactively came to the trial.

The rooms used for the experiments changed several times due to circum-
stances at the school. In each case, the child may encounter possible distractive
objects, like toys or mirrors. Thus these experiments took place in a context
of possible distraction. The different rooms used for these experiments are de-
scribed in Fig. 3 and a list of the rooms used for each session is provided in
Fig. 4.
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Room 
 

 

Description 
 

Dimensions 
 

Furniture in the room 
 

Objects in the room 
 

R 1 
 

Small room 
 

Approx.  
10feet * 8feet  

 

-small longitudinal window on the 
very top (children can’t see through 
it),  
-cupboard,  
-low rectangular table, 
-2 children’s chairs, 
-decoration on the wall (a clown’s 
head drawn on a paper board). 
 

 

Regular objects: 
- game with individual letters 
to form words, reflective blue 
metallic support, 
- coloured cubes (25mm*25mm) 
- rectangular paperboard 3D 
decoration, 1m*30cm*20cm ,  
vertically in a corner. 
On occasion: man’s like face 
drawn on a paperboard that 
children could hold in front of 
their face. 

 

R 2 
 

Small room in 
the Autism Base 

 

Approx.  
10feet * 12feet  

 

-big window on a wall,  
-second internal window (semi-
transparent, semi-reflective) with 
view on another classroom; 
 -vertical mirror, children can  see 
their whole body by reflection 
-shelves on the very top, children 
can’t access  
-table & small chairs (session8 only) 

 

- games in open boxes on the 
shelves (e.g. a doll); children 
can see them but can’t access 
them. 

 

R 3 
 

Large meeting 
Room: library, 
kitchen and living 
room corners. 
Experiments 
took place in the 
living room 
corner. 

 

-room: Approx. 
35feet * 40feet; 
 -living room 
corner, approx. 
10feet * 12feet 

 

-Large windows on two walls  
-2 sofas made of joint comfortable 
chairs  
-4 comfortable additional chairs 
-rectangular dinner table, 6 chairs  
-2 low  coffee tables  
-shelves (at the entrance) 
-kitchen corner 

 

-magazines on the coffee table 
-on the shelves, objects such as 
cloth samples in open boxes 
-small calculator 
-small alarm clock 

 

R 4 
 

Classroom; 
experiments took 
place in the 
library corner  

 

-room: Approx. 
30feet * 30feet;  
-library corner: 
approx.  
10feet *  7feet 
 

 

Library corner: 
-2 shelves separating the library 
corner from the rest of the classroom 
-small children’s bench 

 

Library corner: 
-books 

 

Fig. 3. Desccription of the school’s rooms used for the experiments.

Session S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 
Room R1 R1 R1 R1 R1 R3 - Child C : R3 

- Other children : R4 
- Child C: R3 
- Other Children: R2 

R2 R2 

 

Fig. 4. List of the school’s room(s) used for each session.

Each trial involved one child with autism, the experimenter 6 and possibly
another researcher from the Aurora Project. The latter often helped the exper-
imenter film the trials and occasionally took part in a verbal communication
process by answering a child’s question directly addressed to her. Note that
the children were quite familiar with her since she was at the same time do-
ing a different long-term study with them that involved the use of interactive
software (Davis et al., 2007).

The duration of the sessions was variable. The child was free to play as long
as he/she wanted with the following restrictions:
Restriction 1: the upper limit of time is 40 minutes (so that the child does not
miss too much of his/her courses at school); Restriction 2: if the child has an
obligation due to his/her planning, the session will be shortened.

6 in this study, the experimenter was the first author of the paper
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The Aibo robot was programmed in order to show simple behaviours, tailored
progressively by immersion according to each child’s needs and abilities. Note
that “tailored by immersion” means here that the repertoire of appropriate
robot’s behaviours with respect to each child specific needs, abilities, dis-
likes and preferences was progressively refined as the experiments progressed.
The mapping between the sensors and the reactions of the robot (also called
behaviour-mode) could therefore vary from one session to the other and also
during a session in order to meet as close as possible the needs, abilities and
demands of the child at a given moment. The robot reacted autonomously to
the activation of its sensors, with respect to the specific behaviour-mode it had
been endowed with. The switch between various behaviour-modes was done
manually by the experimenter through a wireless connection with a laptop.
The laptop was located in the same room as the children, and thus constituted
an additional source of distraction for the children.

Methodology of the approach. During the session, the child was invited
to play with the Sony robotic pet Aibo. The experimenter took part in the
experiment but the child was the major leader for play: the child was free to
choose the game to focus on, the pace of playing and he/she could engage in
free-play (unconstrained play) with the robot and/or the experimenter; he/she
was also free to engage in communication with the experimenter whenever
he/she wanted. If the child appealed to the experimenter’s participation, then
the experimenter did take part in the game. If the child initiated verbal or non-
verbal (e.g. smile, eye gazing) communication with the experimenter then the
experimenter answered appropriately. With respect to verbal communication,
the experimenter tried to answer every question of the child and rewarded
him/her verbally whenever appropriate. Note that this approach is mainly
child-centred, relies strongly on the child capabilities of designing his/her own
trajectory of progression and on total respect and consideration towards the
child from the experimenter. In this sense, this approach draws inspiration
from non-directive play therapy.

Beyond inspiration from non-directive play therapy, this approach adds a reg-
ulation process under specific circumstances which are detailed below:
a) to prevent from or get rid of a repetitive behaviour : If the child was starting
or about to start a repetitive behaviour, the experimenter intervened and tried
to help the child play a different game;
b) to help the child engage in play : if the child did not engage in interaction
with the robot, then the experimenter encouraged him playing with the robot,
verbally and/or non-verbally (e.g. by stroking the robot and encouraging ver-
bally imitation);
c) to give a better pace to the game if already experienced by the child :
If the game was “standing still” but the child already experienced this game
and had shown he/she was capable to play this specific game, then the exper-
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imenter could intervene punctually to confer a better pace to the game.
d) to bootstrap an upper level of play : if the child was about to reach an upper
level of play but still needed some bootstrapping (some light guidance), the
experimenter could provide it
e) to proactively ask questions related to affect or reasoning : the experimenter
could proactively ask the child simple questions related to affect or reasoning
such as: “Do you think Aibo is happy today? or “Do you like playing with
Aibo?”.
Note that e) enables: i) to test the ability of the child to answer and/or ii)
to show the child a specific point for reasoning. Let us take several examples
within various levels of reasoning:
1) technical issue: show the child how to change the battery of the robot so
that he/she can do it next time in a context of cooperative task;
2) ask the child if he/she thinks Aibo is happy;
3) help the child reason on causal effect: stimulation of a sensor implies a
specific reaction of the robotic dog;
4) show the child that a reaction can be interpreted: e.g. if I press this specific
button, then Aibo wags his tail; and wagging the tail can mean that Aibo is
happy; thus if you press this button, you can show that Aibo is happy.

3.3.2 Measures

Each session was filmed unless the child explicitly asked for not being filmed
which rarely happened. First, the experimenter viewed the video recordings
and wrote down notes on the events constituting each session. These notes
described the events in detail and contained as few interpretation as possi-
ble. As a second step, the experimenter analysed the data in terms of more
abstract criteria that would enable her to identify, for each child, both the
profile according to the three dimensions (Play, Reasoning and Affect) and
the progresses made over the 10 sessions. This methodology allows to first
gather as much information as possible before deciding on the specific crite-
ria; it has the advantage of not restricting the analysis to predefined criteria
which might reveal a posteriori not being the optimal ones to base the analysis
upon. This is especially relevant in the case of an exploratory study. Note, this
procedure follows the procedure described by Schatzman and Strauss, stating
that: “the researcher requires recording tactics that will provide him with an
ongoing developmental dialogue.” (Schatzman and Strauss, 1973). Schatzman
and Strauss underline the importance of recording observations from the very
beginning of research. They also suggest taking notes separately, categorizing
notes into three different packages: a)“observational notes” based on events,
without interpretation; b) “theoretical notes” representing an attempt to con-
fer or denote the meaning from an observational note; c) “methodological
notes” dedicated to methodological comments.
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Results of the experiments were analyzed according to three (intertwined)
dimensions, respectively Play, Reasoning and Affect.

Play. This study aims at testing the feasibility of this approach to encourage
the child to learn new play skills and enable him/her to experience more and
more complex play situations with respect to the following main criteria:
a) social aspect of play,
b) proportion of symbolic and/or pretend play,
c) understanding/use of causality,
d) ability to handle the pace of a specific play and possibly the chronology or
the transitions between two logical segments of play.
That is why, concerning the dimension of Play, what particularly matters is a)
to extract information qualitatively about play situations that the child has
experienced in each session, and b) see if the child really experienced a large
repertoire of play and more complex levels of play gradually over the sessions.

For this purpose, a Play Grid was built based on the children’s plays objec-
tively observed during the experiments. This grid is exhaustive with respect
to the variety of play situations which took place at least once during the ex-
periments for at least one of the children. Besides, the different play situations
were classified into 6 sets, each set denoting a specific level of complexity of
play (Level 1 being the lowest and then gradually incrementing the level of
complexity until Level 6). The level of complexity is defined according to four
criteria:
a) social play,
b) proportion of pretend and/or symbolic play
c) exploration of the use of causality/reaction,
d) chronology and/or number of different phases in the play, i.e. a simple re-
action to a sensor is constituted of two phases while a search and rescue game
involves many phases to handle chronologically: i) initial situation, ii) search
phase, iii) rescue phase, iv) final situation.
The level of complexity is then deduced from an average evaluation over the
four components which explains that the same level may contain play with
a predominant component of “d)” and other with a predominant component
of “b)”. Consequently, within a same level of complexity, the different play
situations are not ordered since they may be very different in nature. Ideally,
the child would experience higher levels of play over the time and, within a
same level of complexity, different play situations in nature.

The systematic analysis with the grid for each child and each session shows
the trajectory of each child (i.e. the profile of the child). Any cell in the grid
is filled in if and only if it corresponds to a play situation experienced by the
child at least once during that specific session; and the content depends on the
play situation being acted proactively or reactively (i.e. the child was slightly
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guided towards this play situation by the experimenter).

Though, this grid is much enlightening for children who manage to play so-
cially and manage to diversify their play. For those who do not play much with
the robot, and when playing, engage only in exploration and mostly solitary
exploration, a more adapted tool to evaluate their progresses was used. That
evaluation was quantitative and relied on measuring for the whole duration of
each session:
a) the total time spent in interaction with the robot,
b) the duration for each single uninterrupted phase (period) of pure interac-
tion (note that the total duration is the sum of the duration of each single
uninterrupted phase of play),
c) the amount of gestures imitated by the child and the number of gestures
explicitly asked by the experimenter to be imitated.

Reasoning. Through play, children can notably construct some under-
standing of social situations and gain experience of some situations they en-
countered while playing. If a child can reason on abstract concepts, infer men-
tal states and make a sense of social rapports, it will be easier for him/her
to play symbolically. Reciprocally, while the child experiences symbolic play,
he/she manipulates abstract concepts such as inferring an emotion or handling
social rapports. Both play styles and reasoning are therefore intertwined and
both views should therefore be used to analyse the results of the experiments
carried out for this study. Note that with respect to “Reasoning”, what is
particularly relevant are both questions and answers emerging from play situ-
ations. The context of play enables the use of imagination, whereby Aibo may
be assigned a specific role by the child, and it allows the child to attribute
specific capacities to the robot such has having mental states (e.g. it enables
to imagine that Aibo is taking on a specific role and make further assumptions
on his mental state or his social status). Consequently the context of play en-
ables the robotic pet to be attributed with mental states as well as a social
role, and possibly moral standing. In this way, it is possible to explore quite
largely the quadrology about the robot as presented by Kahn et al. (Kahn et
al., 2003).

This quadrology is part of the components of the reasoning coding system
developed by Kahn et al. (Kahn et al., 2003). It consists of the following four
entities:
a) “Essence”:
Does the child consider Aibo as an artefact or a biological entity?
b) “Mental states”:
Does the child attribute mental states to Aibo? Does the child consider that
the robot develops in terms of age for instance? Does the child consider Aibo
has a personality? Does he consider Aibo could live autonomously?
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c) “Social rapport”:
How does the child position Aibo relatively to himself/herself;
d) “Moral standing”:
Can Aibo be physically or morally hurt? Can he be held responsible for some-
thing? Can Aibo be punished when necessary? could Aibo be praised?

