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Abstract. In this paper we present our ongoing work on the control of a tendon
driven robotic hand by an adaptive learning mechanism evolved using a simulator
developed over the last years. We present the “ligand-receptor” concept that can be
easily used by artificial evolution to explore (a) the growing of a neural network,
(b) value systems and (c) learning mechanisms systematically for a given task (i.e.,
grasping). The proposed neural network allows the robotic hand to explore its own
movement capabilities to interact with objects of different shape, size and material
and learn how to grasp them. As the evolved neural controller is highly adaptive,
it will allow us in the future to systematically investigate the interplay between
morphology and behavior using the same, but adaptive neural controller.
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1. Introduction

We present a common basis to investigate the growing of a neural network, value systems
and learning mechanisms, the so-called: “ligand-receptor” concept to teach a robotic
hand (with 13 degrees of freedom, complex dynamics provided by a tendon driven mech-
anism of actuation and different types of tactile sensors) to grasp objects. In our imple-
mentation, receptors abstract proteins of specific shapes able to recognize specifically
their partner molecules. Ligands, on the other hand, are molecules moving around, which
also have specific shapes, and are basically used as information carriers for their recep-
tors. The shape of a receptor determines which ligand can stimulate it, much in the same
fashion, as notches of jigsaw pieces fit exactly into the molds of other pieces. When a
receptor is stimulated by a matching ligand (signaling molecule), the following mech-
anisms can be elicited on a neuron: connect to a neuron expressing a partner receptor,
release a ligand molecule, express a receptor(see [1]). As a result of the interplay of these
processes, the specification of the neural network (i.e., number of neuronal fields, size of
each neuronal field, a set of receptors expressed by each neuronal unit, a set of signals
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Figure 1. Tendon driven robotic hand. (a) Experimental setup. (b) and (c) Grasping different objects.

that can be released by the sensor neurons) was obtained and then embedded as a neural
controller for a robotic hand.

In the following section we describe the tendon driven mechanism of our robotic
hand, and the position, type and number of sensors covering it. In section 3 we specify
the robot’s task. In section 4 we explain in more detail the “ligand-receptor” concept and
its implications. Then we present some experimental results as well as a discussion and
future work.

2. Robotic setup

Our robotic platform can be seen in Fig. 1a. The tendon driven robot hand is partly built
from elastic, flexible and deformable materials. For example, the tendons are elastic, the
fingertips can be covered with deformable materials and between the fingers there is also
deformable material (see [2] and [3]).

The hand apply an adjustable power mechanism develop by [4]. The wire’s guide
is flexible, and moves proportionally to the load applied to the fingertip (see Fig. 2b).
When the load is small, the guide moves toward the fulcrum and the fingertip moves
faster with low torque. In contrast, when a big load is applied to the finger the guide
moves away from the fulcrum, resulting in a higher torque motion. Due to the spring-like
characteristics of the wire’s guide, the finger’s joints gain flexibility likes the human hand
fingers. The relationship between the torque T, which is generated in the fingertip, and
the force F, which pulls the wire, is:

T = LFsin(θ1) (1)
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(a) (b)

Figure 2. (a) Schematic design. (b) Three functions of the adaptive joint mechanism.

Here, the angle θ1 is defined as an angle θ2 with the fulcrum-action line and a
fulcrum-pulling force line, an angle β with the fulcrum-guide roll line and a pulling force
line, and a distance x from the fulcrum to a point of lever (guide roll):

θ1 = Tan−1(
xsin(θ2 − β)

L− cos(θ2 − β)
) (2)

If the spring is connected near the fulcrum β is a constant value. The distance x is
given by the following equation:

x =
Fcos(θ1 + θ2 − β)

k
(3)

θ1, θ2 and L are defined in Fig. 2a, respectively. In a manipulator with multiple joints,
the torque needed at the root joint is larger than those in the extreme joints. In the tendon
driven mechanism, the torque from the other joints interferes with the torque at the root
joint, resulting in a large torque at the base of the manipulator. In order to acquire in a
simple way the passive motion function in addition to the adjustable velocity and torque
functions, the current robotic hand uses a spring type wire as an elastic guide for the
inner wire. If the load does not require the application of a high torque on the finger, the
wire remains straight. In the case of a heavy load that requires more torque, the outer
wire bends drawing the inner wire taut (see Fig. 2b). The outer wire is made of stainless
steel and the inner wire is nylon.

