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Abstract

Nonlinear oscillators are widely used in biology, physics and engineering for modeling and control. They are interesting because of their
synchronization properties when coupled to other dynamical systems. In this paper, we propose a learning rule for oscillators which adapts their
frequency to the frequency of any periodic or pseudo-periodic input signal. Learning is done in a dynamic way: it is part of the dynamical system
and not an offline process. An interesting property of our model is that it is easily generalizable to a large class of oscillators, from phase oscillators
to relaxation oscillators and strange attractors with a generic learning rule. One major feature of our learning rule is that the oscillators constructed
can adapt their frequency without any signal processing or the need to specify a time window or similar free parameters. All the processing is
embedded in the dynamics of the adaptive oscillator. The convergence of the learning is proved for the Hopf oscillator, then numerical experiments
are carried out to explore the learning capabilities of the system. Finally, we generalize the learning rule to non-harmonic oscillators like relaxation
oscillators and strange attractors.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear oscillators have been widely used to model
various physical and biological processes and for the last
two decades, they are also used in engineering fields,
for example autonomous robotics. Models of Josephson
junctions [22], lasers, central pattern generators (CPGs) [6,10,
13,23], associative memories [2,18] and beat perception [8,14]
are a few examples that show the importance of oscillators in
modeling and control.

Oscillator models are interesting because of their synchro-
nization capabilities, either with other oscillators or with exter-
nal driving signals. In most cases, it is a difficult task to choose
the right parameters of the oscillators to ensure that they will
synchronize as desired. Most studies use phase-locking behav-
ior, but when parameters are outside the phase-locking region
synchronization fails. This is mainly the case because oscil-
lators lack plasticity, they have fixed intrinsic frequencies and
cannot dynamically adapt their parameters.
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Some recent studies, however, concentrate on developing
dynamic plasticity for oscillators, so they can learn and
synchronize with a wider range of frequencies, without one
having to tune the parameters by hand [1,2,9,15–17]. But these
attempts are so far limited to very simple classes of oscillators,
equivalent to phase oscillators, mainly because this is the only
class of oscillators that can be analytically studied and for
which convergence can be proved, when adding adaptivity to
the system. Adaptive relaxation oscillators were also developed
to model rhythm perception [8]. These oscillators are able to
adapt their frequencies to synchronize with external input. But
these input signals are simple and reduce to periodic pulse
trains.

Recently, we designed an adaptive oscillator for studying
adaptive locomotion in biologically inspired robotics [3,4]. In
that work we developed an adaptive frequency Hopf oscillator
able to adapt to the resonant frequency of a mechanical system.
The oscillator is able to adapt its frequency to the frequency
of complex input signals. In this contribution, we prove the
convergence of this oscillator and generalize the adaptive rule
for more complex oscillators so they can learn the frequencies
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of, and synchronize with, any rhythmic input signal. An
interesting property of our method is that we go beyond phase-
locking of oscillations. We add plasticity to the system, in
the sense that the system can change its own parameters in
order to learn the frequencies of the periodic input signals.
So the range of frequencies that can be learned is not limited
and after learning the oscillator continues to oscillate at the
learned frequency, even if the input signal disappears. We call
our adaptive mechanism1 dynamic Hebbian learning because it
shares similarities with correlation-based learning observed in
neural networks [11].

One major aspect of our approach is that an oscillator
learns the frequency of any periodic input, without any
signal processing. This means that an oscillator can adapt its
frequency to any kind of periodic, or even pseudo-periodic,
input. The process is completely dynamic, and does not require
the specification of time windows or similar free parameters as
is often the case in signal processing algorithms. The whole
learning process and the frequency extraction from the input
is totally embedded in the dynamics of the system. Another
interesting property of the method is that we can directly
apply it to many kinds of oscillators, for example relaxation
oscillators and strange attractors. An oscillator, perturbed by a
periodic signal F , is described by the general equations

ẋ = f (x, y, ω) + εF

ẏ = f (x, y, ω)

with ω some parameter influencing the frequency of the
oscillations. We introduce a learning rule for this parameter

ω̇ = ±εF
y√

x2 + y2
.

The sign depends on the direction of rotation of the limit cycle
in the (x, y) phase space. This general adaptation rule works
for many different oscillators, ω will converge to a value such
that one frequency component of the oscillator and one of the
input F match. We discuss this general learning rule in this
contribution.

In Section 2, we first present the adaptive learning rule with
a simple Hopf oscillator and prove the convergence and the
stability of the whole system. Then, in Section 3, we present
some numerical simulations, to show that the oscillator can
adapt its frequency to the frequency of any kind of periodic
or pseudo-periodic signal. Finally, in order to demonstrate
the generality of our method, we construct, in Section 4, an
adaptive Van der Pol oscillator which we discuss in detail. We
also present examples of frequency adaptation with an adaptive
Rayleigh oscillator, an adaptive Fitzhugh–Nagumo oscillator
and an adaptive Rössler system. In Section 5, we finish this
contribution with a discussion.

2. Learning frequencies with a Hopf oscillator

In this section, we introduce the learning rule for frequency
adaptation in oscillators. To keep the discussion as simple

1 In this article, we use adaptation and learning as synonyms.
as possible, we use a Hopf oscillator to discuss our learning
method, because its phase evolution is simple to describe.
Generalization to more complex oscillators will be presented
in further sections. We first present the model, then we prove
the convergence of the adaptive dynamical system.

2.1. Model description

2.1.1. The Hopf oscillator
The dynamics of the Hopf oscillator is governed by the

following differential equations

ẋ = (µ − r2)x − ωy + εF (1)

ẏ = (µ − r2)y + ωx . (2)

where r =

√
x2 + y2, µ > 0 controls the amplitude of the

oscillations and ω is the intrinsic frequency of the oscillator.
This means that without perturbations (when ε = 0), the system
is oscillating at ω rad s−1. This oscillator is coupled with a
periodic force F . When the force is zero, the system has an
asymptotically stable harmonic limit cycle, with radius

√
µ

and frequency ω. As the limit cycle of the Hopf oscillator is
structurally stable, small perturbations around its limit cycle
(ε > 0) do not change the general behavior of the system. This
means that the limit cycle will still exist, only its form and time
scale will change. Structural stability assures that this change is
close to identity.