Note that Kahn et al.’s coding manual has been developed in a different con-
text than the one of this study: they targetted typically developing preschool
children who only encountered Aibo once and, after few minutes of play with
the robot, immediately answered specific questions about “reasoning” (Kahn
et al., 2003, 2005) — while answering questions, children could however carry
on interacting with the robot. Here, the context used in our study is really
different since the succession of sessions enabled the child to progressively
build some reasoning and understanding, along with the progressive building
of a shared space of expressions and routine activities between the child and
the experimenter. Therefore, the reasoning was enriched. Besides, “reasoning”
here is part of play in itself. In the study presented here, the context of play
is actually used to enable the child to explore issues such as mental states or
social rapports, and the robot in itself is a support for embodying such is-
sues through the imaginary context that comes with play. Moreover, since the
experimenter took part in the experiments, not only social rapport between
the child and the robot should be considered, but also the child’s view on the
notion of social rapport between the robot and the experimenter and between
himself/herself and the experimenter. Consequently, here, the dimension of
“Reasoning” is analysed as follows:
a) the main features of the quadrology are extracted from Kahn et al.’s coding
manual (Kahn et al., 2003)
b) the issue of whether and how the child addresses those features is investi-
gated for each child, in a perspective of questioning through play rather than
giving firm answers.
Note, that since the experimenter is not a therapist, and since the behaviour of
children with autism might sometimes be interpreted differently from typically
developing children, in the analysis we only consider events which are objec-
tively and reliably identifiable. Verbal events are particularly reliable events;
they can be statements or questions arising from the child (major events) or
answer to the experimenter’s question (minor events). Below are some exam-
ples: a) Essence: “He’s a robot, he is a robot dog”, “He has short teeth, he
doesn’t bite. Robot dogs don’t bite, do some do?”; b) Mental states: “Aibo is
happy”, “How old is Aibo”, “Aibo, answer me, do you like toys?” ; c) Social
Rapport: “It is your robot” d) Moral standing: the child accidently kicks the
robot and apologized verbally to the robot directly. Besides, in many cases, as
already explained, reasoning and play are intertwined; for instance, when the
child and the robot’s relative social position in an enacted situation of pretend
play is well-defined by the child (e.g. a competition, with two participants, the
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1) 

 
Proactive (major) event related to affect: 
 

i) Child’s statement or question referring directly to himself/herself liking the robot or the robot 
liking him/her. No hug or kiss from the child to the robot.  
Examples: ``I like Aibo'', ``Aibo likes me''. 

ii) Child’s verbal compliment to/concerning the robot. No hug or kiss from the child to the robot. 
Examples: ``good doggy'', ``nice dog'', “he is a nice dog”. 

iii) Child’s hug to the robot, clearly identifiable, accompanied by a kind word from the child 
to/concerning the robot or verbal statement qualifying the hug. 
Example: the child hugs the dog and asks the experimenter to hug the dog: ``Put your hands 
and hug, hug, hug!'' 

iv) Child’s kiss to the robot, clearly identifiable, accompanied by a kind word from the child 
to/concerning the robot. 
Example: the child gives a kiss to Aibo after saying ``Goodbye Aibo, have a good sleep'' 
 

 

2) 
 

Reactive (minor) event related to affect: 
 

i) Child’s answer to a question about himself/herself liking the robot or the robot liking the 
child. 
Example: the experimenter asks the child: ``Is it a nice robot?'' and the child answers ``Yes''.    

ii) Child’s answer to a question about himself/herself being happy to play with the robot. 
Example: the experimenter asks the child: ``You are happy playing with the robot?'' and the 
child answers ``Yes''. 
 

Note, reactive events related to affect are considered very cautiously in this study; they are not 
considered as sufficient to make firm deductions about the child addressing the notion of ``Affect''. 
 

 

Fig. 5. Criteria for coding events related to Affect. An event is related to ‘Affect’ if it

corresponds to one of the items provided in the table; in some of the following figures, events related to

affect are qualified by a corresponding code: the code of an event related to affect is given by its corresponding

item’s index, e.g. ‘I like Aibo’ is [1i].

child and Aibo), the notion of social rapports is certainly addressed. Another
example is a play situation of asking the robot about its mental states and
answering with the activation of a sensor.

As a further step in reasoning, the child may tackle a more general issue
related to his/her mental states for instance, or to social rapport, concerning
himself/herself or even the experimenter. This is a relevant point for this study:
it would show the potential reuse in another context of skills the child may
develop or practise through reasoning about the robot during play.

Affect. The “affect” dimension represents any expression indicating whether
the child likes the robot or not, or if the child makes an assumption on the
robot liking him/her. Here, only obvious signs of like/dislike are considered. It
means that the range of possible events considered as related to affect in this
study is very limited (see Fig. 5 which provides the table of criteria for the
coding of events related to affect). This is made in order to ensure events con-
sidered as related to affect are clearly identifiable. For instance, a gentle stroke
is not classified as an event related to affect in this study, neither a gesture
such as a kiss or a hug, which would not be accompanied by an appropriate
child’s statement.
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3.4 Coding and Reliability

Inter-rater reliability testing was carried out for each of the three dimensions,
respectively, play, reasoning and affect. A second coder who was not famil-
iar with the aims of the study re-coded part of the data. Good reliability
was shown: a) On play, 80.7% agreement (13min50s of videos coded divided
among two children, Child H and Child E); b) On reasoning, 80.3% agreement
(18min24s of videos coded divided among two children, Child H and Child N);
c) On affect, 93.3% agreement (22min of Child E’s videos coded).

4 Results

Child D Child D showed some apprehension towards the robot and did
not interact at all during the five first sessions. The experimenter therefore
decided not to require the child to come for the following sessions and let
the child proactively decide whether he wanted to take part in the further
trials or not. In the last session (Session 10), Child D proactively came for
the trial. In that session he engaged in an interaction with the robot with the
help of the experimenter: one interaction event happened between the child
and the robot, during which the experimenter showed the child how to stroke
the robot and the child imitated. Afterwards, the child both showed signs of
light apprehension (he moved his body slightly backwards) and enjoyment (he
smiled).

Child J Child J took part in 9 sessions. Child J naturally showed attempts
to play with the laptop rather than the robot. It was a big challenge to get the
child away from the laptop and get his attention focused on something else.
The experimenter used a simple trick by hiding the laptop with a cloth. But
for practicality reasons (e.g. to connect or reconnect Aibo during the session),
the cloth had to be removed from times to times during the session thus intro-
ducing an important source of distraction for Child J. Progressively though,
the child seemed to understand that he was allowed to punctually have a look
at the laptop (as part of his well-being) but that he should mostly engage in
interactions with the robot. The table provided in Fig. 6 shows the average
amount of time Child J spent engaging in play with the robot during each ses-
sion. The tendency is clearly that the child played longer with the robot in the
two last sessions than in the previous ones and almost doubled his play time
between the 9th and 10th session. If we consider in detail the duration of single
phases of play, i.e. uninterrupted periods of time when the child continuously
plays with the robot, then, again, this table shows that the child experienced
longer non interrupted periods of play with the robot during the last sessions.
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Typically, two uninterrupted periods of play are often separated by an attempt
of the child to play with the laptop. This shows that the child progressively
learnt to focus more and more on the robot and on engaging in playing with
the robot. Nevertheless, the experimenter also often intervened to help the
child carry on playing and keep focusing his total attention to the robot; this
intervention usually happened in two ways: a) encouraging and rewarding the
child verbally, or b) showing an example, e.g. stroking the robot and asking for
the child to do the same. In this context, b) is very relevant indeed since the
child does not speak verbally and encouraging imitation is favourable for both
relaunching the child’s engagement in play and bootstrapping social play. It
should be noted that in that specific context, imitation is very rudimentary:
the experimenter either touches a specific sensor or gently strokes the robot
(e.g. on the head) and explicitly asks the child to do the same. The child is
considered to imitate the experimenter’s gesture if he initiates within 10 sec-
onds the same nature of gesture, i.e. either a touch of a sensor or a stroke, and
if the gesture is applied on the same part of the robot’s body; for instance,
i) the experimenter touches the head sensor and, within 10 seconds, the child
presses the same sensor (with or without activation depending on the child’s
precision of touch) ; or ii) the experimenter gives a gentle stroke on the back
of the robot and, within ten seconds, the child gives a stroke on the back of
the robot. Results show that Child J progressively experienced more situa-
tions of imitation. Besides, they also reveal that during the last session he
imitated some gestures proactively, i.e. without being explicitly asked by the
experimenter to imitate.

Concerning the “Reasoning” dimension, Child J did not address the issue
verbally. Thus, no firm conclusions should be drawn. However, the detailed
study of the child’s gestures shows that the exploration of the child became
progressively richer and richer over the sessions. The child varied his position
relative to the robot, from sitting to kneeing and lying, and thus looked at
the robot from various viewpoints. Moreover, he progressively varied his way
of touching the robot: during the first sessions, he progressively abandoned
random-like touch to develop more targeted touch. Note that targeted touch
can be, for instance, trying to touch a single sensor precisely or stroke the robot
gently and then activate many sensors. Besides, during the last session, the
child experienced proactively a combination of two previous sensor activations:
first, he imitated the experimenter and stroke the back of the robot; second,
he imitated the experimenter again and touched the head; third, his next
behaviour was the simultaneous activation of back sensors and the head sensor.

Concerning the third dimension, “Affect”, no event that was related to affect
(with respect to Fig. 5) was recorded.
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Aspects of imitation: 
In each single phase of play, 
numbers of gestures: 

 Total 
duration 
of play 
(min:sec) 

Repartition of the play 
time in single phases of 
play  
(min:sec and + between 2 
single phases) 

Imitated 
by the 
child 

Explicitely asked 
by the 
experimenter to 
be imitated 

Verbal 
expression 
involving either 
the word ‘dog’ 
or ‘robot’ 

Session1 0:06 0:06 0 0  
Session2 1:30 1:00 

+ 0:30 (mostly looking 
attentively at Aibo) 

0 0  

Session3 0:40 0:40 0 0  
Session4 Almost 

null 
Almost null 0 0 ‘The little dog 

was easy’ 
Session5 0:15 0:15  

the experimenter helps 
by holding the child’s 
hand to show him 

0 0  

Session6 0:00 0:00 0 0  
Session7 away     
Session8 1:05 1:05 1 2  
Session9 2:21 0:40  

+1:16  
+0:16 

0 
+1  
+0 

0 
+2  
+0 

 

Session10 5:24 0:20  
+1:47  
+0:18 
+2:46 

0 
+3 
+0 
+3 

0 
+3 
+0 
+1 

 

 

Fig. 6. Child J. Dimension of play: quantitative results: For each session, the following

indicators are reported: a) total duration of play; b) duration for each specific single session of play ; c)

aspects of imitation with respect to i) the occurrence of gestures (touch or stroke of the robot) that the

child imitated and ii) the occurrence of gestures that the experimenter explicitly asked the child to imitate);

d) verbal expressions including the word “dog” or “robot”.

Child C Child C was away for Session 3 and Session 6 and therefore took
part in 8 sessions in total. The analysis of the Play Grid in Fig. 7 shows that
Child C played mostly solitarily. He engaged largely in exploratory play which
became progressively more and more enriched. Two main aspects objectively
illustrates the phenomenon a) a progressive change of position (from sitting
orthogonal to the robot and not facing the experimenter to facing the robot
and the experimenter) and b) a more diversified way of touching the sensors.
Moreover, the child practised “solitary mirror play” frequently. It consists of
looking at one’s image in the robot’s reflecting face. Child C experienced sit-
uations of looking at his image with other reflecting surfaces too, such as a
window, partially reflecting, or a mirror, perfectly reflecting (room R2 con-
tained a mirror). All of these play situations, consisting of looking at one’s
image, were often fascinating for Child C, and sometimes prevented him from
engaging in other kinds of play situations. Besides, Child C did not experience
plays involving explicitly causal reactions, such as showing a specific reaction
of the robot through the sensors’ activation.

Though, progressively, Child C experienced situations with some components
of social play. From a cooperative point of view, the child did take part, both
reactively and proactively in cooperative technical tasks such as turning on the
robot. Furthermore, Child C, who mostly speaks by onomatopeia did develop
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 1 2 3 4 5 6 7 8 9 10 

Solitary Exploration P P  P   P P P P 
“Imitation” of robot’s bark           

L
1 

Solitary mirror play – look at oneself in the robot’s reflecting face P   P P  P P P P 
L
2 

“Pre-social” or basic-social exploration – stroke Aibo immediately  
after the experimenter (possibly basic imitation of the gesture) 

   P P  P B   

Social exploration (social play)            
Simple Bite/Save or Give/Food -  no use of the sensors            
Position or locomotion game – with verbal qualification of the game           
Cooperative technical task: change the battery, or turn on/off Aibo    P P  B P P B 
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”           
Basic pretend & social play – imitate Aibo’s snoring & verbal comment           
Basic play on affective gestures – give/receive a kiss and/or a lip 
to/from Aibo 

          

Repeat after me - ask the experimenter to repeat verbal expressions           
Look at Aibo through the camera 
(Possibly stroke Aibo & look at its reaction through the camera) 

          

Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French           
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children 

          

Simple play with accessory (symbolic play)           
Social Mirror play (social play) - look at oneself (and possibly at the 
experimenter) in the robot’s reflecting face & express verbal comments, e.g. 
“Look at my arm!” 

