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Abstract

Robot projects are often evolutionary dead ends, with the software and hardware
they produce disappearing without trace afterwards. Common causes include depen-
dencies on uncommon or obsolete devices or libraries, and dispersion of an already
small group of users. In humanoid robotics, a small field with an avid appetite for
novel devices, we experience a great deal of “churn” of this nature. In this paper, we
explore how best to connect our software with the mainstream, so that it can be
more stable and long-lasting, without compromising our ability to constantly change
our sensors, actuators, processors, and networks. We also look at how to encourage
the propagation and evolution of hardware designs, so that we can start to build up
a “gene-pool” of material to draw upon for new projects.

We advance on two fronts, software and hardware. Building on our robot software
architecture YARP [11], we focus on how to organize communication between sen-
sors, processors, and actuators so that loose coupling is encouraged, making grad-
ual system evolution much easier. We develop a model of communication that is
transport-neutral, so that data flow is decoupled from the details of the underly-
ing networks and protocols in use (allowing several to be used simultaneously, key
to smooth evolution). We develop a methodology for interfacing with devices (sen-
sors, actuators, etc.) that again encourages loose coupling and can make changes
in devices less disruptive. At the same time, we are concerned with the problem of
incompatible architectures and frameworks, and discuss how we work around this.

We emphasize the strategic utility of the Free Software social contract [15] to soft-
ware development for small communities with idiosyncratic requirements. We also
work to expand our community by releasing the design of our ICub humanoid [23]
under a free and open license, and funding development using this platform.
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1 Introduction

Robotics development is, in some ways, like natural evolution. Consider robot
software. Every piece of software has its niche: the environmental conditions
within which it can be used. Within this niche it will grow and change and
perhaps expand to nearby niches. Some niches are large (standard PCs),
some are medium-sized (for example robots like Khepera [19], Pioneer [17]
and AIBO [21] to mention a few), and some are tiny (a newly developed
humanoid). Software evolves quickly as new technologies get proposed and
hardware changes; if trapped in too narrow a niche it tends to become obso-
lete and die, together with the efforts of the developers who have contributed
to it. Robot hardware is subject in turn to the wider commercial and indus-
trial environment. In academia, software and hardware designed for robotic
projects are prone to obsolescence, because although graduate students may
be talented developers they are rarely experienced and disciplined system en-
gineers. Also, often the development of a robotic platform is not the main goal
of the efforts of the people who are working on it but simply a means to an
end. For such researchers hardware and software development are time con-
suming and tedious tasks that take away time and energy that could be better
spent doing research. Yet at the same time, the design of a robotic platform
is a delicate and crucial task that cannot be easily delegated to untrained
personnel. In research laboratories fast changing hardware and lack of human
resources too often narrow the niche in which robotic platforms live.

In this paper, we are concerned about how robotics researchers can avoid being
caught in tiny niches, and how to prevent “genetic isolation” from setting in.
We want to find a way to avoid this trap, without sacrificing the freedom
to radically change hardware and software, a freedom that will be crucial in
“bleeding-edge” research for years to come.

From the point of view of software development, the only viable solution to
these problems is to facilitate code reuse both in time (from past to future) and
space (between geographically dispersed people and institutions). For projects
of a reasonable size this means following a modular approach, where software is
ideally divided in independent components, that can be developed and main-
tained by different people so that efforts are shared among groups having
distinct competences. A modular software platform is flexible. Obsolete mod-
ules are removed and substituted for newer ones without catastrophic effects.
It is difficult to take advantage of code written by other people in different
contexts unless that code avoids extraneous constraints and dependencies at
all levels, from the hardware architecture to the development environment
and programming language. In robotics, dependencies between modules need
to be minimized also from the point of view of run-time performance; as long
as resources are available the addition of new components should not clash
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Figure 1. Our model of a humanoid robot’s “brain”. We assume a set of processors,
some of which may be on the robot, some of which may not be. We draw no distinc-
tion; for research purposes, it makes sense to have off-board processing to do today
what robots will be able to do on-board tomorrow. We assume diversity: different
devices, operating systems, processors, different languages, libraries, etc. (of course,
within our own project we have standards, but we don’t expect everyone using our
robot to agree). We exploit key Free Software tools for smoothing over differences in
operating systems, build systems, and programming languages. We develop YARP,
for smoothing over differences in networking, devices details, and libraries relevant
to robotics. We release YARP as Free Software and use it to support our open robot
platform, the ICub humanoid, whose design will be available under free and open
licensing.

with the overall behavior of existing ones (in terms of throughput, latency,
etc). And from the hardware development point of view, the robotic platform
can be seen as another factor in the equation of code reuse. Common hard-
ware, common protocols, electrical standards, sensors, etc. can certainly make
the our life easier. As it does for software, modularity can play a role in the
hardware design too.

In this paper we describe our efforts to build a modular humanoid robot
platform (see Figure 1). We describe YARP [11], an open source library that
we have developed to support software development on humanoid robotics.
With YARP we try to facilitate code exchange between researchers, especially
when this speeds up the time it takes to develop a platform and use it for
research. We here report aspects of YARP that we hope will contribute to
longevity and interoperability of software developed for robotics. Analogously
for hardware, we describe our efforts to create an open robotic platform, the
ICub that can be shared among several research groups worldwide.