As we are mainly interested in the phase dynamics, we
rewrite the system in polar coordinates. We set x = r cos φ

and y = r sin φ. Eqs. (1) and (2) transform into

ṙ = (µ − r2)r + εF cos φ (3)

φ̇ = ω −
ε

r
F sin φ. (4)

It is well known that when the oscillator has its intrinsic
frequency ω close to one frequency component of the periodic
input, it will phase-lock (this phenomenon is also called
entrainment) [19]. This means that the oscillations synchronize
with the frequency of the periodic input. The maximum
distance between the intrinsic frequency of the oscillator and
the periodic input that still permits phase-locking depends
directly on the coupling strength. The stronger the coupling, the
larger the entrainment basin. Outside this basin, the oscillator
is still influenced by the coupling but does not synchronize.
If the periodic input has several frequency components, then
several entrainment basins will appear. Phase-locking will be
possible with each frequency component. Outside the basin,
the oscillator will have a tendency to accelerate or decelerate,
according to the term F sin φ, on average the oscillator will
tend to oscillate at a frequency which is between the intrinsic
frequency of the oscillator and the frequency of the input. In
the case of multi-frequency inputs, these oscillations will be
influenced in a similar manner.

2.1.2. Adaptive dynamical system
Now we can build our adaptation rule by using the influence

of the external perturbation on the activity of the oscillator. The
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adaptation rule will be a dynamical system of the form

ω̇ = f (ω, r, φ, F). (5)

In the following we motivate the concrete choice of the
adaptation rule by reasoning about the effects of a perturbation
in a geometric way in the phase space of the dynamical system.
This provides insights into our choice of the learning rule.
In further sections, we will show more rigorously that this
reasoning is appropriate and leads to the desired behavior.

To get a good grasp on the effects of perturbations on a limit
cycle system (i.e. an oscillator) it is helpful to look at the limit
cycle in the phase space representation. In the phase space all
perturbations have a direction, i.e. they can be represented as a
vector EP in that space.

Due to the stability properties of a limit cycle system a
perturbation can in the long term only affect the phase of the
oscillator. The phase is marginally stable whereas the system is
damped perpendicularly to the limit cycle. This means that the
phase point always returns to the limit cycle, but it can be phase
shifted. In other words the system after a singular perturbation
will forget all the perturbation’s influence except its influence
on the phase.

Especially in a small neighborhood of the limit cycle a
small perturbation can only affect the phase strongly if it
perturbs the oscillator in the direction tangential to the limit
cycle. The perturbations perpendicular to the limit cycle are
damped out. The domain where this assumption is valid
depends on the coupling of phase and radius. While for
the Hopf oscillator this assumption is valid for a very large
neighborhood, the neighborhood can be very small for other
oscillators, e.g. oscillators with strongly bent isochrones.

To discuss the influence of the perturbation on the phase in
this neighborhood, let us introduce a coordinate system with
its origin on the phase point. The first base vector Eer is chosen
perpendicular to the limit cycle, while the second base vector
Eeφ is chosen tangential to the limit cycle (cf. Fig. 1). Thus,

this coordinate system rotates with the phase point along the
limit cycle. In order to find the influence pφ = | Epφ | of the
perturbation on the phase it is sufficient to project EP on Eeφ

pφ = EP · Eeφ . (6)

Thus, depending on the external perturbation and the state
of the oscillator (i.e. the position of the point on the limit
cycle) the perturbation accelerates the phase point or slows
it down. If the perturbation is a periodic signal, this results
in an average acceleration or deceleration depending on the
frequency difference. This effect, if the frequency of the
oscillator and the external frequency are close, leads to well
known phase-locking behavior. Thus, the influence carries the
information needed to adjust to the frequency of the external
perturbation. Consequently, if we take this same effect to
tune the frequency of the oscillator (on a slower time scale)
the frequency should evolve toward the frequency of the
perturbation. Therefore, the effect of f (ω, r, φ, F) on ω has to
be the same as the effect of the perturbation on the phase, thus
(on average) driving ω toward the frequency of the perturbation.
Fig. 1. We illustrate the coordinate system in which synchronization is most
naturally discussed. The figure shows an arbitrary limit cycle. The system
is strongly damped in the direction perpendicular to the limit cycle Eer and
marginally stable in the direction tangential to the limit cycle Eeφ . This is the
reason for the structurally stable limit cycle in the first place and allows for
a resetting of the phase on the other hand. Note that the two-dimensional
representation is always valid for discussing a limit cycle since there exists
always a two-dimensional manifold which contains the limit cycle. Refer to the
text for a discussion of the perturbation EP .

While the discussion here is valid for limit cycles of any
form and in any dimension, in the case of the Hopf oscillator
and the perturbation as chosen in Eqs. (3) and (4) it is evident
that pφ =

ε
r F sin φ. We chose accordingly

ω̇ = −εF sin φ (7)

which corresponds in Cartesian coordinates to

ω̇ = −εF
y√

x2 + y2
. (8)

The adaptation of ω happens on a slower time scale than the
evolution of the rest of the system. This adaptation time scale
is influenced by the choice of ε. Note that the r variable is
dropped because we do not want a learning rule which is
scaled by the amplitude of the oscillations. With this rule, the
oscillator will adapt to the frequency of any input signal. As
in applications most signals will be non-harmonic, i.e. they
have several frequency components, the oscillator will adapt to
one of these components, generally the closest to the intrinsic
frequency of the oscillator. We must also note that it is required
to keep the oscillator coupled with the input, because it is the
evolution of φ(t), i.e. change of frequency correlated with ω̇,
that enables adaptation in Eq. (7). A proof of convergence of
this adaptive oscillator (Eqs. (3), (4) and (7)) in the general case
of multi-frequency inputs is given in the next section.

2.2. Proof of convergence with the Hopf oscillator

In this section we prove the stability of the adaptive Hopf
oscillator, but we will see in following sections that the results
we derive in this section can also justify convergence for other
types of oscillators. The new dynamical system we study is
the one composed of the oscillator and its learning rule for the
frequency (Eqs. (3), (4) and (7)). As long as ω > 0, because of
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structural stability, the behavior of the oscillator (Eqs. (3) and
(4)) is known, so we just have to prove that ω converges to the
desired input frequency.