          

L
3 

Social Hug – hug Aibo & ask the experimenter or the second researcher 
to hug Aibo   

          

Complex Give Food/Drink (cause-reaction play & symbolic play & 
social play) - use of sensors 

          

Complex Bite/Save (cause-reaction play & pretend play & 
cooperative play) - use of sensors 

          

Complex turn off Aibo to sleep (symbolic play)           
Speak directly to Aibo about Aibo’s feeling (symbolic play)           
Cause-reaction play & mental states: 
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 

          

Cause-reaction play, 
Aim at a physical reaction of the robot, show it with a sensor 

          

Cause-reaction play & basic pretend play, “caught on the act”           

L
4 

Telling a story         P P 
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which 
opens the mouth), translate verbally the answer for the experimenter 

          

Symbolic & pretend play Complex play with an accessory           
Symbolic & pretend play Complex nap with Aibo           
Symbolic & extrapolation play  : “RobotCat” - Speak about  the idea 
of a robotic cat (possibly imagine how one would play with it) 

          

Causal composition of plays: Bite/Save & Give Food/Drink           
Causal composition of plays: Kiss & Bite/Save           

L
5 

Pretend play & causal reaction & social rapports: 
Ask verbally Aibo to act a situation,  use of sensors  

          

Pretend play & focus on Aibo’s mental states: 
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

          

Pretend play & social rapports: Look after Aibo and set up rules           
Pretend & symbolic & chronological play & social rapports:  
Search and rescue 

          

L
6 

Pretend & symbolic play & social rapport & cause-reaction  
play & chronological play: competition (drink fast) between the child or 
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor 

          

Fig. 7. Child C. Play Grid. The first column describes the corresponding level of play, the second

column details the various play situations for each level that the child experienced at least once; the following

columns refer to the sessions, ordered chronologically. The table is then completed according to the following

rules: a) if the child did not experience the play situation during the specific session, leave the corresponding

cell blank; b) if the child experienced the specific play situation at least once during the session, then write

“P” (if the child experienced it proactively only — i.e. it was his/her own initiative). Write “r” if the

child never experienced it proactively (only reactively: the experimenter guided the child towards the play

situation). Write “B” if the child experienced this play situation many times , sometimes proactively and

sometimes reactively. Note, Child C was away for Session 3 and Session 6.
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some ways of expressing himself, by dancing in front of the mirror and/or
the robot and even probably telling a story by using not proper words but
onomatopeia. The situation described below, that Child C experienced, may
actually be interpreted, with caution though, as a storytelling situation: Child
C chronologically a) pressed the button to “wake up” Aibo (i.e. turn Aibo
on), then b) stood in front of the wall mirror in the room, still watching Aibo
“waking up”; c) once Aibo’s woken up, the child started dancing and saying
onomatopeia in front of the mirror. At some point, the robot disconnected.
During the whole process the experimenter told Child C many times that
she thought he was telling a story and asked him if she was right. She got
no answer. When the robot disconnected the child stopped dancing and the
experimenter reiterated her question: “Was it a story that you were telling
me? Yes or no?” and the child answered “Yes”. Then she asked: “Can you tell
me another story, yes or no?” and the child answered “yes”. Then the child
repeated the same succession of behaviours a), b) and c) and she asked: “Is it
about a boy the story?” And he answered “Yes”. It is worthy of note here that
the child might have simply repeated the word ‘yes’ after each question without
giving a ‘real’ answer to the questions. Nonetheless, that example shows how
the child may have progressively opened up to more communication with his
surrounding social environment for play (notably the experimenter).

This storytelling situation took place in the last sessions while the child was
starting to answer some questions about reasoning as well as using proactively
verbal expressions to express intention. An in depth study of the verbal an-
swers the child formulated shows that over the first sessions, the child almost
only answered “yes” or “no”, whenever he answered. Then, progressively, the
child answered some questions by repeating words from the question: e.g. in
Session 4 the experimenter asked “Do you want to play with the robot or
go back to the classroom?”. The child answered: “play with the robot”. And
in the last two sessions, the child did use expressions to express his own in-
tentions; for instance, the expression “sitting down” means that he wants to
remain sitting down on the ground to carry on playing with the robot. In
Session 9, the experimenter actually asked the child: “Do you want to go back
to the classroom or play with him (the robot)?” and the child answered “play
with him”. Then later in the session, the experimenter asked the question
“Shall we go back to the classroom now?”. And the child answered: “Sitting
down”. During the last session, the child reused exactly the same expression
(“sitting down”) to answer the experimenter’s question: “Would you like to
go back to the classroom soon?”.

Regarding the analysis of the reasoning dimension, the child answered reac-
tively very basic questions about Aibo’s mental states, such as “Do you think
Aibo is happy today?” or about his own mental state: “Do you like playing
with the robot?” but there was no proactivity from the child with respect to
mental states.
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Session 
 

Events objectively related to Affect (ordered chronologically with respects to first 
appearance, event only mentioned once per session) 

S1  
S2 • [2i]   “Do you like it?”  (Experimenter); “Yes” (Child C) 
S3  
S4 • [2i]   “Is it a nice robot? (Experimenter); “Yes” (Child C);  

• [2ii]   “You are happy playing with the robot? (Experimenter); “Yes” (Child C) 
S5  
S6  
S7  
S8  

S9 • [2i]   “Do you think Aibo likes you?” (Experimenter); “Yes” (Child C) 
S10 • [2i]   “You like the robot?”  (Experimenter);  “Yes”  (Child C) 

 

Fig. 8. Child C. Events related to Affect. Events are separated by bullet points, and provided

with their context (normal font) in the table. Events written in bold are coded according to Fig. 5 (the code

is provided in brackets in front of the event); please note, that when the child answers a question, the event

in itself is the child’s answer, but, in this table, in order to make it clear to the reader, the question that

the answers refers to is also written in bold.

Concerning “Social rapport”, the child progressively grasped the fact that
Aibo belonged to the experimenter. In the first sessions, the experimenter had
to explain many times to the child that he could not take the robot with
him back to the classroom. In contrast, at the end of the last session, the child
hesitated a short time and gave the robot back to the experimenter proactively.
Apart from that, the child did not explicitly show any reasoning on “Social
rapports”. Neither did he on Aibo’s “Moral standing”.

The dimension of Affect has been mostly addressed indirectly (Fig. 8), through
simple questions from the experimenter: in Session 4, the child answered af-
firmatively to the following questions: a) “Is it a nice robot?” and b) “You
are happy playing with the robot?”. Later, in session 9, the child answered
affirmatively to the question “Do you think Aibo likes you?” And in Session
10, the child answered affirmatively to the question “You like the robot?”.
Note that since these inputs did not emerge proactively we should be careful
with too much interpretation. Though, it should be underlined that most of
the time the child said he preferred playing with the robot rather than going
back to the classroom, which shows the child was having fun playing with
the robot. It is perhaps worthy of note here that the experimenter is aware
that the child may just have given a stereotypical answer. For instance, the
experimenter did not ask the question: “Does the robot hate you?”, which the
child might have said “yes” to as well.

Child E Child E was away for Session 7 and thus took part in 9 sessions
in total (among them Session 6 where she had a very limited time of play,
approximately 10 minutes, because of a class trip). The Play Grid in Fig. 9
shows that Child E experienced more and more complex levels of play during
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 1 2 3 4 5 6 7 8 9 10 

Solitary Exploration           
“Imitation” of robot’s bark    P P   P   

L
1 

Solitary mirror play – look at oneself in the robot’s reflecting face           
L
2 

“Pre-social” or basic-social exploration – stroke Aibo immediately  
after the experimenter (possibly basic imitation of the gesture) 

          

Social exploration (social play)  P P P P P P  P P P 
Simple Bite/Save or Give/Food -  no use of the sensors       r    P 
Position or locomotion game – with verbal qualification of the game P    P P  P   
Cooperative technical task: change the battery, or turn on/off Aibo  P P P  r  r P  
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”  P P P    P P P 
Basic pretend & social play – imitate Aibo’s snoring & verbal comment  P         
Basic play on affective gestures – give/receive a kiss and/or a lip 
to/from Aibo 

  P P P P     

Repeat after me - ask the experimenter to repeat verbal expressions          P 
Look at Aibo through the camera 
(Possibly stroke Aibo & look at its reaction through the camera) 

   P       

Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French           
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children 

          

Simple play with accessory (symbolic play)           
Social Mirror play (social play) - look at oneself (and possibly at the 
experimenter) in the robot’s reflecting face & express verbal comments, e.g. 
“Look at my arm!” 

          

L
3 

Social Hug – hug Aibo & ask the experimenter or the second researcher 
to hug Aibo   

  P        

Complex Give Food/Drink (cause-reaction play & symbolic play & 
social play) - use of sensors 

       B B P 

Complex Bite/Save (cause-reaction play & pretend play & 
cooperative play) - use of sensors 

          

Complex turn off Aibo to sleep (symbolic play)            
Speak directly to Aibo about Aibo’s feeling (symbolic play)           
Cause-reaction play & mental states: 
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 

     P     

Cause-reaction play, 
Aim at a physical reaction of the robot, show it with a sensor 

     r  P  r 

Cause-reaction play & basic pretend play, “caught on the act”           

L
4 

Telling a story    P  P  P P  
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which 
opens the mouth), translate verbally the answer for the experimenter 

          

Symbolic & pretend play Complex play with an accessory           
Symbolic & pretend play Complex nap with Aibo           
Symbolic & extrapolation play  : “RobotCat” - Speak about  the idea 
of a robotic cat (possibly imagine how one would play with it) 

          

Causal composition of plays: Bite/Save & Give Food/Drink           
Causal composition of plays: Kiss & Bite/Save           

L
5 

Pretend play & causal reaction & social rapports: 
Ask verbally Aibo to act a situation,  use of sensors  

          

Pretend play & focus on Aibo’s mental states: 
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

          

Pretend play & social rapports: Look after Aibo and set up rules          P 
Pretend & symbolic & chronological play & social rapports:  
Search and rescue 

         P 

L
6 

Pretend & symbolic play & social rapport & cause-reaction  
play & chronological play: competition (drink fast) between the child or 
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor 

          

Fig. 9. Child E. Play Grid. See Fig. 7 for a detailed caption. Note, Child E was away for Session 7.

the sessions (see Fig. 10). She experienced in play situations involving the
activation of a specific sensor to generate a precise reaction only a bit. She
rather proactively experienced firstly play situations where “affect” is largely
addressed (e.g. “Social Hug”). Secondly, she developed play situations where
the robot embodied a character in a story she was telling. Finally, in a third
and last phase, she initiated play situations where she was able to tackle issues
on social rapports or mental states (Session 10: “look after Aibo and set up
rules” and “search and rescue” play situations).
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Fig. 10. Child E involed in social play with the experimenter. 2 sequences are displayed,

one on each line. Each sequence is orgnised chronologically from left to right; on the first line, picture on the

right and on the second line, picture in the middle, Child E is making eye contact with the experimenter.

The “looking after Aibo” game dealt with deciding that she and the experi-
menter would take care of Aibo, and Child E proactively suggested that, as a
consequence, she and the experimenter would have to define rules the robot
would have to respect; and she enumerated the rules (among them, a detailed
list of what the robot is not allowed to eat, and the statement: “dogs must go
outside and must walk”, followed by “I need to make him walk”). This game
also gave rise to proactive inferences of state, the child even saying: “Look! He
is smiling!” in the proper context. The social status that she took of taking
care of Aibo led her to show the experimenter how to do specific things such
as to make Aibo go forward: “You see, you must do like this, see”.

Furthermore, this game was followed by a “search and rescue game” which
was extremely rich in many ways:
a) the child led the rhythm, the pace, and the four steps of the play situation
(chronologically): step1) initial situation where Aibo is lost, the goal of finding
Aibo is stated, step2) the experimenter and the child are looking for the dog,
step3) final situation: the experimenter and the child find the dog.
b) the child slightly dilated step2 over time so that she could deal with emo-
tional states, particularly sadness: “You think we’ve lost him for ever” said
Child E; “Oh, that’s sad” said the experimenter; and the child replied: “I think
we’re sad actually” thus conferring a socio-dramatic dimension to the current
play situation.
c) during step3, when the robot was found, the child introduced some rea-
soning about categories: she introduced the notion that it might be another
robot than Aibo that she and the experimenter had found; she introduced this
reasoning step by step and she might not have been really at ease with these
concepts, but the point is that she practised them through experiencing them:
Child E’s reasoning started with “Oh no, there are two Aibos here” and, after
several steps in the reasoning, she drew the following conclusion: “No there
are two dogs, only one Aibo. The clever one!” and she threw up her hands
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Fig. 11. Child E’s social hug to the robot. photos ordered chronologically from left to right.

The child brings the robot to a second researcher (who helped out during this trial) while saying “Put your

hands and hug, hug, hug” and both of them hug the dog. On the third picture from the left, Child E makes

eye contact with the researcher.

accompanied by a big smile. Again, here is illustrated that both “reasoning”
and “play” dimensions are highly intertwined.

Concerning the notion of “Essence” for the Reasoning dimension, Child E
mixed the use of artefacts and biological statements such as saying within the
same session: “He’s a robot, he’s a robot dog” and “Nice dog”, “He is a nice
dog”, “I love dogs”, “A boy or a girl?” (Session 10).

Except in the last session, the notion of “Mental states”, was addressed mostly
reactively: the child answered to questions asked by the experimenter such
as “Do you think Aibo is hungry” (which usually initiates the game “Give
food/drink”). There were two exceptions: a) the child proactively said that
the robot liked her, and b) the child may refer to mental states when telling
stories she adapted from well-known children’s books. During the last session,
the child proactively referred to mental states of the robot as mentioned above
in both “look after” and “search and rescue” play situations. During the “look
after” play situation, she said: “We play, want to make the dog happy, make
the dog feel pretty”.

Moreover, as already mentioned above too, she experienced “Social rapports”
a lot e.g. either simply by saying (in Session 9) “Look at Aibo, Aibo is your
dog” or in taking on specific social roles in more elaborated play situations
(e.g. in Session 10, during “look after” and “search and rescue” games).

Concerning “Moral standing”, no objective event related to it happened.