The robotic hand has 13 degrees of freedom that are driven by 13 servomotors and
has been equipped with two types of sensors: flex/bend and pressure sensors.

2.1. Bending sensors

For the flex/bend sensor, the bending angle is proportional to its resistance and responds
to a physical range between straight and a 90 degree bend, they are placed on every finger
as position sensors.

2.2. Pressure sensors based on pressure sensitive conductive rubber

We developed a new type of pressure sensors based on pressure sensitive conductive
rubber CS57-7RSC (CSA). The conductive rubber contains conductive carbon particles
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(a) Conductive rubber diagram (b) External pressure applied

(c) External pressure applied

Figure 3. Pressure sensors based on pressure sensitive conductive rubber. (a) Diagram. (b) Inner resistance
change due to external pressure applied on the conductive rubber. (c) Relation between the pressure applied and
the voltage output from the pressure sensor. The voltage increases as the resistance in the conductive rubber
decreases with the pressure applied at 9 Volts.

(see Fig. 3a) that changes the material resistance according with the pressure applied on
its surface (see Fig. 3b). The pressure sensor is based on a voltage divider that traduces
the changes in resistance into voltage. The voltage-pressure relationship is presented in
Fig. 3c. The pressure sensors are positioned on the palm, the fingertips, in the middle of
the fingers and in the back of the robot hand as shown in Fig. 5.

2.3. Control

We control the robot hand using a TITech SH2 controller. The controller produces up to
16 PWM (pulse with modulation) signals for the servomotors and acquire the values from
the bending and pressure sensors. The motor controller receives the commands through
an USB port. We used two computers: one hosts the neural network and communicates
with the sensorimotor control board to acquire the sensory data and produce the motor
commands, the other computer is in charge of the visualization of the neural network.
When learning takes place, the two computers exchange the synaptic changes via TCP/IP.
The sensorimotor data was stored in a time series file for off-line analysis. Using this
setup we were able to see the actual behavior of the robot (observer’s perspective), we
had access to the sensorimotor data generated by the interaction of the hand with objects
in the environment through the sensorimotor control board and additionally we could
see inside the neural network and investigate how the learning mechanism, the sensory
input and the interaction with the environment were shaping the neural structure (robot’s
perspective).
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Figure 4. Ligand receptor concept.

3. Robot task

A typical experiment was performed as follows: at the beginning, the robot hand was
initialized with all the fingers fully extended. Then an object was placed on its palm
whose weight was high enough to activate the pressure sensor located in the palm, the
hand started to explore its own movements by randomly moving the fingers, increasing
and decreasing the position of the servo motors produced the pulling of the tendons,
which made the fingers move back and forth . Eventually the fingers encountered the
object, and some pressure sensors were activated, by comparing the previous pressure
readings with the current ones the learning mechanism taught the hand about the success
of its exploratory efforts and finally the hand grasped the object successfully. After that
the hand remained grasping the object until it was taken away from it, in that case the
sensory input was reduced to zero and the hand returned to the initial state with the
fingers fully extended.

4. Ligand-receptor concept

To be able to explore both the connectivity, the learning, and the value systems, we use
the ligand receptor concept (see [5] and [6]). As can be seen in Fig. 4 a couple of ligand-
receptor such as signal0 and receptor0 can be used to explore the connectivity, while
a couple of ligand-receptor such as signal2 and receptor2 can be used for learning a
specific task. There is not possible interaction between a couple of ligand-receptor such
as signal1 and receptor3.

We define the probability of an interaction between a ligand and a receptor as the
affinity, which calculates an artificial binding between the two entities. This affinity pa-
rameter aff determines which molecule (signaling molecule) interacts with which partner
(receptor). To each signal and receptor a real valued number and a function are assigned.
This function is implemented as follows:
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Figure 5. Neural structure and its connections to the robot’s sensors and motors. Neuronal areas: (a) sensor-
Field. (b) hiddenField. (c) motorField. (d) motorActivities.

a12 = faff (aff1, aff2) = Exp−α(aff1−aff2)
2

(4)

where:
aff1, aff2 are the real valued numbers representing the geometric properties of the sub-
stances. α is the affinity parameter with positive values. If α is high, the two substances
have to be very similar (i.e., aff1 ∼ aff2) to get a high functional faff value, if α is
low, the substances can be more different to still get high faff values. Molecules com-
pete for a docking site (receptor) and their success of binding depends on the affinity
between the molecule and the docking site and on the concentrations of the competitors.
Figure 4 shows examples of pairs of ligands and receptors with low and high affinity as
well as their potential use.