We use perturbation methods (cf. [12]) to discuss the
convergence of the system. The solution of the system
{r(t), φ(t), ω(t)} can be written as a perturbation series, with
ε < 1

r(t) = r0 + εr1 + ε2r2 + ε3 Rr (9)

φ(t) = φ0 + εφ1 + ε2φ2 + ε3 Rφ (10)

ω(t) = ω0 + εω1 + ε2ω2 + ε3 Rω (11)

with initial conditions r0(t0) = r0, φ0(t0) = 0 and ω0(t0) = ω0
independent of ε. Here, ri , φi and ωi are functions of time
and Rr , Rω and Rφ are small residues of the order ε3, which
means there exists a constant k such that Ri < k, generally k
is small. The following proof will hold under the hypothesis
that k � 1, numerical simulations in Section 3 will confirm
this hypothesis. We could also expand the perturbation series
to higher order: the finer the approximation, the wider the
time interval valid for the approximation. But we will show
that convergence appears on the time scale associated with the
second order approximation. By inserting Eqs. (9)–(11) into
Eqs. (3), (4) and (7), and by observing that

sin(φ0 + εφ1 + ε2φ2 + ε3 Rφ)

=

∞∑
k=0

(−1)k(φ0 + εφ1 + ε2φ2 + ε3 Rφ)2k+1

(2k + 1)!

= sin φ0 + εφ1 cos φ0 + O(ε2) (12)

and similarly that

cos(φ0 + εφ1 + ε2φ2 + ε3 Rφ)

= cos(φ0) − εφ1 sin(φ0) + O(ε2) (13)

we can identify the terms corresponding to each εn and derive
the following differential equations

ṙ0 = (µ − r2
0 )r0 (14)

φ̇0 = ω0 (15)

ω̇0 = 0 (16)

ṙ1 = µr1 − 3r1r2
0 + F cos φ0 (17)

φ̇1 = ω1 −
1
r0

(
r1φ̇0 − r1ω0 + F sin φ0

)
(18)

ω̇1 = −F sin φ0 (19)

ṙ2 = µr2 − 3r2r2
0 − r2r2

1 − Fφ1 cos φ0 (20)

φ̇2 = ω2 −
1
r0

(
r1φ̇1 − r1ω1 + r2φ̇0 − r2ω0 + Fφ1 cos φ0

)
(21)

ω̇2 = −Fφ1 cos φ0 (22)

with initial conditions r0(t0) =
√

µ, φ0(t0) = 0, ω0(t0) = ω0
and ri (t0) = φi (t0) = ωi (t0) = 0, ∀i = 1, 2. We consider
that the unperturbed system (i = 0) has already converged to
the limit cycle and that at time t0, there are no perturbations.
We have to solve Eqs. (16), (19) and (22) to construct an
approximate solution of Eq. (7) and thus show the convergence
properties of the adaptation rule ω. The behavior of the two
other state variables is already known since the Hopf oscillator
has a structurally stable limit cycle. In order to solve these
equations we also have to solve Eqs. (14), (15) and (18). The
error of the approximation will be of order O(ε3) and will hold
for some time interval [t0, t0 + σ ]. The solutions of Equations
Eqs. (14)–(16) are straightforward

r0(t) =
√

µ (23)

φ0(t) = ω0(t − t0) (24)

ω0(t) = ω0. (25)

To solve the other equations, we first rewrite the periodic input
as its complex Fourier series

F(t) =

∞∑
n=−∞

AneinωF t . (26)

Here ωF is the frequency of the input. We now consider the case
where ω0 6= nωF , ∀n ∈ N, which means that at the beginning
the system is not synchronized with any frequency component
of the periodic input F . We then get

ω̇1 = −

(
∞∑

n=−∞

AneinωF t

)
sin(ω0(t − t0))

= −

∞∑
n=−∞

An
ei(nωF +ω0)t−iω0t0 − ei(nωF −ω0)t+iω0t0

2i
. (27)

This is solved to give

ω1(t) =
1
2

∞∑
n=−∞

An

(
−
(
ei(nωF −ω0)t+iω0t0 − einωF t0

)
(nωF − ω0)

+

(
ei(nωF +ω0)t−iω0t0 − einωF t0

)
(nωF + ω0)

)
(28)

and

φ̇1 = ω1 +
ω̇1
√

µ
(29)

which is solved to give

φ1(t) =
ω1(t)
√

µ
+

1
2

∞∑
n=−∞

An

((
ei(nωF +ω0)t−iω0t0 − einωF t0

)
i(nωF + ω0)2

+
2ω0(t − t0)einωF t0

n2ω2
F − ω2

0

−

(
ei(nωF −ω0)t+iω0t0 − einωF t0

)
i(nωF − ω0)2

)
.

(30)

By combining Eqs. (25) and (28), we have a first order
approximation ω(t) = ω0+εω1(t)+ε2 Rω. This approximation
is a periodic solution with mean equal ω0. Nevertheless, this
first order approximation does not show any adaptation of ω(t).
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This seems normal, since we argued before that the learning
takes place on a larger time scale than the perturbation (which
is of order ε). We now derive the second order approximation
to show that learning appears on the associated time scale. As
we are interested in the second order form of ω, we now solve
Eq. (22)

ω̇2 = −

(
∞∑

m=−∞

AmeimωF t

)(
eiω0(t−t0) + e−iω0(t−t0)

2

)
φ1(t)

= −
1
2

(
∞∑

m=−∞

Am

(
ei(mωF +ω0)t−iω0t0

+ ei(mωF −ω0)t+iω0t0
))

φ1(t). (31)

By expanding the equation we find a sum of simpler terms that
can be easily integrated

ω2 =

∫ t

t0

(
1
4

∑
m,n∈Z

Am An(E1 + E2 +E3 + E4 + E5 + E6)

)
(32)

where

E1 = ei((m+n)ωF +2ω0)t−2iω0t0

×

(
−1

√
µ(nωF + ω0)