The dimension of affect played an important role for the child (Fig. 12). In
Session 1 already, she started saying “good doggy” with respect to the robot.
Then, in Session 3 she introduced the notion of social hug (see Fig. 11), which
consisted of asking the experimenter (or the second researcher present) to
help her hug the dog: “Put your hands and hug, hug, hug” Child E asked.
Later in the same session, as well as in session 4, the child said, “The dog
really likes me”. Note that end of session 3 is the first time she answered to
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Session Events objectively related to Affect (ordered chronologically with respect to first 
appearance, event only mentioned once per session) 

S1 • [1ii]   “Good doggy” (Child E) while stroking the robot and looking at me (eye contact)  
S2  

S3 • [1iii]  “Help me hug the dog: put your hands and hug, hug, hug” (Child E) while 
bringing the robot near the assistant and showing how to hug 

• [1ii]   “Good doggy” (Child E) 
• [1i]    “The dog really likes me” (Child E). The experimenter answer “yes” 
• [2i]     “Do you like it? (Experimenter).  “Yes” (Child E) 

S4 
 

• [1ii]   “Good doggy” (Child E), while stroking the robot 
• [1i]    “The dog really likes me” (Child E) and she starts mimicking the noise that 

would do the dog by lapping her. 
S5 • [1ii]   “Good doggy” (Child E) and she looks at the experimenter; “yes very good 

doggy” (Experimenter). 
S6  
S7  

S8 • [1ii]   “Good doggy” (Child E) after the robot has “woken up”  (i.e. is connected) 
S9 • [2i]   Are you happy to see Aibo? (Experimenter); “Yes” (Child E) 
S10 • [1ii]   “Nice dog” (Child E) 

• [1i]    “I love Aibo. I love Aibo” (Child E) and she strokes the robot 
• [1ii]   “Good boy, good boy” (Child E) and she strokes the robot 
• [1i]    “Do you like the walk E, please tell me? (Experimenter); “Yes, this is all about 

dogs like me” (Child E) 
• [2i]    You like Aibo, right? (Experimenter); “Yes” (Child E) 

 

Fig. 12. Child E. Events related to Affect. See caption of Fig. 8 for details.

the question “Do you like it(Aibo)?” (she answered affirmatively). From that
session onwards, the child confirmed several times the fact that Aibo liked
her (e.g. session 4 “The dog really likes me”) and that she liked Aibo (e.g. in
session 10: “I love Aibo” and “Nice dog”).

Child H. Child H took part in the 10 sessions of experiments. The Play
Grid in Fig. 13 shows that Child H progressively experienced more and more
complex levels of play over the sessions. During the first sessions, he explored
very attentively the reactions of the robot and in the following sessions, he ex-
perienced more and more simple causal reactions through the following games:
a) “ask about a feeling, answer with a sensor”, e.g. in Session 10 the child
asked: “are you happy?” and pressed the head button which made the robot
wave the mouth as to say “yes”. b) “aim at a physical reaction, show it with
sensors”: e.g. the experimenter asked “Do you think Tornado (the name the
child gave to the robot) can wag the tail today?” and Child H activated the
right sensor at the first attempt and commented: “That’s the tail one”. Child
H also proactively played the game of giving food or drink to the robot as
well as a cooperative play situation of Bite/Save (see Fig. 14). Bite/Save play
situation consisted of two chronologically steps: i) the robot bite the finger
of either the child or the experimenter (through the use of the sensors) and
ii) the person remaining (child or experimenter) saved the latter by freeing
her/his finger: the freeing was done either by activating the sensor (“Complex
Bite/Save”) or by directly taking the finger out of the mouth of the robot
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 1 2 3 4 5 6 7 8 9 10 

Solitary Exploration           
“Imitation” of robot’s bark           

L
1 

Solitary mirror play – look at oneself in the robot’s reflecting face   P        
L
2 

“Pre-social” or basic-social exploration – stroke Aibo immediately  
after the experimenter (possibly basic imitation of the gesture) 

          

Social exploration (social play)  P P P P P P P P P P 
Simple Bite/Save or Give/Food -  no use of the sensors       r r    
Position or locomotion game – with verbal qualification of the game P  P     P  P 
Cooperative technical task: change the battery, or turn on/off Aibo P P P P B P P P P P 
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up”  P   P      
Basic pretend & social play – imitate Aibo’s snoring & verbal comment           
Basic play on affective gestures – give/receive a kiss and/or a lip 
to/from Aibo 

          

Repeat after me - ask the experimenter to repeat verbal expressions           
Look at Aibo through the camera 
(Possibly stroke Aibo & look at its reaction through the camera) 

          

Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French           
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children 

          

Simple play with accessory (symbolic play)       P    
Social Mirror play (social play) - look at oneself (and possibly at the 
experimenter) in the robot’s reflecting face & express verbal comments, e.g. 
“Look at my arm!” 

 P P  P P P P   

L
3 

Social Hug – hug Aibo & ask the experimenter or the second researcher 
to hug Aibo   

          

Complex Give Food/Drink (cause-reaction play & symbolic play & 
social play) - use of sensors 

     B B B B B 

Complex Bite/Save (cause-reaction play & pretend play & 
cooperative play) - use of sensors 

  P  B r P P P P 

Complex turn off Aibo to sleep (symbolic play)       P    
Speak directly to Aibo about Aibo’s feeling (symbolic play)      P P  P P 
Cause-reaction play & mental states: 
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 

    r  r  P P 

Cause-reaction play, 
Aim at a physical reaction of the robot, show it with a sensor 

  r  B   r  r 

Cause-reaction play & basic pretend play, “caught on the act”          P 

L
4 

Telling a story           
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which 
opens the mouth), translate verbally the answer for the experimenter 

     P  P P  

Symbolic & pretend play Complex play with an accessory           
Symbolic & pretend play Complex nap with Aibo           
Symbolic & extrapolation play  : “RobotCat” - Speak about  the idea 
of a robotic cat (possibly imagine how one would play with it) 

          

Causal composition of plays: Bite/Save & Give Food/Drink       P   r 
Causal composition of plays: Kiss & Bite/Save           

L
5 

Pretend play & causal reaction & social rapports: 
Ask verbally Aibo to act a situation,  use of sensors  

        P  

Pretend play & focus on Aibo’s mental states: 
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

          

Pretend play & social rapports: Look after Aibo and set up rules           
Pretend & symbolic & chronological play & social rapports:  
Search and rescue 

          

L
6 

Pretend & symbolic play & social rapport & cause-reaction  
play & chronological play: competition (drink fast) between the child or 
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor 

      P    

Fig. 13. Child H. Play Grid. See Fig. 7 for a detailed caption.

(“Simple Bite/Save”).

Furthermore, in Session 7, the child proactively combined 2 games, “Give
food/drink” and “Bite/save” and said: “He (the robot) is saying: give me a
drink or I bite your fingers”.

Another interesting play situation the child proactively experienced in Session
7 consisted of a competition between the robot and himself: both of them had
to drink as fast as possible their invisible drink; the robot could only drink
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Fig. 14. Child H. playing the game ‘Bite/Save’ with the experimenter. Chronological

order of the photos: from left to right and top to down. First photo: the child activates the head sensor of

the robot which make the robot open the mouth and enable the robot to ‘bite’ his finger. Second photo:

the experimenter brings her hand close to the head of the robot in order to activate the head sensor. Third

photo: the experimenter activates the robot’s head sensor to make Aibo open the mouth in order to ‘save’

the child’s finger; when the mouth opens, the child pull of his finger (third and fourth photos).

with the help of the experimenter (the experimenter was asked to activate the
sensor linked to the opening of the mouth as fast as possible). At the end of
the competition, Child H decided that the robot had won. This play situation
presupposes the child to be able to:
a) deal with rules of competition,
b) handle the temporal aspects of the game and the various chronological
phases,
c) take on the role of the participant (as a competitor) and the one of the
organizer who announces the winner,
d) play with abstract entities (invisible drink),
e) play socially.

Concerning the reasoning dimension, it should be first noted that the child
decided to rename the robot after the first session and call him “Tornado”.
Moreover, in the first sessions, most of his questions addressed the issue of
the robot’s technical capabilities and how to control the robot. In Session 2,
for instance, the child said: “How is he doing that?” and “What’s being on
the head to make him walk” (because when he touched the head (and acti-
vated the head sensor), the robot walked). And later in the same session, while
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looking at the laptop he said “this must be the controller”. Furthermore, in
Session 3, the child said: “I found how he might open his mouth”; the experi-
menter asked “is he moving the mouth?” and the child answered:“yes, when I
stroke on the head, you see”. This example illustrates that the child actively
developed technical and causal reasoning about behaviours and capabilities
of the robot. This questioning can be related to the “Essence” part of the
quadrology, and shows, that the child considered primarily Aibo (Tornado) as
a proper robot. It should be noted here that the child invented the concept
of “invisible drink” as well as the way of calling it (very logically): “invisible
robot drink”. This illustrates the ability of the child to make links with real
dog’s life while adapting it correctly to the characteristics of robots.

The “Mental state” part of the quadrology was addressed during later sessions
(from session 5 onwards). In session 5 the child actually said “he is wagging the
tail”; the experimenter answered: “yes, that shows he is happy”; and the child
replied “He likes me” and he stroked the robot. The experimenter reinforced
the positive feeling: “yes, he likes you”. That first step was expanded into the
game “speak directly to Aibo about Aibo’s feeling”. In session 6 and onwards,
the child addressed proactively the question of emotions but he tended to deal
with a restricted repertoire of emotions only, such as “ being scared” or “being
terrified”(e.g. session 7 the child said: “You’re scared Tornado, in fact you’re
terrified”).

Child H dealt with “Moral standing” in session 5 when he accidentally kicked
the robot and, in return, apologized to him directly (“Sorry Tornado”) and
comforted him by stroking him.

Finally, Child H addressed indirectly the question of “Social rapports” through
play. For instance, in session 10, he conferred a specific role to the robot for
the competition; the robot thus became his adversary, but on a very kind
level, since the child decided at the end of the game that the robot had won
the competition. Another example took place in Session 8 where the child
asked directly questions to the robot (e.g. “Do you want to drink something
Tornado?”). Then, he made the robot bark as an answer and the child “trans-
lated” the answer verbally for the experimenter: “He said yes”. In this case,
the child proactively played the social role of an intermediary position (like
an interface) between the experimenter and the robot.

The dimension of affect (Fig. 15) appeared from Session 5 and onwards where
the child proactively said “he (the robot) likes me”. And the experimenter
replied “Yes he likes you. You like him?” The child then answered “Yes”.
Then later, in Session 8, the child said “he (the robot) is very happy”. The
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Session Events objectively related to Affect (ordered chronologically with respects to first 
appearance, event only mentioned once per session) 

S1  
S2  
S3  
S4  
S5 • [1i]   “Yes that shows he (the robot) is happy” (Experimenter); “He likes me” (Child 

H); “Yes he likes you” (Experimenter);  
• [2i]   “You like him (the robot)?” (Experimenter); “Yes” (Child H) 

S6  
S7  
S8 • [1i]   “He (the robot) is very happy” (Child H) while making the robot bark; “Yes he is” 

(Experimenter),“Tornado likes me” (Child H); “Yes he likes you” (Experimenter) 
S9 • [1ii] “Tornado is very friendly, isn’t it?” (Child H); “yes, he is”(Experimenter) 
S10  

 

Fig. 15. Child H. Events related to Affect. See caption of Fig. 8 for details.

experimenter agreed with him and then Child H added “Tornado likes me” and
the experimenter reinforced the positive feeling: “Yes he likes you”. In Session
9, Child H commented on the robot, qualifying him as ‘friendly’: “Tornado is
very friendly, isn’t it?” and the experimenter agreed verbally.

Child N. Child N was away for session 5. Thus he took part in 9 sessions.
Note that on his explicit demand, session 7 and session 8 were not recorded
(the experimenter had permission from the parents to videotape the child but
she decided to value the child’s request); thus information from sessions 7 and
8 is missing in the corresponding columns in the Play Grid. The Play Grid
Fig. 16 shows that Child N engaged in social play almost all the time. He used
verbal language a lot and progressively experienced some more complex levels
of play notably pretend play with respect to “play with accessory”. The first
situations of “play with accessory” happened in Session 3. In this session, the
child borrowed the mouse of the laptop and put it on the ground in front of
Aibo at approximately 30 cm distance and asked the robot to touch the mouse
with the paw. Then he activated the right sensor to make Aibo walk forward
and approach the mouse. The child carried the robot for the 5 remaining
centimetres separating the robot’s paw from the mouse and finally the robot
touched the mouse with his paw. Later, in session 4, the child experienced
further situations of “play with accessory” in two successive steps. As a first
step, he proactively played very simply with an accessory. For instance, Child
N used the face of a character drawn on a piece of cardboard that he held
in front of his face and told Aibo: “Stay here Aivo, I got something to show
you”. Note that the child slightly changed the pronunciation of the name of
the robot and referred to Aibo as ‘Aivo’. As a second step, later in the same
session, the child proactively played a more complex accessory game with the
robot, the “ghost dog”. That play situation consisted of putting a cloth on
top of Aibo and pretending Aibo was a ghost dog (Child N told Aibo: “You
can be a ghost dog Aivo”); vocally, the child used classical onomatopeia mim-
icking ghost’s “voice and presence”. Moreover, in Session 6, the child decided
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 1 2 3 4 5 6 7 8 9 10 

Solitary Exploration           
“Imitation” of robot’s bark P P P   P   P  

L
1 

Solitary mirror play – look at oneself in the robot’s reflecting face           
L
2 

“Pre-social” or basic-social exploration – stroke Aibo immediately  
after the experimenter (possibly basic imitation of the gesture) 

          

Social exploration (social play)  P P P P  P   P P 
Simple Bite/Save or Give/Food -  no use of the sensors          P P 
Position or locomotion game – with verbal qualification of the game P   P  B   B P 
Cooperative technical task: change the battery, or turn on/off Aibo r  P B  r   P B 
Verbal order towards Aibo: e.g. “sit”, “walk”, “wake up” P P P P     B P 
Basic pretend & social play – imitate Aibo’s snoring & verbal comment           
Basic play on affective gestures – give/receive a kiss and/or a lip 
to/from Aibo 

        P P 

Repeat after me - ask the experimenter to repeat verbal expressions          P 
Look at Aibo through the camera 
(Possibly stroke Aibo & look at its reaction through the camera) 

  P P  P   P P 

Speak French with Aibo - e.g. “Hello” or “Bye-Bye” in French    r  B    r 
Show Aibo to other children (social play) 
Express verbally the willing/intention to show Aibo to the other children 

P P         

Simple play with accessory (symbolic play)   P P       
Social Mirror play (social play) - look at oneself (and possibly at the 
experimenter) in the robot’s reflecting face & express verbal comments, e.g. 
“Look at my arm!” 