4.1. Exploring the connectivity of the neural network

At the moment of the creation of the neural network, the system automatically assigns
a set of receptors to each neuron and releases a signal to start connecting the neural
network. Then the system attempts connections between neurons based on the receptors
expressed by each neuron. All the weights were initialized randomly from a gaussian
distribution with mean=0.0002 and sigma=0001 (See Fig. 6a).

For instance, the system will create a synaptic weight to link a neuron from the hid-
denField (see Fig. 5b) to a neuron in the motorField (see Fig. 5c) only if the two neurons
had expressed the same matching receptors. The same applies for the synaptic weights
connecting the neurons between the sensorField (see Fig. 5a) and the hiddenField (see
Fig. 5b) as well as the synaptic weights connecting the neurons between the motorField
(see Fig. 5c) and the motorActivities (see Fig. 5d).

The components of the neural structure and its connections to the robot are depicted
in Figure 5. In total the neural network had 154 neuronal units. The size of the neuronal
areas sensorField, hiddenField, and motorField was 1x16, 8x8 and 8x8 respectively. The
size of the neuronal area MotorActivities was 1x10 (see Fig. 5d). Each finger was moved
by a pair of antagonistic neurons in the area MotorActivities, one caused the finger to
contract and the other to extend. Each of these two motor activities controlling a par-
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Figure 6. Self exploratory movements. (a) Number of times that a particular servo motor reached an indi-
vidual position (out of the 2,500 possible positions) during 5,000 iterations (mean=1.8571, sigma = 1.3499,
when µ = 0.2, 20% of the motor neurons could fire randomly). (b) Exploration-exploitation trade off (when
µ = 0.5, 50% of the motor neurons can fire randomly). The solid line represents the number of neurons that
randomly fired at each learning cycle. The dashed line represents the number of motor neurons that learned
and are activated by themselves.

ticular motor was connected to a different subset of motor neurons in the area motor-
Field defined by the expression of different receptors as explained above. To mimic the
activation of biological muscles by the motor neurons the synaptic weights between the
areas motorField and MotorActivities were fixed in such a way that some of them will
have large effects on the movements while others will have tiny effects, resulting in the
exploration pattern depicted in Fig. 6a where the finger was able to explore all possible
movements in an unbiased way.

4.2. Value system

Value systems are neural structures that are necessary for an organism to modify its be-
havior based on the salience or value of an environmental cue ( [7]). Such “value sys-
tems” have been implemented in robotic systems to study their role in adaptive behav-
ior [8]. In our case, the pressure sensors were the value system that taught the robot about
the success of its exploratory movements. Whenever the pressure sensor on the palm was
activated and this activation exceeded a given threshold (e.g., an object was put on the
palm), the corresponding sensor neuron released a signaling molecule, the motor neu-
rons that had expressed a receptor with high affinity to that signaling molecule will be
allowed to fire randomly and therefore the hand will be in its "Exploration behavior".
If a finger is in contact with an object, depending of the force and the direction of the
movement, the reading of the pressure sensor on that finger will increase or decrease.
In either case a corresponding sensor neuron will release a signal that will be used by
the learning mechanism to reward or punish the active motor neurons at that particular
moment.

4.3. Learning Mechanism

The proposed neural network allows the robotic hand to explore its own movement pos-
sibilities due to the random activation of the neurons in the motorField (see Fig. 5c). The
outputs of the motor neurons are determined by the following formula:
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Figure 7. Learning mechanism. As the robotic hand enclosed an object with its fingers, some pressure sensors
were activated, a signaling molecule was then released, and eventually a synaptic weight between a pair of
active neurons was updated (only if the respective neurons had expressed a receptor that matched with the
signaling molecule).