−
1

i(nωF + ω0)2

)

E2 = ei((m+n)ωF −ω0)t+2iω0t0

×

(
1

√
µ(nωF − ω0)

+
1

i(nωF − ω0)2

)

E3 = ei(mωF +ω0)t+i(nωF −ω0)t0

×

(
−2ω0

√
µ((nωF )2 − ω2

0)
−

4nωFω0

i((nωF )2 − ω2
0)

2

)

E4 = ei(mωF −ω0)t+i(nωF +ω0)t0

×

(
−2ω0

√
µ((nωF )2 − ω2

0)
−

4nωFω0

i((nωF )2 − ω2
0)

2

)

E5 = ei(m+n)ωF t

(
2ω0

√
µ((nωF )2 − ω2

0)
+

4nωFω0

i((nωF )2 − ω2
0)

2

)

E6 =

(
eiω0(t−t0) + e−iω0(t−t0)

)
×

(
−2ω0

(nωF )2 − ω2
0

)
ei(mωF t+nωF t0)(t − t0).

Previously, we postulated that ω0 6= nωF , ∀n ∈ N,
consequently, the integration of E1, E2, E3 and E4 gives
periodic functions with zero mean. The integration of E6 gives a
function oscillating with some frequency but with its amplitude
varying because of the t term, the average contribution of this
function is zero. The integration of E5 is more interesting
because when n = −m, the exponential disappears and we
have a constant instead. Thus when integrating we will find
linear terms. For the case m 6= −n, after integration, we find a
periodic function with zero mean. Therefore, ω2(t) is composed
of a periodic function ω̃2(t) with zero mean and a deviation
Dω(t).

ω2(t) = ω̃2(t) + Dω(t) (33)

where

Dω(t) =

∫ t

t0

1
4

∑
n∈Z

m=−n

An Am

(
2ω0

√
µ((nωF )2 − ω2

0)

−
4nωFω0

i((nωF )2 − ω2
0)

2

)

=

∫ t

t0

(
−A0

2
√

µω0
+

∑
n∈N∗

An Ānω0
√

µ((nωF )2 − ω2
0)

)

=

(
−A0

2
√

µω0
+

∑
n∈N∗

|An|
2ω0

√
µ((nωF )2 − ω2

0)

)
(t − t0). (34)

Then, the solution of ω(t) in a neighborhood of t0 is

ω(t) = ω0 + εω1(t) + ε2ω̃2(t) + ε2 Dω(t) + O(ε3). (35)

The solution is composed of small oscillations of amplitude
much smaller than ε around ω0 and a slight deviation ε2 Dω(t).
This deviation term determines how the frequency converges to
the input frequency. It can also be used to predict the basins
of attraction for inputs with several frequency components
(cf. Section 3.3). For an input signal that has only one frequency
in its spectrum, the deviation is obviously in the direction of
this frequency, since Dω(t) > 0 when ωF > ω0 and Dω(t) < 0
otherwise. As this approximation is valid for any ω0 and any
t0, i.e. the point in time when we make the approximation is
not important, the oscillator will always, on average, change
its frequency in the direction of the input frequency. For more
complex signals with more than one frequency component,
because of the (nωF )2

− ω2
0 term in Dω, the system will just

change its frequency according to the distance between its
intrinsic frequency ω0 and the frequency components of the
input. The amplitudes An of the frequency components will
also influence this convergence, in the sense that the more
intensity a frequency component has, the more it will attract
ω(t). Section 3 shows examples of such convergence. We must
also note that the zero frequency (the mean of the periodic
signal) can also influence the convergence because of the A0
term. Thus, if the input signal has a non-zero mean, ω could
eventually converge to 0 if A0 has a stronger influence than the
other frequency components. In this case, the limit cycle of the
Hopf oscillator would bifurcate into a fixed point.

We still have to discuss the case ω0 = nωF for a given
n ∈ N. In this case, the oscillator is synchronized with one
frequency component of the perturbation. Thus, ω(t) oscillates
and deviates from nωF . Then there are two cases, either the
deviation becomes an attraction as soon as ω0 6= nωF and the
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intrinsic frequency of the oscillator is always staying in a small
neighborhood of nωF , or ω(t) diverges from this frequency
and gets attracted by another frequency component of the input
signal, with stronger amplitude.

We notice that ε controls both the amplitude of oscillations
around nωF and the learning rate of the system (proportional
to ε2). So the faster the learning is, the higher the error of
adaptation will be. But as ε < 1, the error of adaptation is
bounded and small (of the order of ε).

So we have proved that the learning rule makes the
frequency converge to a frequency component of the input
signal, for any initial conditions (t0, ω0). The attracting
frequency component depends on its distance to the intrinsic
frequency of the oscillator and its intensity. The proof is
global because we did not make any assumption on the initial
condition for ω and on the neighborhood of the attracting
frequencies.

3. Numerical simulations

The goal of this section is to study the behavior of the
learning dynamical system with numerical simulations. First we
give a simple example of adaptation of the oscillator receiving
a simple periodic signal as input. Then we confirm the proof of
Section 2.2 by calculating the second order approximation error
for a simple example. We also use the analytic results to predict
the behavior of the system when varying several parameters.
Finally, we show that the system can adapt to pseudo-periodic
signals.

3.1. Simple example of learning

First of all, we want to show a simple example of how the
system works and discuss the influence of the learning rate ε.
The adaptive Hopf oscillator is composed of the perturbed Hopf
oscillator

ẋ = (µ − r2)x − ωy + εF (36)

ẏ = (µ − r2)y + ωx (37)

and of the adaptive frequency learning rule

ω̇ = −εF
y√

x2 + y2
. (38)

Here we use a simple cosine signal F = cos(30t) as input,
with µ = 1 and initial conditions r(0) = 1, φ(0) = 0 and
ω(0) = 40. We integrate the system numerically for several
values of ε, the results of the simulations are shown in Fig. 2.
In this figure, we can see that the oscillator adapts its intrinsic
frequency to the frequency of the input signal. We also see that
ε controls the adaptation rate of the system, the higher ε is, the
faster the learning.