          

L
3 

Social Hug – hug Aibo & ask the experimenter or the second researcher 
to hug Aibo   

          

Complex Give Food/Drink (cause-reaction play & symbolic play & 
social play) - use of sensors 

          

Complex Bite/Save (cause-reaction play & pretend play & 
cooperative play) - use of sensors 

          

Complex turn off Aibo to sleep (symbolic play)      P    P 
Speak directly to Aibo about Aibo’s feeling (symbolic play)  P         
Cause-reaction play & mental states: 
Ask a question to Aibo (e.g. identity, feeling), answer with a sensor 

 B P r  B     

Cause-reaction play, 
Aim at a physical reaction of the robot, show it with a sensor 

 P B B  r   P P 

Cause-reaction play & basic pretend play, “caught on the act”           

L
4 

Telling a story           
Cause-reaction play and explicit Social rapport: 
Ask a question to Aibo, answer with a sensor (e.g. press the sensor which 
opens the mouth), translate verbally the answer for the experimenter 

          

Symbolic & pretend play Complex play with an accessory   P P  P     
Symbolic & pretend play Complex nap with Aibo    P       
Symbolic & extrapolation play  : “RobotCat” - Speak about  the idea 
of a robotic cat (possibly imagine how one would play with it) 

        P P 

Causal composition of plays: Bite/Save & Give Food/Drink           
Causal composition of plays: Kiss & Bite/Save          P 

L
5 

Pretend play & causal reaction & social rapports: 
Ask verbally Aibo to act a situation,  use of sensors  

          

Pretend play & focus on Aibo’s mental states: 
Mimic Aibo’s cry, and explain Aibo is never crying but  pretending to cry 

         P 

Pretend play & social rapports: Look after Aibo and set up rules           
Pretend & symbolic & chronological play & social rapports:  
Search and rescue 

          

L
6 

Pretend & symbolic play & social rapport & cause-reaction  
play & chronological play: competition (drink fast) between the child or 
the experimenter and Aibo ; the non-competitor activates Aibo’s sensor 

          

Fig. 16. Child N. Play Grid. See Fig. 7 for a detailed caption. Note, Child N was away for Session

5 and, on his request, was not filmed during Sessions 7 and 8.

to make the robot wear clothes and this game was expanded by:
a) a series of questions on inferring states of the robot with respect to like/dislike,
b) a direct communication with the robot to explain him what he was wearing
(Child N told Aibo: “Look at you Aivo! You’ve got some paper on in to be
black”);
c) a version of the game “aim at a physical reaction of the robot, show it with
a sensor” (the experimenter asked “How do you make him walk with all these
clothes?”, the child replied “Walk?”, and the child made the robot walk).
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In addition to the accessory games, the child appeared to experiment with
pretend play with the robot in a social context, e.g. pretending having a nap
with the robot (in session 4) in a detailed (and complex) way resulting of:
a) using a cloth as a blanket to cover both of them,
b) deciding on the duration of sleep and asking for watching the clock to
respect the time predefined for the nap,
c) pretending to snore,
d) both of them waking up again.
Besides, another way of tackling pretend play as well as robot’s mental states
happened in session 10 when the child imitated Aibo’s crying, and then argued
that Aibo was not crying but pretending to cry. And this notion of pretending
to cry for the robot was reused many times during the last session (e.g. Child
N said: “No, he’s not crying, he is only pretending to cry”).

The reasoning dimension is really an important component of the profile of
Child N. Child N principally addressed three of the four components, re-
spectively, “Essence”, “Mental States” and “Social Rapport”, and, in minor
importance, the issue of “Moral statement”.
Concerning “Essence”, the child really tackled the question of artefact or bi-
ological features, processes and categories. Categorywise, he often questioned
about robot dogs boundaries, e.g. in Session 2: “Have you seen dogs that are
not robot dogs, yes or no?” he asked to the experimenter, and later in the
same session: “He has short teeth, he doesn’t bite. Robot dogs don’t bite, do
some do?”

The part on “mental states” is very rich since the child addressed all the
aspects defined in the coding manual of Kahn et al. in (Kahn et al., 2003)
except probably the “autonomy” one. Actually, he attributed “intentions” to
the robot in Sessions 1 and 2. He explicitly considered robot’s “emotional
states” in sessions 2, 4, 6 and 10. He also both tackled “emotional states”
of the robot and his “personality” when he asked him questions about his
likes/dislikes (e.g. Session 4: “Do you like toys Aivo, yes or no?”). Further-
more he pretended the robot had some “cognitive abilities” and developed
play upon it: in Session 4, for instance, he disguised himself with an accessory
in order to “show” Aibo and thus presupposed, for the game, that Aibo could
see. Later, in Session 6, again, the child presupposed for the game that the
robot could see and told him: “Look at you Aivo. You’ve got some paper on to
be black”. The last aspect of “mental states” is the notion of “development”
of the robot. Child N really questioned about it, from the very beginning of
the sessions onwards. More than the notion of development, the child seems
to have been willing to build a biography for the robot (i.e. the past of the
robot) and therefore asked questions to the experimenter such as: a) in Session
1: “Where was this robot dog from?”; b) in Session 2: “Where was he born?”
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and “Has he travelled in a car?”; c) in Session 3: “Where did you get him
from?”, “Where does he live?”, “How old is he?”, etc.

Concerning the part on “Social rapports”, the child really investigated the
social links between the robot and the experimenter, who was considered by
the child as being the “mum” of the robot (Child N told the experimenter
“it’s your dog son”, meaning that Aibo is the experimenter’s dog, and that
the experimenter, in a way, is considered as being Aibo’s ‘mum’). Besides, he
investigated the social links between the robot and himself, through situations
of pretend play but also verbally. In Session 2 for instance, the child presup-
posed that there was a social rapport between the robot and himself since he
told the robot: “When it is lunch time Aivo I got to go. And don’t cry Aivo”.
Later, in Session 6, the child stated that the robot was his cousin: “Aivo is my
cousin”. And when the experimenter asked: “Aivo, do you like playing with N?
Can you tell me? Can you ask for his answer N? 7 ” then the child told Aibo:
“Aivo do you like me? You’re my cousin. I’m your cousin Aivo”. Besides, the
child investigated beyond social rapports involving Aibo and questioned the
experimenter about her family and explained about his family and himself.
Let’s write a few examples below: a) in Session 4, the child asked about the
experimenter’s French accent: “What accent do you speak”, which was further
investigated in Session 6: “Why do you speak French?” and “Why were you
born in France?”; b) in Session 6, he asked her about her family: “What are
your parents’ names?”; he investigated more broadly questions on the experi-
menter’s family in session 10.

On the affect level (Fig. 17), the child expressed himself a lot, both by gestures
(e.g. giving a kiss to Aibo after saying “Goodbye Aivo, have a good sleep” in
Session 6) and verbal expressions (e.g. in Session 4 when he dresses up Aibo:
“Put this on, Aivo, my dog, my friend, Aivo”). It is perhaps worthy of note
here that it might be the case that some gestures related to Affect from a
non-autistic perception (e.g. giving a kiss), don’t have the same interpreta-
tion for a child with autism: for a child with autism, giving a kiss might, for
instance, just be an imitated response. Concerning Child N, it might be the
case that the child reproduced the gesture “giving a kiss” from a situation he
had encountered or witnessed before; though it should be further mentioned
that his gesture was made proactively, with no previous reference from the
experimenter to such a gesture.

7 Child N is designed by N in the dialogue, in order to protect his anonymity.
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Session Events objectively related to Affect (ordered chronologically with respects to first 
appearance, event only mentioned once per session) 

S1 • [1ii]  “Ooh he is a nice dog” (Child N) and he strokes the robot 
S2  

S3  
S4 • [1ii]  Child N brings a towel to put on the robot : “Put this on Aivo, my dog, my 

friend, Aivo” (child N) 
S5  
S6 • [1i]   “Aibo, do you like me? You’re my cousin. I’m your cousin Aivo”  (Child N)  

• [1iv]  Child N gives a kiss to the robot on the muzzle after saying “OK, Goodbye 
Aivo, have a good sleep” 

S7  
S8  
S9  
S10 • [1iv]  Child N has covered Aibo with a coat; he gives the robot a kiss on the forehead 

and says “Goodnight Aivo”  
 

Fig. 17. Child N. Events related to Affect. See caption of Fig. 8 for details.

5 Discussion

Results from these experiments show that the children progressed differently,
and their profiles according to the three (intertwined) dimensions “Play -
Affect - Reasoning” are unique. This highlights how the experimental approach
presented in this study allows many trajectories for progressing and more
specifically how it can adapt to the child’s specific needs and abilities.
Furthermore, concerning the dimension of play, and, more precisely, concerning
the children’s progression with respect to solitary vs. social play, three groups
can be highlighted. The first group, group 1, is constituted by children who
mostly played solitarily and possibly encountered rudimentary situations of
imitation, but no further components of social play. This group would include
both Child D who encountered imitation in session 10 and Child J. Note, both
of them find it very hard to communicate verbally. The second group, group 2,
would be constituted by Child C who mostly communicates non-verbally but
progressively experienced more complex situations of verbal communication
and showed pre-social or basic social play during the last sessions. The third
group, group 3, is constituted by Child E, H and N. Those children proactively
played socially (i.e. in a triad including both the robot and the experimenter).
Results show that a) Child J experienced progressively longer uninterrupted
periods of play and engaged in basic imitation during the last sessions; b)
children from group 3 tended to experience higher levels of play gradually over
the sessions and constructed more and more reasoning about the robot (and
sometimes experienced specific reasoning about real life situations as well).
Child C seems to have started experiencing some reasoning as well, especially
technical reasoning about the robot such as “turning on” and “turning off” the
robot as well as changing the battery. In the last sessions different elements
suggested that he may also have experienced some reasoning about social
rapport.
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Besides, the children’s proactivity was encouraged, thus also facilitating taking
initative and expressing intentions (cf. the proportion of proactive activities
vs. reactive activities in the Play Grids).

These results are in agreement with Josefi et al.’s findings when they con-
ducted their pioneering long-term therapeutic study with a child with autism,
applying the non-directive play therapy technique (Josefi and Ryan, 2004).
Their experiments and results have been detailed in Section 2.1 of this paper.
In a comparable way to Josefi et al.’s study, our approach has shown that the
children’s proactivity and initiative-taking was encouraged. Further to this,
Josefi et al.’s study has shown that non-directive play therapy may encour-
age symbolic play, which is an important finding of our approach, too: In our
study, children from group 3 progressively experienced situations of symbolic
or pretend play. It is probably worthy of note here that, as already explained
in Section 1.2, the study presented in this paper took place in a therapeutic
context but the experimenter was not behaving exactly like a therapist.
A further conclusion of Josefi et al.’s study was that non-directive play ther-
apy with children with autism may be complementary to behaviour therapy,
non-directive play therapy likely to be more efficient in the child’s gaining au-
tonomy, taking initiative, joining attention and developing social and symbolic
play, while behaviour therapy would be more efficient in reducing ritualistic
and obsessive behaviours (Josefi and Ryan, 2004).
Note, it is very difficult to evaluate quantitatively and very objectively the re-
sults of non-directive play therapy. This may be a reason why many researchers
seems to stick to behavioural therapy only. In robot-mediated therapy, it may
be the same reason why experiments mostly remain task-oriented.

Davis et al. compared different robotic or computer platforms used in the Au-
rora Project and compared their specific focus in (Davis et al., 2005). It shows
that mobile autonomous robots are adequate to unconstrained play situations,
while the use of the humanoid robot Robota focuses mostly on imitation of
movements and gestures. Though, limited attention has been accorded so far
to proper unconstrained play situations with an autonomous mobile robot and
most experiments have been carried out using Robota and focussing on imi-
tation. In Robins et al. long-term studies with the non-mobile doll-like robot
Robota (see Section 2.2), situations of child-robot interactions which actually
happened were mostly restricted to situations of imitation of a gesture or a
movement (Robins et al., 2004). Thus, even if the experiments were not qual-
ified as such, they were in fact much more task-oriented, at least with respect
to the dyadic child-robot interaction. Nadel et al. showed that imitation skills
have a significant impact on the acquisition of social skills for children with
autism (Nadel et al., 1999). Though, focusing on imitation tasks only may not
be sufficient when the child reaches some higher levels of play (cf. children
from group 3 in the experiments presented in this study); Howlin and Rutter
underlined the necessity of incorporating developmental aspects in pure be-
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haviour principles (Howlin and Rutter, 1987).
Werry et al.’s trials (presented in Section 2.2) tended to encourage relatively
unconstrained situations of play by using a mobile autonomous robotic plat-
form (Werry et al., 2001; Werry and Dautenhahn, 1999). Shape, weight, sen-
sors and the range of possible behaviours of the robot used (Labo-1, see more
details in Section 2.2 of this paper) are in contrast with Aibo’s properties:
Labo-1 is heavier, not pet-like, and has only few sensors. The Werry et al.
study only used very few simple behaviours, compared to Aibo’s rich behaviour
repertoire used in this study. Thus, interactions enabled by the robotic plat-
form Labo-1 were very different in nature than the ones enabled by the use
of Aibo robot, and less varied in ways the robot could react to the child’s
‘stimulations’. It should be noted moreover that in the present study, Child H
most of the time asked for Aibo not to walk: the use of Aibo in trials enabled
the child to play with Aibo either in a mobile or non-mobile mode (robot
walking or non-walking mode), whatever choice the child prefers. Even when
not walking, Aibo can still react in various ways (e.g. turning head, wagging
the tail, barking etc.). The second main point is that in Werry et al.’s exper-
iments, none of the experimenters participated in the experiments. The child
played on his/her own with the robot (Werry and Dautenhahn, 1999), or two
children interacted at the same time with the robot (Werry et al., 2001), but
none of the experimenters did take part in the trials —they only responded
to the child when the child initiated communication or interaction with them-
(Dautenhahn and Werry, 2002). The approach inspired by non-directive play
therapy presented in this study is therefore very different from Werry et al.’s
work.