Oi =





1.0 : if σ(
∑n

j=1 ωi,jSj) >= θ1

1.0 : if σ(
∑n

j=1 ωi,jSj) < θ1 and µ <= θ2

0.0 : otherwise

(5)

Where:
Oi output of the i-th neuron,
Sj input of the j-th neuron,
ωi,j synaptic weight between the i-th and the j-th neurons,
σ is the sigmoidal function σ(x) = 1

1+e−αx ,
α is the slope parameter of the sigmoid function,
θ1 is the threshold for the neuron to fire by itself,
µ is a uniform value between 0 and 1 randomly generated,
θ2 is the threshold that determines how many motor neurons are allowed to fire randomly.

As can be seen, if the output exceeds a certain threshold (θ1), the neuron will fire by
itself. Otherwise the neuron is allowed to fire randomly, for that purpose an uniform value
(µ) between 0 and 1 is randomly generated. By comparing µ with a second threshold θ2,
only a percentage of the population of motor neurons is allowed to fire.

The solid line in Fig. 6b represents the number of neurons that randomly fired at each
learning cycle when µ = 0.5 (50% of the neurons were allowed to fire randomly). The
dashed line represents the number of motor neurons that learned and were activated by
themselves. Figure 6b elicits the exploration-exploitation trade-off. At the beginning of
the experiment about half of the motor neurons are randomly activated, so the robot hand
will explore its environment, over time, the learning mechanism modified the synaptic
weights causing more neurons to learn, that means more motor neurons will have an
output that exceeds the threshold θ1 and will fire by themselves and less and less motor
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Figure 8. Synaptic changes over time during a typical grasping experiment.

neurons will fire randomly, so the more it learns the less than it has to explore. Around
the learning cycle number 160, the object was taken away from the robot hand, so there
is no sensory input, therefore the robot hand restarted its exploratory activity.

Synaptic modification was determined by both pre and post synaptic activity and
resulted in either strengthening or weakening of the synaptic efficacy between two neu-
ronal units. The active neurons controlling the robot hand were "rewarded" if the move-
ment of the fingers exerted a higher activation of the pressure sensors and "punished"
otherwise. In this way the synaptic connections between the neuronal areas hiddenField
(see Fig. 5b) and motorField (see Fig. 5c) were updated. Figure 7 gives a graphical ex-
planation of the sequence of events resulting in the change of a synaptic weight while
the robot hand interacts with an object.

5. Experimental results

Figure 8 shows the synaptic changes in an OpenGL animation resulting from the real
time data exchange between the computer hosting and running the neural network and the
computer visualizing the learning process. All the synaptic weights were kept between
-1.0 and 1.0. A learning cycle (i.e., the period during which the current sensory input
is processed, the activities of all neuronal units are computed, the connection strength
of all synaptic connections are computed, and the motor outputs are generated) had a
duration of approximately 0.08 seconds. Figures 1b, 1c and 1d show the final states of
experiments performed with several objects of different color, shape and material.

6. Discussion and future work

Predefining all possible sensors and movement capabilities of a robot, will certainly re-
duce its adaptivity. In order to be adaptive, a neural controller must be able to reconfigure
itself to cope with environmental and morphological changes (e.g., additional sensors,
not only in number, but different types of sensors could be added, damaged sensors over
time, additional or fewer degrees of freedom, etc.). As we cannot predict the above pos-
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sible changes, the system should be allowed to explore its own movements and coher-
ently adapt its own behavior to the new situation; something that cannot be achieved by
a purely reflex-based system. Until now no engineering methods exist how to tackle with
unforseen changes, we expect to contribute to the solution of these problems with our
approach.

The robustness of the evolved neural controller will be tested by making system-
atic changes in the hand’s morphology (e.g., position and number of the pressure sen-
sors, different types of sensors, stronger motors, covering materials in order to increase
the friction with objects) to investigate how the neural controller reacts to unforeseen
perturbations.

Now that we have a system able to learn to foveate by using visual information
(see [5] and [6]), and a system able to learn to grasp objects based on tactile information,
it will be interesting to see how the two systems can be integrated and how far the system
can go to solve more demanding tasks (e.g., object manipulation, reaching, catching
moving objects).
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