3.2. Error evaluation of the analytic approximation for a
simple perturbing force

In Section 2.2, we derived an approximate solution of the
learning dynamical system, in order to prove its convergence.
Fig. 2. Plot of the evolution of ω for four different values of ε. Here we set
µ = 1, x(0) = 1 and y(0) = 0, the perturbing force is F = cos(30t). For every
value of ε, we see that ω converges to 30, which is the frequency of the input
signal. Therefore, the system is able to learn the frequency of the input signal.
We also notice that ε controls the convergence rate, the higher it is, the faster
the system learns.

The error of this approximation is bounded by some constant
k. We now evaluate numerically the error of the approximation,
for a simple sinusoidal input, in order to show that this constant
is really small and that the hypothesis made for proving
convergence holds. We set F = sin(ωF t), t0 = 0, µ = 1.
Then we can derive an approximate solution of ω(t) using Eqs.
(25), (28) and (32).

ω0(t) = ω0 (39)

ω1(t) = −
1

2(ωF − ω0)
sin((ωF − ω0)t)

+
1

2(ωF + ω0)
sin((ωF + ω0)t) (40)

ω2(t) =
sin(2ω0t)

16ω0(ωF − ω0)
−

sin(2ωF t)

16ωF (ωF − ω0)

−
sin(2(ωF − ω0)t)

16(ωF − ω0)2 +
t

8(ωF − ω0)

−
t

8(ωF + ω0)
+

sin(2(ωF + ω0)t)

16(ωF + ω0)2

−
sin(2ω0t)

16ω0(ωF + ω0)
+

sin(2ωF t)

16ωF (ωF + ω0)

+
cos(2ωF t) − 1

16ωF (ωF − ω0)2 +
cos(2ω0t) − 1

16ω0(ωF − ω0)2

+
cos(2(ωF − ω0)t) − 1

16(ωF − ω0)3

−
cos((ωF + ω0)t) − 1

4(ωF − ω0)2(ωF + ω0)

−
cos((ωF − ω0)t) − 1

4(ωF − ω0)3 −
cos(2(ωF + ω0)t) − 1

16(ωF + ω0)3

−
cos(2ωF t) − 1

16ωF (ωF + ω0)2 +
cos(2ω0t) − 1

16ω0(ωF + ω0)2

+
cos((ωF + ω0)t) − 1

4(ωF + ω0)3

−
cos((ωF − ω0)t) − 1

4(ωF + ω0)2(ωF − ω0)
. (41)

We can now numerically evaluate the errors of the
approximations of order 1, ωε(t) = ω0 + εω1(t), and of order
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Fig. 3. Results of the simulation of the first and second order approximations.
For a simple input, here F = sin(40t), ε = 0.9, initial conditions are t0 = 0,
w0 = 30. The upper figure shows the evolution of the ω variable for the initial
dynamical system (Eq. (38)), the first order approximation ωε(t) and the second
order approximation ω

ε2 (t). The lower figure shows quadratic errors between
the initial system and the two approximations, for the evolution of ω.

2, ωε2(t) = ω0 + εω1(t) + ε2ω2(t). The upper plot of Fig. 3
shows the result of this simulation. First of all, we clearly see
that the dynamical system correctly learns the frequency of the
input signal. In this figure we also plotted the functions ωε(t)
and ωε2(t), we clearly see that the second order approximation
is really better than the first and explains the behavior of the
system on a larger time scale. Actually, it explains very well
the convergence process of the learning dynamical system. We
see that the learning appears on a coarser time scale than the
oscillations of the system. In the lower plot, we see the square
error between the original system and the approximations. We
clearly see that the second order approximation follows the
real system for quite a long time. Table 1 summarizes the
maximum square error of the approximations. It must be noted
that numerical integration of the dynamical system is done
with an embedded Runge–Kutta–Fehlberg(4, 5) algorithm, with
absolute and relative errors of 10−6. As a matter of fact,
errors below this value cannot be taken as significant errors.
Obviously, the first order approximation diverges rapidly, at
0.1 s of simulation, the error is becoming really significant.
On the other hand, the second order approximation is really
good still after 10 s. These results validate the hypothesis of
the approximation methods and so, the analytic proof. This also
emphasizes the fact that learning takes place on a larger time
scale than the perturbations on the oscillator and its oscillations.
Consequently, the adaptive Hopf oscillator has two distinct time
scales. The finer one describes the perturbation on the oscillator
and its oscillations. Learning takes place on the coarser one.

3.3. Predicting learning with multi-frequency inputs

When learning the frequency of multi-frequency input
signals, we might expect the system to converge to one of the
frequency components of the input. But how can we calculate
the range of initial frequencies for which the adaptive oscillator
will converge to a specific frequency component of the input?
Table 1
This table summarizes the maximum errors of the simulation for the first and
second order approximations discussed from Fig. 3

Time (s) Maximum error ωε Maximum error ω
ε2

0 0 0
0.001 5.18e−13 1.70e−19

0.01 4.91e−7 1.15e−12

0.1 0.0053 6.30e−11

1 0.0114 1.85e−7

10 0.0340 4.25e−4

While proving the convergence of the system, we derived a
deviation equation, Eq. (34), that describes the deviation from
the initial intrinsic frequency, ω0, of the oscillator

Dω(t) =

(
−A0

2
√

µω0
+

∑
n∈N

|An|
2ω0

√
µ((nωF )2 − ω2

0)

)
(t − t0). (42)

We saw that this equation depends on the initial frequency of the
system ω0, the frequency components of the periodic input nωF
and their amplitude An . Thus, for a given input signal, we can
calculate the values of ω0 for which the function is equal to zero
∀t . These zeros give the intervals of convergence, the dynamical
system converging towards the frequency components located
in the same interval as ω0.