The study presented in this paper goes beyond these previous experiments,
since it provides the child with a relatively highly unconstrained environment
of play: due to the mobile autonomous robotic pet, the child can engage in
a larger repertoire of play situations (note that Robota is fixed in place) and
notably experience causal reaction play and symbolic play. Imitation is used
as a bootstrap to initiate more complex situations of interaction or to help
the child reengage in the interaction. The experimenter is part of the trial
and her role is both to answer child’s solicitations and to reward the child.
Furthermore, the latter is empowered under specific circumstances:
a) if the child is about to enter a repetitive behaviour, then the experimenter
can proactively intervene to try to prevent the child from entering that repeti-
tive behaviour or stop it; note that “a)” aims at counterbalancing the fact that
repetitive behaviours may not be considerably reduced by pure non-directive
play therapy as stated in Josefi et al.’s study (Josefi and Ryan, 2004).
b) if the child does not engage in the interaction, then the experimenter may
encourage him/her engage in playing with the robot,
c) if the game is “standing still” but the child has already experienced this
play and has shown he/she is capable to play this specific game, then the
experimenter can intervene at certain moments to give a better pace to the
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game;
d) if the child is about to reach an upper level of play but still needs some
bootstrapping (or some guidance), then the experimenter may provide it,
e) the experimenter may proactively ask the child simple questions related to
reasoning or affect such as: “do you think Aibo is happy today?” or “do you
like playing with Aibo?”.
The promising results from the experiments conducted in this study reinforce
the idea that this approach may be a vehicle for the child to develop a broad
range of play skills as well as communication and social skills.

Besides, there are many advantages of introducing a robotic pet in the exper-
imental setup:
a) the use of a robot allows to simplify the interaction and to create a more
predictable environment for play to begin with, thus facilitating the child’s
understanding of the interaction (e.g. by giving the robot a simple predictive
behaviour to start with)
b) children tend to express interest in the robot, and occasionnally affect to-
wards Aibo, as our findings show;
c) here, one of the findings is that, in these experiments, with this new ap-
proach, through play with the robotic pet, children tend to develop reasoning,
and make comparisons to real dogs’ lives.
Thus, the robotic pet can be considered as a good medium for developing
reasoning on mental states and social rapports upon, and for learning about
basic causal reactions too.

This study is explorative in nature, and more research needs be done to inves-
tigate more systematically the contribution of such an approach in the specific
field of robot-mediated therapy.

6 Future Work

Looking back at the results, specifically considering group 1, group 2 and
group 3, the existence of group 1 shows that some children did remain playing
dyadically with the robot most of the time, and did not manage to experience
aspects of social play, except maybe, occasionally, some rudimentary imitation
gestures. For those children, it is particularly crucial to develop basic play
skills through this dyadic interaction first, in order to help them reach higher
levels of play and ideally, experience later triadic situations of play with the
experimenter and the robot.

As part of future work, the question should therefore be investigated as to
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how to further facilitate children’s play with the robot, for the children who
remain at the level of solitary play; In this case, the robot should be able to
appropriately adapt to the child’s needs and abilities and encourage the child
to progress towards more complex play styles autonomously. This issue has
been first addressed in some previous work (François et al., 2007) where the
robot adapts its behaviour on-line and autonomously to specific play styles of
the child in order to guide him/her towards more balanced interaction styles.

Furthermore, it would be very interesting to investigate how to tailor the
behaviours of the robot in order to guide the child towards more and more
complex levels of play, drawing inspiration from Child C’s profile, who started
with solitary play and progressively developed basic aspects of social play.
This study, preliminary in nature, indirectly explored various types of play
the children did proactively experience with the robotic pet (cf. Play Grids).
It may be feasible to enable the robot to guide the child towards some of these
play situations, very basic ones, such as simple cause-reaction play situations.
Ideally, at some point, the child would naturally move towards group 2 and be
able to engage in simple situations of social play (with both the experimenter
and the robot).

This study is preliminary in nature and more experiments would be required
to investigate further the potential of the approach. Moreover, classical quan-
titative microscopic indicators to analyse the videos, such as the number of
gestures imitated or the number of events related to joint attention are insuf-
ficient to extract all the relevant information and meaning about the child’s
specific profile according to the three dimensions Play - Reasoning - Affect.
It might be appropriate for children from group 1 but for those from group 2
and a fortiori group 3, a mesoscopic approach involving a qualitative analysis
is required. Note that, “mesoscopic” is an intermediary scale between “mi-
croscopic” and “macroscopic”. It is indeed necessary to look at the events
constituting an uninterrupted play as connected events, and as a whole. Note,
two similar play situations might actually happen to be different in the way
the child experiences them, such as for example, the fluency, the rhythm, the
coherence etc. This current paper has mostly focused on a mesoscopic qualita-
tive analysis for children from group 2 and group 3 because the authors were
interested in the emergence of specific play styles, questions or statements re-
lated to reasoning and events that could be objectively related to affect, and
not about the occurrences or the duration of each of them. A further step
would be to further develop and formalize the methodology for analysing the
results in order to facilitate its systematic use for further studies following this
experimental approach.
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7 Conclusion

This paper highlighted a new approach in the context of robot-mediated ther-
apy with children with autism. This approach draws its inspiration from
non-directive play therapy, notably encouraging the child’s proactivity and
initiative-taking. Beyond inspiration from non-directive play therapy, the ap-
proach introduces a regulation process. The experimenter, who takes part in
the experiment, can indeed regulate the interaction under specific conditions
detailed in Section 3; in brief:
a) to discourage repetitive behaviour,
b) to help the child engage in play,
c) to give a better pace to the game if it has already been experienced by the
child,
d) to bootstrap a higher level of play,
e) to ask questions related to reasoning or affect.

A long-term study was carried out with six children which highlights:
a) the capability of the method to adapt to the child’s specific needs and
abilities through a unique trajectory of progression with respect to the three
dimensions, Play - Reasoning - Affect;
b) each child made progress with respect to at least one of the three dimensions
progressively over the sessions;
c) with respect to the dimension of play and more precisely to the criteria of
solitary vs. social play, children can be categorized into three groups. Besides,
the children who managed to play socially experienced progressively higher
levels of play and constructed progressively more reasoning related to the
robot; they also tended to express some interest towards the robot, including
on occasions interest involving positive affect.

Nevertheless, for the children remaining playing solitarily, it may be necessary
to enable the robot to adapt more accurately to the child’s specific needs and
abilities, also being able to autonomously adapt on-line its own behaviour to
the child’s specific play style. Tailoring the behaviours of the robot consis-
tently and efficiently with respect to each child’s needs and abilities is a big
challenge. Ideally, the dyadic interaction with the robot should lead to a tri-
adic interaction with both the robot and the experimenter, when the child has
made sufficient progress. As a first step towards this goal, the robot should au-
tonomously help and guide the child experience various play situations, both
in levels and in nature. Projecting some features of basic triadic play, such as
cause-reaction play into a dyadic situation of play could be a first step in that
direction.

Finally, this paper presents a preliminary study towards a broader investi-
gation of this pioneering approach and further experiments will be carried
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out to confirm the promising results of this first long-term study. The first
author of the paper is currently carrying on experiments in the same school
with different children. Future work should also focus on formalizing more sys-
tematically, for this specific approach, appropriate techniques to analyze the
videos, including a mesoscopic qualitative analysis of the situations of play.

It is hoped that this study represents a step forward in the investigation of
robot-mediated therapy through play for children with autism.
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Kahn, P.H., Friedman, B., Pérez-Granados, D., Freier, N.G., 2006. Robotic
pets in the lives of preschool children. In: Interaction Studies, 7(3), 405-436.

Knox, V., Evans, A.L., 2002. Evaluation of the functional effects of a course
of Bobath therapy in children with cerebral palsy: a preliminary study.

43



Developmental Medicine and Child Neurology, 44(7), 447-460.
Kozima, H., Nakagawa, C., Yasuda, Y., 2005. Interactive Robots for

Communication-Care: A case study in Autism Therapy. Proc. 14th IEEE
Int. Workshop on Robot and Human Interactive Communication (RO-
MAN), 341-346.

Marti, P., Fano, F., Palma, V., Pollini, A., Rullo, A., Shibata, T., 2005. My
Gym Robot. Proc. AISB’05 Symposium on Robot Companion Hard Prob-
lem and Open Challenges in Human-Robot Interaction, 64-73.

Movellan, R., Tanaka, F., Fasel, I.R., Taylor, C., Ruvolo, P., Eckhardt, M.,
2007. The RUBY Project: A Progress Report. Proc. 2nd ACM/IEEE Int.
Conference on Human-Robot Interaction (HRI07), 333-339.

Nadel, J., Guerini, C., Peze, A., Rivert, C., 1999. The evolving nature of
imitation as a format for communication. In: J. Nadel and G. Butterworth
(Eds), Imitation in infancy, Cambridge University Press, pp 161-198.

Powell, S., 2000. Helping Children with Autism to Learn. David Fulton Pub-
lishers.

Robins, B., Dautenhahn, K., 2006. The Role of the Experimenter in HRI
Research - a Case Study Evaluation of Children with Autism Interacting
with a Robotic Toy. Proc. 15th IEEE Int. Workshop on Robot and Human
Interactive Communication (RO-MAN), 646-651.

Robins, B., Dautenhahn, K., Dubowski, J., 2005. Robots as Isolators or Medi-
ators for Children with Autism? A cautionary Tale. Proc. AISB’05 Sympo-
sium on Robot Companion Hard Problem and Open Challenges in Human-
Robot Interaction, 82-88.

Robins, B., Dautenhahn, K., Te Boekhorst, R., Billard, A., 2005. Robotic
assistants in therapy and education of children with autism: Can a small
humanoid robot help encourage social interaction skills? Universal Access
in the Information Society (UAIS). Springer-Verlag, 4(2), 105-120.

Robins, B., Dickerson, P., Stribling, P., Dautenhahn, K., 2004. Robot-
mediated joint attention in children with autism: A case study in robot-
human interaction. Interaction Studies, 5(2), 161-198.

Rogers, 1976. Client-Centred Therapy. Constable.
Ryan, V., 1999. Developmental Delay, Symbolic Play and Non-Directive Play

Therapy. Clinical Child Psychology and Psychiatry, 4(2), 167-185.
Ryan, V., 2004. Adapting non-directive play therapy interventions for children

with attachment disorders. Clinical Child Psychology and Psychiatry, 9(1),
75-87.

Ryan, V., Needham, C., 2001. Non-directive Play Therapy with Children Ex-
periencing Psychic Trauma. Clinical Child Psychology and Psychiatry, 6(3),
437-453.

Ryan, V., Wilson, K., 1996. Case Studies in Non-directive Play Therapy.
Baillière Tindall.

Schatzman, L., Strauss, A.L., 1973. Strategy for recording. In: Schatzmann, L.,
Strauss A.L. Eds. Field research. Strategies for a natural sociology. Prentice
Hall. pp 94-107.

44



Shibata, T., Wada, K., Saito, T., Tanie, K., 2005. Human interactive Robot
for Psychological Enrichment and Therapy. Proc. AISB’05 Symposium on
Robot Companion Hard Problem and Open Challenges in Human-Robot
Interaction, 98-109.

Tanaka, F., Cicourel, A., Movellan, J.R., 2007. Socialization between toddlers
and robots at an early childhood education center. Proc. of the National
Academy of Sciences of the USA (PNAS), 104(46), 17954-17958.

Tanaka, F., Fortenberry, B., Aisaka, K., Movellan, J.R., 2005. Developing
Dance Interaction between Qrio and Toddlers in a Classroom Environment:
Plans for the First Steps. Proc. 14th IEEE Int. Workshop on Robot and
Human Interactive Communication (RO-MAN), 223-228.

Tanaka, F., Movellan, J.R., Fortenberry, B., Aisaka, K., 2006. Daily HRI Eval-
uation at a Classroom Environment: Reports from Dance Interaction Ex-
periments. Proc. 1st Annual Conf. on Human-Robot Interaction (HRI), 3-9.

Werry, I., Dautenhahn, K., 1999. Applying Mobile Robot Technology to the
Rehabilitation of Autistic Children. Proc. SIRS99, 7th Int. Symposium on
Intelligent Robotics Systems, 265-272.

Werry, I., Dautenhahn, K., Ogden, B., Harwin, W., 2001. Can Social Interac-
tion Skills Be Taught by a Social Agent? The Role of a Robotic Mediator
in Autism Therapy. Proc. 4th Int. Conference on Cognitive Technology:
Instruments of Minds (CT2001), 57-74.