For example consider the following input

F = 0.2 sin(20t) + 0.5 sin(30t) + 0.3 sin(40t). (43)

The main frequency of this signal is ωF = 10. The amplitude
of the frequency component are A2 =

0.2
2i , A3 =

0.5
2i , A4 =

0.3
2i

and Ai = 0, ∀i ∈ N \ {2, 3, 4}. Thus we only have to find the
roots of the following equation

0.22ω0

4(202
− ω2

0)
+

0.52ω0

4(302
− ω2

0)
+

0.32ω0

4(402
− ω2

0)
= 0. (44)

The solutions of this equation are 0 and ±

√
717±

√
134089

0.76 . As we
are working with frequencies >0 we have the following bounds
ωdown ' 21.3598 and ωup ' 37.8233. Thus we must expect
to have convergence to 20, 30 or 40 when ω0 ∈ [0, ωdown],
[ωdown, ωup], [ωup, ∞] respectively, with some uncertainty at
the limit of the intervals, because of the oscillations of order ε

that can make the system switch from one interval to the other.
Fig. 4 shows this behavior, the horizontal dotted lines mark the
bounds. Convergence corresponds to what we predicted.

3.4. Learning the pseudo-period of chaotic signals

We proved convergence for periodic signals, but we argue
that even pseudo-periodic signals can be used as input for
the learning dynamical system. In order to show this fact, we
present the result of learning, when coupled to a chaotic pseudo-
periodic signal. We couple the oscillator with the z variable of
the Lorenz system [21], whose equation is

ẋ = −σ x + σ y (45)

ẏ = −xz + r x − y (46)

ż = xy − bz. (47)
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Fig. 4. In this figure, we plotted ω(t) for several initial conditions, ω0. The
periodic input is Eq. (43), ε = 0.9. The dotted lines indicate the boundary
between the different basins of attraction, corresponding to the different
frequency components of the input, that were predicted analytically.

Fig. 5. The left plot of this figure represents the evolution of ω(t) when the
adaptive Hopf oscillator is coupled to the z variable of the Lorenz attractor. The
right plot represents the z variable of the Lorenz attractor. We clearly see that
the adaptive Hopf oscillators can correctly learn the pseudo-frequency of the
Lorenz attractor. See the text for more details.

Here σ = 10, r = 28 and b =
8
3 (parameters for which

the system produces a strange attractor). The Fourier spectrum
of the z variable indicates two major frequency components
(data not shown), the first one at frequency 0 (A0 in the
Fourier series), because the average of z, 〈z〉 6= 0, and the
second one at ∼1.3 Hz. As the zero-frequency component has
a really strong amplitude compared to the other and we do
not want adaptation to this frequency, we center the z variable
before coupling to the oscillator. Otherwise, ω converges to 0
and the oscillations disappear. Indeed the basin of attraction
corresponding to frequency ∼1.3 Hz is not very wide and ω

gets kicked out of it because of the chaotic nature of the input.
Thus the input for coupling we use is F = z − 〈z〉.

Fig. 5 shows the result of the learning process. After
convergence, 〈ω〉 ' 8.13 rad s−1 which corresponds to an
intrinsic frequency of the oscillator of ∼1.29 Hz. Thus our
adaptive dynamical system has learned the pseudo-frequency
of the strange attractor. As this is not a strictly periodic signal,
ω(t) oscillates, following the constantly changing pseudo-
frequency of the attractor.

This experiment enforces the idea that our adaptive
dynamical system is able to learn the frequency of any periodic,
or pseudo-periodic signal. It learns a frequency component of
the input, even if the signal is really noisy or if the frequency is
not strictly defined.

4. Generalization to non-harmonic oscillators

In previous sections, we presented an adaptive Hopf
oscillator able to learn the frequency component of a periodic
signal. The goal of this section is to show how we can
easily apply our adaptive rule to non-harmonic oscillators like
relaxation oscillators. The problem with such oscillators is that
they have two time scales (slow buildup and fast relaxation) so it
is difficult to treat them analytically to prove convergence of the
adaptive rule. In this section, we discuss in detail the case of the
Van der Pol oscillator, then we show results for the adaptive rule
with the Rayleigh oscillator, the Fitzhugh–Nagumo oscillator
and the Rössler system.

4.1. An adaptive Van der Pol oscillator

4.1.1. The Van der Pol oscillator
The Van der Pol is a classical example of relaxation

oscillator and is often used in biological modeling, for example
to model CPGs for quadrupedal locomotion [5]. Its equation is

ẍ + α(x2
− p2)ẋ + ω2x = 0. (48)

Here α controls the degree of nonlinearity of the system (the
relaxation part), p the amplitude of the oscillations and ω

mainly influences the frequency of the oscillations. In this study
we set the amplitude of oscillations to p = 1. We rewrite the
system in a two-dimensional form and perturb it in the direction
of x as we did in Section 2

ẋ = y + εF (49)

ẏ = −α(x2
− 1)y − ω2x . (50)

Because of the relaxation property of the oscillator, the
frequency spectrum contains, in addition to the frequency of the
oscillations, an infinite number of frequency components. They
are all multiples of the frequency of the oscillations and have
smaller intensities. The nonlinear part of the system, whose
importance is driven by the α variable, influences the intensity
of these components. This means the higher α is, the more
intensity high frequency components have. The frequencies of
the oscillations are mainly defined by ω, but α also influences
this frequency. In fact an increase of the nonlinear term α tends
to slow the oscillator down.

Fig. 6 shows the frequency spectrum of the x variable for
two different values of α. We clearly see that the intensities of
the fast frequency components increase as α increases. We also
observe that the oscillator gets slower when α increases (the
peaks shift to the left). But still ω is a good control parameter
for the frequency of the system.

The complexity of the frequency spectrum of such
oscillators complicates learning. Indeed, according to the initial
conditions (i.e. according to the distance between the frequency
of the periodic force and the main frequency of the oscillator),
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Fig. 6. Frequency spectra of the Van der Pol oscillator, both plotted with
ω = 10. The left figure is an oscillator with α = 10 and on the right the
nonlinearity is higher, α = 50. On the y-axis we plotted the square root of the
power intensity, in order to be able to see smaller frequency components.

Fig. 7. Plots of the frequency of the oscillations of the Van der Pol oscillator
according to ω. Here α = 50. There are two plots, for the dotted line the
oscillator is not coupled and for the plain line the oscillator is coupled to
F = sin 30t . The strength of coupling is ε = 2. We clearly see basins of phase-
locking, the main one for frequency of oscillations 30. The other major basins
appear each 30

n (dotted horizontal lines). We also notice small entrainment

basins for some frequencies of the form 30p
q . For a more detailed discussion

of these results refer to the text.

the oscillator may learn different frequencies and synchronize
one of its higher frequency components to the input, instead of
adapting its main frequency.

4.1.2. The adaptive dynamical system
The adaptive rule we introduced in this article dynamically

changes the parameter that mainly controls the frequency of the
oscillations. Thus, in this case we will make the ω parameter
a dynamical system. Before discussing adaptation, we want to
discuss the locations of the entrainment basins as a function
of ω, in order to understand how the adaptive rule will work.
The entrainment basins are the regions of frequencies where
the oscillator phase-locks with an input signal [19].

Fig. 7 shows the entrainment basins of a Van der Pol
oscillator with high nonlinear component α = 50, which is
forced by a periodic signal sin(30t). As expected, we see phase-
locking at frequency of oscillations 30, with an entrainment
basin of ω ∈ [32, 35]. We also explained that the oscillator may
phase-lock its higher frequency components, as these frequency
components are equally spaced, one should expect phase-lock
for fractions of the frequency of the perturbing force. In this
case, for example, we see phase-locking at frequencies of
oscillations 30

2 , 30
3 and 30

4 .
This figure may become even more complex if the input

signal has several frequency components. We would see
entrainment basins every time a frequency component of the
oscillator is close enough to any frequency component of the
external signal. Then, when using our adaptive rule, one should
expect convergence to any entrainment basins, depending on
the initial conditions. Therefore, the oscillator might adapt its
higher frequency components to the frequency of the input.

We now discuss the learning rule we introduced in Section 2,
applied to the Van der Pol oscillator. We just change the sign
of Eq. (7). This is justified because when looking to the limit
cycle of the Van der Pol oscillator, we see that it is rotating in
the opposite direction to the Hopf oscillator limit cycle. So the
learning rule is

ω̇ = εF
y√

x2 + y2
. (51)

We do not give an analytical proof of convergence for the
Van der Pol oscillator because to use perturbation methods, as
we did for the Hopf oscillator, we need to know the solution
for the unperturbed Van der Pol oscillator, but to the best
of our knowledge, only implicit solutions are known [7] and
thus such a proof is beyond the scope of this article. But the
general behavior of the system should be qualitatively the same,
because of the linear coupling on the oscillator. Let us rewrite
Eqs. (49) and (50) into polar coordinates

ṙ = εF cos φ + (1 − ω2)r cos φ sin φ + αr3 sin4 φ (52)

φ̇ = −ω2 cos2 φ − sin2 φ + αr2 sin3 φ cos φ −
εF

r
sin φ. (53)

Even if the phase evolution is more complex than for the Hopf
oscillator, the interaction between the phase of the oscillator
φ and the perturbation F is of the same kind. Indeed, we
clearly identify the same −

εF
r sin φ terms for the phase for

both oscillators (Eqs. (52) and (53) and Eqs. (3) and (4)). So
we can expect the same deviation of ω and therefore, the same
convergence properties.

Now that we have discussed the different expected
behaviors, we present a series of experiments in order to
confirm our predictions and the functionality of the adaptive
dynamical system.

4.1.3. Numerical confirmation
We predicted that the adaptive Van der Pol oscillator will

either adapt its frequency of oscillations or one of its higher
frequency components to the frequency of the input. In order
to show this, we study the convergence of ω for different
initial conditions, when the oscillator is coupled with a simple
sinusoidal input (F = sin(30t)). Fig. 8 shows the result of the
simulation.

When the initial condition ω0 > 23, we clearly see
that ω converges to 34 which corresponds to a frequency of
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Fig. 8. This figure shows the convergence of ω for several initial frequencies.
The Van der Pol oscillator is perturbed by F = sin(30t), with coupling ε = 0.7,
α = 50. We clearly see that the convergence directly depends on the initial
conditions and as expected the different kinds of convergence correspond to the
several entrainment basins of Fig. 7.

oscillations of 30 rad s−1. In this case the oscillator is correctly
adapting its frequency to the frequency of the input. For
lower values of ω0, we see convergence to other frequencies,
corresponding to the entrainment basins of Fig. 7. We can
conclude that the adaptive rule is changing ω in order to get one
frequency component of the oscillator to the same frequency as
the input signal. In fact, ω is falling into the nearest entrainment
basin. Therefore, we see how useful entrainment basin studies
are for understanding the dynamics of the adaptive oscillator.

Moreover, even if there is not a direct relation between ω

and the frequency of the oscillations, the adaptive learning rule
can appropriately tune ω so that the frequency of oscillations
(or one of the other frequencies of the oscillator) is the same
as the frequency of the input signal. Fig. 9 shows the result
of the adaptation of the oscillator for various input signals.
From these experiments, we see that ω converges to a value
that corresponds to a correct adaptation of the frequency of the
oscillations to the frequency of the input. In each experiment,
we see that after learning, the Van der Pol oscillator and the
input signal are oscillating at the same frequency.

The adaptive Van der Pol oscillator demonstrates how to
generalize our adaptive rule to complex oscillators. But, an
increase in the complexity of the frequency spectrum of an
oscillator also generates side effects, like adaptation toward
synchronization of the higher frequency components of the
oscillator and the frequency of an input signal. Thus, when
using highly nonlinear oscillators, one should always know the
kind of frequency spectrum it has, in order to be able to predict
the behavior of the oscillator. Even if we cannot analytically
prove the convergence of our model, by numerically calculating
the positions of the entrainment basins of the oscillator when
perturbed, we are able to predict the behavior of the system in
a quite powerful way.

In this section, we also discussed a very important property
of the adaptive learning rule. Although the parameter we tune
does not have a linear relation with the frequency of the
oscillator, as is often the case for highly nonlinear oscillators,
the adaptive oscillator is able to correctly adapt this parameter
and find the appropriate frequency of oscillations. It seems that
a monotone relation between the frequency of the oscillations
and the parameter we tune is sufficient for frequency adaptation.

4.2. Other examples of adaptive oscillators

In this section, in order to show the generality of the adap-
tive rule, we present experimental results with three other os-
cillators. We build an adaptive Rayleigh oscillator, an adaptive
Fitzhugh–Nagumo oscillator and an adaptive Rössler system.