45



Faculty of Engineering & Information Sciences 
 
 
 
 

Real Time Recognition of Human-Robot Interaction 
Styles with Cascaded Information Bottlenecks 

 
 
 

27 May 2008 
 

 
 
 

Dorothée François 
Daniel Polani 

Kerstin Dautenhahn 
 

 
 

 
 
 

 
 

Technical Report 478 
 

School of Computer Science, University of Hertfordshire 
 

May 2008 

nehaniv
Typewritten Text
APPENDIX E



Real Time Recognition of Human-Robot Interaction
Styles with Cascaded Information Bottlenecks

Doroth́ee François, Daniel Polani, Kerstin Dautenhahn
Adaptive Systems Research Group,

School of Computer Science, University of Hertfordshire
College Lane, Hatfield, AL10 9AB, Herts, UK

Email: d.francois,d.polani,k.dautenhahn@herts.ac.uk

Abstract—We present a novel algorithm for pattern recogni-
tion, the Cascaded Information Bottleneck method. We apply it
to real time autonomous recognition of human-robot interaction
styles. This method uses an information theoretic approach and
enables the progressive extraction of relevant information from
times series. It relies on a cascade of bottlenecks, the bottlenecks
being trained independently, one after the other, according to
the existing Agglomerative Information Bottleneck algorithm.
We show that a structure for the bottleneck states along the
cascade emerges, which enables to extrapolate unseen data. This
algorithm is tested in the context of human-robot interaction
and, particularly, play between children with autism and an
autonomous robot. We demonstrate that it can classify interaction
styles in real time, with a good accuracy and a very acceptable
delay.

Index Terms—human-robot interaction, pattern recognition,
information theory, autism.

I. I NTRODUCTION

This study is part of the Aurora project [1], an ongoing
long-term project investigating the potential use of robots as a
therapeutic toy for children with autism. One main stream of
this project focuses on developing methods enabling the robot
to analyze in real time the interaction styles and adapt its
own behaviour appropriately with respect to a child’s specific
needs and abilities1. As a first step towards this goal, the robot
should be able to recognise in real time the gentleness of the
interaction and the rhythm of play. This paper presents a novel
recognition algorithm, the cascaded information bottleneck
method, which enables to recognise in real time the interaction
styles. The method uses an information theoretic approach and
takes inspiration from the “Information Bottleneck Method”
developed by Tishby et al. in [13]. It may be used for various
applications of time series analysis for pattern recognition and,
more precisely, in our context, for the recognition of various
interaction styles. Importantly, this work goes beyond prior
work that either classified and characterized interactions off-
line, i.e. after the interactions had taken place, or relied on
explicit criteria tuned by hand (vs. automated training phase
of the recognition algorithm). It also goes beyond previous
work of the authors which enabled real time recognition of
interaction styles with respect to one criterion, the gentleness,
using a different method, based on self-organizing maps.

1We consider the child’s abilities as they are expressed through interaction
with the robot, resulting in different play styles.

The remainder of the paper is structured as follows. Sec-
tion 2 details the motivation of this research. Section 3
summarizes related work. Section 4 presents the Cascaded
Information Bottleneck Method. The implementation is de-
tailed in Section 5 and experiments are described in Section 6.
Section 7 analyses the results which are discussed in Section 8.
Conclusion and Future work close the paper (Section 9).

II. M OTIVATION

Children with autism have specific needs and abilities and
autism should be considered as a spectrum disorder2 whose
main impairments highlighted by the National Autistic Soci-
ety3 are: impaired social interaction, impaired social commu-
nication and impaired imagination.

Through play, children can engage in diverse situations and
experiment in various domains, such as abstract, imaginative,
communication and social skills. It is hoped that, through play,
children with autism may experience and develop some basic
social and communicative skills. Children with autism often
encounter obstacles to express their play potential and play
should be facilitated to help them reach progressively higher
levels of interaction. In child-robot interaction, a first step
towards this goal is to enable the robot to recognize the specific
child’s interaction style in real time, so that it can adapt its own
behaviour appropriately and eventually influence positively the
child’s behaviour. Here, we consider two criteria for qualifying
the interaction styles, namely the gentleness and the rhythm of
the interaction. An interaction is classified as ‘gentle’ (resp.
‘strong’) if the participant strokes the robot gently, without
signs of force (resp. with signs of force). The rhythm of
interaction is categorised into four classesSi i = 0...3, defined
by their typical periodicity of interaction T (in seconds): i)
S0: ‘very low’ (T > 15 seconds), ii) S1: ‘middle inferior’
(5 < T ≤ 15), iii) S2: ‘middle superior’ (1< T ≤ 5), and
iv) S3: ‘very high’ (T ≤ 1 second).

III. R ELATED WORK

The role of tactile human-robot interaction in educational
and therapeutic applications has been well highlighted by long-
term studies with the seal robot Paro which have proven that
specific everyday life situations exists in which human-robot

2Diagnostic and Statistical Manual of Mental Disorders,4th Ed., 1994
3NAS: http://www.nas.org.uk



interaction can have a positive effect on well-being of human
beings [10] and even play a role in a therapeutic context
of cognitive and physical rehabilitation [6]. The Huggable
robot, a teddy-bear like robot, equipped notably with a full
body sense of touch, has proven to be a promising support to
investigate the quantitative characterisation of social affective
content of touch [12]. Offline characterisation of interaction
styles in general, moreover, has been investigated recently with
diverse approaches. In [9], Scassellati focused on providing
quantitative and objective measurements to assist in the di-
agnosis of autism. Measurements refers to the position in the
room, vocal prosody and gaze pattern – whose characterisation
relies on linear discriminant analysis. Kanda et al. conducted
a study [4] that highlighted the feasibility to link quantitative
robot and human’s data characterizing body movements with
a subjective evaluation made by the participant. Later, in [7]
Salter et al. showed the possibility, in the context of child-robot
interaction, to reflect some traits of personality of the children
with an offline clustering technique based on the empirical
probability distribution of the activation of the sensors.

Concerning real time classification of interaction styles, in
[8], Salter et al. have presented a real time simple recognition
algorithm for four interaction styles (‘alone’, ‘interacting’,
‘carrying’ and ‘spinning’) using the robotic platform Roball.
The algorithm is based on a decision tree whose conditions
are set up manually, by visual inspection of sensor data. In
[2], Derakhshan et al. present an interesting real time classi-
fication algorithm of interaction styles for children playing
on an adaptive playground that is made of tiles equipped
with sensors. The algorithm relies on a multi-agent system
approach of BDI (Belief—Desire—Intention) in combination
with neural networks using supervised learning. It shall be
further noted that in the slightly different context of gesture
recognition, Hidden Markov Models have been largely used
for real time recognition [5].

IV. T HE CASCADED INFORMATION BOTTLENECK METHOD

Background: The Information Bottleneck Method [13]
is a clustering method based on an information theoretic
approach which purpose is to extract the relevant information4

in a signalx ∈ X that is, extract features of a random variable
(r.v.) X that are relevant to the prediction ofY . This problem
is modeled by the following Bayesian network with Markov
condition: X̃ ←− X ←− Y where X̃ is the variable that
extracts information aboutY throughX. The rationale is that
the best trade-off between the compression of the signal and
the preservation of the relevant information is the one that
keeps a fixed amount of relevant information about the relevant
signal Y while minimizing the number of bits from the original
signal, i.e. maximizing the compression. The Agglomerative
Information Bottleneck algorithm [11] maximizes the mutual
information betweenX̃ andY and induces a hard partition of
the data.

4The relevant information being defined in this context as the information
that the signalx ∈ X provides about another signaly ∈ Y .

The principle: Based on the Information Bottleneck
Method, we have developed a novel recognition algorithm
particularly adapted for time series analysis. Let x∈ X be
the time series input signal of lengthl, x = [x0, ..., xl−1].
It is possible to findk and S ∈ N, with l = k ∗ S,
such as x can be divided into S disjoined parts of car-
dinality k, X

s
, s = 0, ..., (S − 1) in the following way :

x0 ... x
k−1 x

k

... x2k−1 ... x
k∗S−1

X0 X1

The Cascaded Information Bottleneck method relies on the
principle that the relevant information can be progressively
extracted from the time series with a cascade of successive bot-
tlenecks sharing the same cardinality of bottleneck states but
trained independently. The agglomerative bottleneck algorithm
is applied for each bottleneck successively, the first one being
trained in the standard way while the next ones depend on
the previous bottleneck states, as the following graph shows:

X̃
S−1

...X̃2X̃1X̃0

X
S−1

...X2X1X0

Y

Extrapolation: The Cascaded Information Bottleneck
method progressively extracts the relevant information from an
input sampleX = [X0, ..., Xs−1] by a recall on the successive
components (X0 for the first step of the cascade(X̃s−1, Xs)
for the other stepss). In the case of an unseen pair(x̃s−1, Xs)
at steps, the cascade can a priori make no inference onX̃s

because there is no preexisting default continuation of the
cascade due to the fact that the bottlenecks have been trained
independently. For such cases, it is necessary to introduce a
‘default’ way leading fromX̃s−1 to X̃s and, for this purpose,
we apply a ‘natural’ reorganisation of the bottleneck states
at each possible steps (i.e. a one to one mapping of the
bottleneck states at steps − 1 and the ones at steps, that
we call a permutation). For this purpose, we introduce the
following measured(s−1,s) allowing to directly compare the
reorganised bottleneck states from steps with those from step
s− 1. Let X̃s−1 (resp.X̃s) be the set of bottleneck statesx̃s−1

(resp.x̃s) andp(x̃s−1) (resp.p(x̃s)) the empirical probability;
for each permutation r of the bottleneck statesX̃s:

d(s−1,s)(r)=
∑

x̃
s−1∈X̃

s−1
p(x̃s−1) log p̃(X̃s=r(x̃s−1)|X̃s−1=x̃s−1)

(1)
Note that if p̃(X̃

s
= r(x̃

s−1)|X̃s−1 = x̃
s−1) = 0 then, by

convention,d(s−1,s)(r) is ∞. The permutation of the bottleneck
states that extracts the most similarity between bottleneck
states at steps− 1 and those at steps is given by:

R(s− 1, s) = arg min rd(s−1,s)(r) (2)

R(s-1, s) is the ‘default’ path betweeñXs−1 and X̃s, i.e. the
criteria for extrapolating an unseen event at steps.



V. I MPLEMENTATION

A. Implementation

Preprocessing:In our work, we are studying interactions
of children with an Aibo robot (Sony). In this context, five of
the robot’s external tactile sensors play a major role, namely
the head sensor, the three back sensors and the chin sensor.
The criteria that we consider (gentleness and the rhythm of the
interaction) do not necessitate to treat the sensors separately
(i.e. we can remove the spatial information on the identity
of the sensor activated). The input data is therefore a time
series of a global parameter g which represents the overall
activity on the external sensors, respectively the five ones for
the rhythm of the interaction and the four continuous ones for
criteria gentle/strong. The variable g is build by normalizing
the sensor data, summing and binning them quantitatively (i.e.
according to their values) into five bins.

Extra-conditions for the training:The constraints are the
following: a) for gentle/strong, the algorithm does not learn
null samples (i.e. samples made of null events only) , b) for
the rhythm of interaction, we constrain the system to deal only
with samples whose first component is not null . In both cases,
a sliding window proceeds on the sensor data time series and a
first selection is made before the sample can enter the cascade
with respect to the condition explained above.

Parameters for the cascade:There are four main param-
eters:l (length of the input vector),k (length of the individual
subsequences),S (length of the cascade ),m (number of
bottleneck states). For the rhythm of interaction,l = 472
(equivalent to 15.1 seconds),k = 2, S = 236, and m = 6.
For the criterion gentle/strong, the corresponding parameters
are: l = 50 (1.6 seconds),k = 2, S = 25 andm = 4.

Postprocessing:The postprocessing is straightforward
and relies on a ‘winner takes all’ principle: the last bottleneck
state of the cascadẽxS−1 equivalent to the input signal has
conditional probabilities on the output stateY , p(y|x̃S−1). The
selected (winner state) is defined byarg maxy∈Y p(y|x̃S−1).

B. Features of the trained cascade
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Fig. 1. Conditional entropyH(X̃
s+1|X̃s

)

The mutual information is 0.8 bit for the criteria gen-
tle/strong and 1.9 bits for the rhythm of the interaction. The

conditional entropy Fig. 1H(X̃s+1|X̃s) is globally decreasing
over the cascade, pretty quickly, which suggests that a structure
is progressively and rapidly emerging over the cascade. For
the rhythm of interaction,H(X̃s+1|X̃s) has some small local
peaks though, both at the very beginning of the cascade and at
the very end5, which suggest that at these steps s, the input data
Xs may influence a bit more in the choice of next equivalent
state X̃s+1. This measure is pretty directly linked to the
reorganisation measure for extrapolatingds−1,s(R(s − 1, s))
(equation (1) and (2)) which presents, respectively to each
criterion of interaction, similar shapes (with mean, resp. 0.037
bits for Gentle/Strong and 0.129 bits for the rhythm of inter-
action). In the rest of the paper, the algorithm will extrapolate
between step 5 and 24 (resp. 5 and 216) of the cascade for
the gentleness (resp. rythm of interaction).