The construction of the adaptive dynamical system is
straightforward. The main task is to identify in each oscillator
the parameter that most influences the frequency of the
oscillations. Then, we only have to make this parameter a
dynamical system in the same way as we did for the Hopf or
the Van der Pol oscillator. The right column of Fig. 10 gives the
resulting equations for each oscillator.

In order to demonstrate the frequency adaptivity of these
modified oscillators, we made experiments for each oscillator.
The results of the experiments are summarized in Fig. 10. In
these experiments, the oscillators were perturbed by a simple
sinusoidal input and each oscillator was able to adapt its
ω parameter in order to learn the frequency of the input.
Moreover, although the parameters controlling the frequency
in each oscillator are not linearly related to the frequency of the
oscillations, the adaptive rule is able to correctly find the correct
value for the ω parameter to learn the desired frequency.

5. Discussion

Fields such as control of autonomous robots and signal
processing may need models of plastic dynamical systems
to adapt to a constantly changing environment. Moreover,
plasticity in nonlinear oscillators might become an important
aspect in modeling adaptive processes, for example in biology
where adaptivity and memory are major properties of living
systems. The learning rule presented in this article is a step
towards a general framework of plastic dynamical systems,
which are systems for which learning is embedded in their
dynamics and not an offline optimization process.

The evolution of the parameter controlling the frequency
of the adaptive oscillators that we discussed can be viewed
as the correlation between the phase of the oscillator and
the input signal. So we defined a type of correlation-based
learning for periodic functions. In neurobiology, correlation-
based learning rules are known as Hebbian learning [11], hence
we call our rule dynamic Hebbian learning to highlight its
correlation properties. The possible relevance to biology has to
be investigated in further research.

The construction of adaptive oscillators that we presented
is simple, and general enough to be applied to non-harmonic
oscillators and not only to phase oscillators. The adaptive rule
is general for an oscillator, perturbed by a signal F(t), with
general equation
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Fig. 9. We show the adaptation of the Van der Pol oscillator to the frequencies of various input signals: (a) a simple sinusoidal input (F = sin(40t)), (b) a
sinusoidal input with uniformly distributed noise (F = sin(40t) + uniform noise in [−0.5, 0.5]), (c) a square input (F = square(40t)) and (d) a sawtooth input
(F = sawtooth(40t)). For each experiment, we set ε = 0.7 and α = 100 and we show three plots. The right one shows the evolution of ω(t). The upper left graph
is a plot of the oscillations, x , of the system, at the beginning of the learning. The lower graph shows the oscillations at the end of learning. In both graphs, we also
plotted the input signal (dashed). In each experiment, ω converges to ω ' 49.4, which corresponds to oscillations with a frequency of 40 rad s−1 like the input and
thus the oscillator correctly adapts its frequency to the frequency of the input.
ẋ = f (x, y, ω) + εF(t)

ẏ = f (x, y, ω)
(54)

with ω influencing the frequency of the oscillations. We have
the general learning rule

ω̇ = −εF
y√

x2 + y2
. (55)

Only the sign in front of F may change according to the
orientation of the flow of the oscillator in the phase space. In
this sense we generalize the concept of learning presented by
Nishii in [16,17], in which learning rules were only derived
for phase oscillators. Nevertheless, in addition to frequency
adaptation, Nishii also derived learning rules for coupling
strength in populations of oscillators, which is an issue we do
not address in this contribution.

The learning rule we presented is not rigid and can be
modified. For instance, for the Hopf oscillator, a change in the
learning rule in Eq. (7), from sin φ to cos φ or any combination
of periodic functions will not change the convergence
properties. This would only correlate the force with more
complex periodic functions instead of sin φ. Intuitively, the
proof of convergence should give the same results, since the
learning part of the approximation (Eq. (34)) depends on the
conjugate symmetry of the complex Fourier series of the input
signal, which is true for every real input signal.
The mathematical proof given in this paper leads to a better
comprehension of the learning process, which takes place on
a coarser time scale than the oscillations of the system. This
proof also allows us to predict what the oscillator would learn
in the case of multi-frequency inputs. Nevertheless, we only
give a proof for the adaptive Hopf oscillator and even if we
numerically show that more complex adaptive oscillators can
be designed, a general rigorous proof for a larger class of
oscillators is still missing. Constructing such a proof is a very
difficult task.

A major feature of our learning rule is that the oscillator can
extract the frequency of any input signal without any explicit
signal processing (Fourier transform) or any explicit time
window or similar parameters. All the processing is embedded
in the dynamics of the oscillator. We also showed that the
system can learn frequencies from really noisy signals or from
pseudo-periodic signals, like a signal from the Lorenz strange
attractor. The adaptive rule is also valid for tuning parameters
that do not control linearly the frequency of the oscillations. A
monotonic, possibly nonlinear, relation between the frequency
of oscillations and the adapted parameter is sufficient for correct
adaptation of the parameter as we showed for the case of
relaxation oscillators. In this case, the system is able to correctly
find a value that produces oscillations at the same frequency as
the input signal.
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Fig. 10. We show results for several adaptive oscillators. For each oscillator, we give its equation in the right column, ω corresponding to the adaptive parameter.
We also specify the values of the different parameters used in the experiments. In the left column we plotted results of the experiment. Each figure is composed of
three plots. The right one is a plot of the evolution of ω. The left ones are plots of the oscillations (the x variable) and of the input signal F (dashed line), before
(upper figure) and after (lower figure) adaptation.
Dynamic Hebbian learning for adaptive oscillators has an
important implication in the design of CPG models. Actually,
coupled nonlinear oscillators are often used for modeling
CPGs [6,10,13,23], but the coupling has to be defined by hand
and this is a non-trivial task. By using adaptive oscillators, one
could build CPGs that can dynamically adapt their frequencies
and consequently, create a desired pattern of oscillations.
For instance, we are currently exploring how a population
of adaptive oscillators can implement some kind of dynamic
Fourier transform [20]. Furthermore, one can imagine using this
adaptation mechanism to model various processes where self-
synchronization is observed.
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