VI. EXPERIMENTS

The experiments aim at assessing statistically: a) the sound-
ness of the recognition of interaction styles by our algorithm,
i.e., i) for the criterion ‘gentleness’, whether a behaviour that
has been classified as gentle (resp. strong) by a human is
indeed going to be classified as gentle (resp. strong) by our
algorithm, or ii) for the rhythm of interaction, whether a
frequency of interaction that has been tagged by a human
is indeed going to be recognised as such by the algorithm.
b) the delay for the recognition of local events. Importantly,
the criterion ‘gentle/strong’ characterizes local events, and the
algorithm should be able to recognise each specific event ‘gen-
tle’ or ‘strong’ within a short delay. In contrast, the criterion
‘rhythm of the interaction’ requires the algorithm to classify
mid-term time scale events. This study deliberately focuses on
such different criteria in order to show the flexibility of the
algorithm. The algorithm has been tested with data generated
in two different contexts, firstly under laboratory conditions
and secondly during real interaction between children with
autism and an autonomous robot.

A. The artifact

The artifact, the ERS-7 Aibo (Sony), reacts autonomously
to the participant’s tactile stimulations on any of the five
external sensors detailed in Section 5 with simple behaviours
programmed in URBI. Sensor data are sent to a laptop through
a wireless connection every 32ms.

B. Experimental setup under ‘laboratory conditions’

1) Participants: Two adults took part in the trials in order
to also assess the robustness of the method.

2) Procedures:The experiments in the laboratory are used
as a first step in the statistical assessment of the soundness of
the recognition of the interaction styles. These trials involve
one participant at a time. The participant is asked to interact
with the robot for a few minutes in apredefined way constrain-
ing either the gentleness or the rhythm of the interaction.

5Note that the small local peaks at the end of the cascade may reflect the
importance of the last steps for distinguishing the classes S0 and S1.



Rhythm of the interaction:The predefined ways contain
only ‘pure styles of interaction’, i.e one class6 exclusively.

Gentle/strong:The predefined ways are of two types. In
a first step, it is pure styles exclusively7. In a second step, the
participant is asked to alternate gentle and strong behaviour
and, just before generating the first event of the new class,
he/she must name the style (i.e. “gentle” or “strong”). All
the sessions are video recorded and this tagging enables to
determine very precisely the transitions for a further measure
of the delay of the recognition process.

C. Experimental setup in a school

A further step in the validation of the algorithm is the testing
with data obtained under natural situations, that is, in our
context of study, involving interactions between children with
autism and a robot in an environment that the children are
familiar with, i.e. their school.

1) Participants: The experiments took place in Colnbrook
School, Hertfordshire, UK, a school dedicated to children with
moderate learning disabilities. Five children with a diagnosis
of autism took part in the experiments.

2) Procedures:These experiments took place in a small
classroom dedicated to the study, one child at a time being
present in the room. Each child was invited to play freely
for several minutes with the robot (the duration of play de-
pended on the child’s needs and abilities) in an unconstrained
environment. The experimenter was present in the room and
answered the child’s questions. The experimenter also, on
occasion, rewarded the child verbally.

D. Measures

The experiments were all videorecorded and sensor data
were stored. Note, the validation of the algorithm must be
assessed offline but the recognition algorithm is designed to
operate in real time.

1) Samples excluding transitions from one class to another:
These samples are useful for testing the ability of the algorithm
to recognise the actual interaction style. Sensor data are
preprocessed according to the procedure detailed in section 5
and the profile of the classification by the algorithm can
be analysed with a confusion matrix. This matrix displays
the probability distribution that events from classSi are
recognised by the algorithm as events of classS′i ( i = 0
or 1 for gentle/strong,i = 0...3 for the rhythm of interaction).

2) Samples with transitions for the criterion gentle/strong:
These samples enable us to test the ability of the algorithm to
recognise a transition and reach, after a short transition phase,
a new equilibrium phase. One can model this process by a
temporal curve that would indicate the state of the system
for a transition happening at timet0. Three typical domains
can be identified: fort < t0 the curve is constant, indicating
a stable state; fromt = t0, the curve’s value alternates to
indicate an hesitation between the two possible states (thus
identifying a change in the behaviour observed); fromt = t0+

6very low, middle inferior, middle superior, or very high.
7gentle or strong only.

τ the curve would keep the same value (the new state). Ideally,
the second phase should be very short (i.e.τ is very small).
We will study three typical measures here: a) the number of
transitions recognised by the algorithm; b) the time elapsed to
reach the new equilibrium state, c) the ratio of errors made
within this new equilibrium state. Note, a transition will be
considered broadly as either a transition from a gentle (resp.
strong) behaviour to a strong (resp. gentle) one, or from a state
where no classification occurred (i.e. no interaction occurred
during the past 1.6 seconds) to gentle or strong.

3) Samples with hybrid behaviours for the rhythm of inter-
action: For this criterion, some samples generated in school
can be hybrid, the hybridity originating from i) a local ten-
dency different from the global one, or ii) the coexistence of
features from two neighbouring styles. In order to encapsulate
hybrid behaviours, the human classifies the behaviours on a
‘two choices’ basis, i.e. he/she selects either the two styles
characterising the hybridity or one single style when the be-
haviour is not hybrid. In the context of hybridity, we consider
the algorithm’s classification is successful if it agrees with one
of the two choices made by visual inspection.

Practically, for ‘2’) and ‘3’) the video and graphs of
the temporal global variable are first manually tagged. In a
second step, the classificationsSi resulting from the manual
tagging are compared with the classificationsS′i made by the
algorithm.

VII. R ESULTS

A. Criterion: Gentle/Strong

1) Training set of data: The 20, 018 samples used for
the training were classified by the algorithm with an overall
success of97.82% and, respectively, for gentle and strong,
96.83% and98.81%.

2) Samples excluding transitions:They constitute1 hour2
minutes49 seconds of interaction.100, 111 samples have been
classified with a ratio of success for correct classification of
0.948. 97.7% of samples were classified without extrapolation
with 95.22% of success while the samples classified with
extrapolation (3.3%) were well classified in75.54% of cases
which, considering that it results from an extrapolation, is
quite a good result. Note that the parameters of the cascaded
bottleneck method were chosen in such a way to have a good
balance between the extrapolation and the precision, which is
reflected here in the low percentage of cases extrapolated.

3) Samples with transitions under laboratory conditions:
The four runs constitute 19 minutes and 40 seconds of in-
teraction to analyse. They contain53, 192 samples to classify
and 0.01% of the samples were not classified because they
could not be extrapolated by the algorithm8. 212 transitions
were to be recognised,99.1% of which were indeed well
classified by the algorithm9 with an average delay of 0.17

8these samples had to be extrapolated outside the range of steps considered
for the extrapolation.

9A transition is considered as wrong classified if the transition phase is
very long compared to the new equilibrium phase.



seconds. The probability distribution of the delay is displayed
in Fig. 2. The curve grows very rapidly, thus showing that most
of the delays are very small. Transitions recognised without
any delay occur particularly in the case of a transition from
no event to classify to any event to classify. The longest
delay is2.05 seconds, which we consider very acceptable for
human-robot interaction kinesics. The average error ratio in
the equilibrium phase is0.02 and the probability distribution
is displayed in Fig. 3. Here again, the curve grows rapidly and
shows that the probability of the highest error ratios is very
low which remain acceptable for real human-robot interaction.
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Fig. 2. Probability Distribution of the delay for recognising the transition.
We display the probability that an event is recognised within (less or equal) n seconds for
a given n. The delay corresponds to the length of the transition phase when a transition
occurs.
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Fig. 3. Probability Distribution of the error ratio for the equilibrium phase.
The ratio measures the number of errors of classification made during a phase of
equilibrium divided by the number of samples to classify during this phase. The figures
displayed give, for a given r, the probability that the error ratio is inferior or equal to r.

4) Samples generated by the children in the school:Videos
from five different children were analysed, which constitute
12 minutes and 52 seconds of interaction. These runs contain
6, 660 samples to classify:97.49% of these samples have been
classified by the algorithm. These samples contain 45 transi-
tions. 91.1% of these transitions were indeed well classified
by the algorithm within an average delay of 0.17 seconds. The
probability distribution of the delay is represented in Fig. 2.
The curve grows very rapidly, thus showing that most of the
delays are very low. Transitions recognised without any delay
occurs, and, at the far end, the highest delay is1.54 seconds,
which is very acceptable for human-robot interaction kinesics.
The mean error ratio in the equilibrium phase is0.1 and the
probability distribution of this ratio is displayed in Fig. 3. Here
again, the curve grows rapidly. It is worthy of note that the
highest value obtained is 0.44 and the second one is much
lower (0.26) which indicates that the first highest value can

be seen as an extraordinary case. Looking at the sequential
classification of the results, it appears that this highest error
ratio was obtained while a child interacted in a very instable
way that is, within 1.76 seconds three successive transitions
were observed that are 1) no event to gentle (gentle phase
lasted 1.37 seconds), 2) gentle to strong (the phase with strong
style lasted only 0.26 seconds), 3) strong to gentle. It is
the strong phase, after the transition from gentle to strong
behaviour that was recognised with the highest error ratio
(0.44), but it lasted for such a short time that it is not really
a concern here (0.26 seconds is very low compared to the
typical time for human-robot interaction which usually lasts a
few seconds). Therefore, we can consider to omit this highest
value in the probability distribution and looking at the resulting
values, the results are good and comparable to the results
obtained in the laboratory.

B. Criterion: Rhythm of the interaction

1) Training set of data:It constitutes 36 minutes 34 sec-
onds of interaction and contains4, 865 samples to classify
(resp.,450 for S0,1, 208 for S1,1, 484 for S2 and1, 723 for
S3). 99.98% of these samples are well classified; the ratio of
success specific to each class is displayed in Fig. 4.

 S’0 S’1 S’2 S’3 
S0 1 0 0 0 
S1 0.0008 0.9992 0 0 
S2 0 0 1 0 
S3 0 0 0 1 
 

Fig. 4. Confusion Matrix for the training set.The ratio is the one among events
from typeSi. Si represents the real class andS′i the recognised class,0 ≤ i < 4.

2) Samples generated under laboratory conditions:They
constitute 51 minutes 44 seconds of interaction and contain
5, 395 samples to classify (resp.1, 017 for S0, 855 for S1,
1, 933 for S2 and 1, 590 for S3) 91.16% of which were
classified with an overall ratio of success of0.922. 99.4%
of the samples not extrapolated were well classified, and
76.41% of samples classified through extrapolation were well
classified. Fig. 5 displays the confusion matrices.
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Fig. 5. Confusion Matrices for pure sets of data for, respectively, non
extrapolated and extrapolated data.see Fig. 4 for more details.

3) Samples generated by the children in the school:Three
runs of interaction were used for the validation of the rhythm
of interaction in a real situation, from three different children.
They constitute 14 minutes 41 seconds of interaction and con-
tain 5, 288 samples to classify.91% were classified (including
26.81% that had to be extrapolated) and 93% were classified
correctly. Among samples classified with no extrapolation, the



ratio of success for a sound classification was0.96. while for
samples classified with extrapolation, it was0.84.

VIII. D ISCUSSION

The algorithm has proven sound for the recognition of
the two criteria of interaction. Concerning the criterion gen-
tle/strong, results show that the two classes are well recognised
and the delays very acceptable for human-robot interaction.
The extrapolation works well, which shows the capability of
the system to make a sound decision in case of unseen events.
These results can be compared with a previous study of ours
where we used Self-Organising Maps to classify this criterion
of interaction [3], whereby the average delay to recognize
transitions was much higher and the postprocessing a bit
heavier to handle with. Importantly, one might wish to define
the styles slightly differently to the definition given here, such
as, for instance, focusing on more details (in order to describe
substyles for instance). This can be easily done by adjusting
relevant parameters, mainly the number of bottleneck states,
the binning and the training sets which condition the learning.

Concerning the rhythm of interaction, the algorithm has
proved very capable of classifying pure samples of data, and
has shown the ability to adapt to the real context of often
hybrid behaviours. Furthermore, in slight contrast with Hidden
Markov Models which are typically used to identify short-term
events, this algorithm has proven, for the rhythm of interaction,
capable to classify mid-term time scale events.

This method is designed for real time use during natural
human-robot interaction and little research has been done so
far on real time recognition of tactile interaction styles. Salter
et al.’s adaptation algorithm [8] was a first important step
towards real adaptation. Yet, the system did not learn its own
categorisation, which was completely described by a hand-
tuned decision tree. In the present study, the recognition and
the decision are made algorithmically, after a real learning
phase and a capacity to extrapolate unseen events, with very
small delays. Furthermore, the method is very easy of use and
can be tuned easily to adapt to other criteria of interaction. In a
broader application, it may be powerful for the analysis of time
series from other human-robot interaction or other contexts.

IX. FUTURE WORK AND CONCLUSION

In this paper, we have developed a novel method for time
series analysis in the context of human-robot interaction. This
method, namely the Cascaded Information Bottleneck method,
has its roots in the Information Bottleneck method developed
by Tishby et al. [13] and uses the agglomerative bottleneck
algorithm [11] to build individual bottlenecks linked succes-
sively within a cascade. This cascade has the property of
extracting progressively the information of the time series
and an adequate measure for extrapolating unseen cases has
been highlighted. We have shown the soundness of the method
through extensive experiments, using successively samples of
data generated in laboratory conditions and samples from
natural situations of child-robot interaction in a school for
children with autism. Results have shown the ability of the

algorithm to classify accurately short-term time scale events
within a short delay as well as mid-term time scale events. This
ability to classify in real time the interaction styles is a first
step towards the challenging goal of enabling an autonomous
robot to influence positively children’s interaction styles to
guide them progressively towards higher levels of interaction.
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