Following the Open Source philosophy we make the code of our software and
hardware available so that other researchers can better understand it and have
the freedom to improve and better adapt it to their needs. We think it is rele-
vant to any small research group, either academic or industrial, who wishes to
develop novel robots (as opposed to build applications on third party robots).
We want to maximize the reach of such research groups, being mindful of
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Figure 2. With the aid of a set of free and open source tools, a C/C++ based project
like YARP can have a very wide reach. C/C++ source code is quite portable and
widely supported, but the infrastructure needed to compile such programs varies a
great deal. Tools like autoconf and automake have smoothed over the differences for
UNIX-like systems. CMake (left) goes further and makes projects easy to compile
within a wide range of integrated development environments (including UNIX-like
systems, but also Microsoft Visual C++, Apple Xcode, Kdevelop, etc). For operat-
ing-system dependent functions, we use the free and open source ACE library [7].
SWIG (right) takes C/C++ source code and generates “wrappers” for it, usable from
many different languages (including Matlab via Java).

the fundamental tension between providing a consolidated system and giving
enough freedom to change every single part via upgrades and replacements.

2 A software ecology

Our initial motivation was that many robot projects are “black holes”, in
terms of software. A lot of software gets sucked in, but very little comes
out. Once a piece of software has been adapted to a particular robot, it
takes a lot of work to extricate it again and apply it to another. Obvi-
ously the answer to this problem is modularity. So there are now several ar-
chitectures/middleware/frameworks for modular robot systems, YARP being
one of them. The major concern for any such middleware (including YARP)
should be that it not also become in turn a “black hole” – the danger is
that once a piece of software has been adapted to a particular architec-
ture/middleware/framework, it may take a lot of work to extricate it again
and apply it to another. That would be a bit somewhat self-defeating. So
modularity alone is not a solution to software reuse, since different organizing
architectures, middleware, or frameworks may be mutually incompatible. It is
important that modules developed can fit into a broader “ecology”: the com-
plicated, sometimes messy collection of niches world-wide in which software
development occurs.
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2.1 C/C++

We decided to use C++ as the main language for development. This is moti-
vated by the fact that C++ is an object oriented language that is widely used
by many developers in the world, and is well supported and portable on al-
most all the available platforms. Perhaps more importantly for robotics, C++
allows writing very efficient code and interfacing with the hardware at the
lowest level. The drawback is that the compile process varies a lot depending
on the platform and development environment. For example Linux and Cyg-
win developers use mostly Makefiles, whereas Microsoft Windows developers
may prefer Visual Studio project files. Altough C++ has reached a fairly good
level of portability which allows, with a reasonable effort, writing applications
that compile on all platforms, it is still very common to have to wrestle to
port code that was written for one platform onto another. On the other hand,
following a modular approach, we would like our software to be as flexible as
possible and be adaptable to the needs of users and the platform that they
work on. In YARP, unavoidable dependencies have been made as localized as
possible to modules that can be compiled or not depending on the underlying
system and user choices. So for example applications that require a GUI get
compiled only when the supporting libraries are installed on the system, and
all the essential operations of YARP are independent of GUIs. We take similar
care for dependencies on mathematical and image processing libraries.

Among the available tools for automatic configuraton of software packages,
we decided to use CMake [18]. CMake is a cross-platform, open-source build
system. It produces build files for the environment of choice (e.g. makefiles
for Unix, Borland and MinGW and project files for all Microsoft compilers)
starting from a language independent description. The language of CMake
is powerful enough to support a flexible configuration process based on the
packages that are available in the system and the preferences of the user
(see Figure 2). Through CMake the build process of YARP is robust, simple
and flexible. CMake is free and open-source, with a healthy community of
developers. We use another free and open-source tool called SWIG to make
YARP easy to use from many different languages. In all these choices, we are
following the practices of large successful open-source projects.

2.2 Free Software

The ability to integrate software modules into a system depends not just on
the technical constraints attached to their use, but also the cultural constraints
(be they social, legal, or commercial) they carry. For example, whether two
modules can be integrated can depend not just on their interfaces but also on

5



Kismet

Cog

iCub

James

Babybot

Obrero

Domo

Mertz

Laszlo

KASPAR

K4

Figure 3. A potted history of YARP (for more details, see [11]). YARP was born
on Kismet [2], grew up on Cog [3] and BabyBot [12], and serves as the software
architecture for the iCub humanoid [23]. Along the way other humanoids have also
used the system. With ICub, we are trying to create some hardware “genes” that
can travel along too, so each robot does not need to be designed from scratch. There
are currently 9 copies of the ICub head.

the conditions under which use of the modules is permitted by their respective
creators, and what conditions the integrator wishes to apply to the aggregated
system. This adds a great deal of complexity to the process of integration.
In general, software produced under conditions where the creator has strong
opinions about how it should be used, and enforces those opinions in licensing
and other measures, does not make a good module to build on. It is possible,
but painful.

The Free Software model is an alternative that strikes a different balance
between creator and integrator. It proposes a set of standard freedoms which
should be granted with software. Taken together these freedoms make the soft-
ware actually useful as building blocks without excessive social/legal/commercial
complexity. The freedoms are enforced using copyright law principles that ap-
ply to most of the world.

The Free Software model says nothing about the cost of software, although it
does tend to contribute to commoditization, driving the cost of infrastructure-
related software such as webservers and operating systems down. Free software
should not be confused with “freeware”. Freeware software is available without
charge but may have complex social/legal/commercial terms attached, and
may or may not grant the freedoms associated with free software (usually
not).

The effectiveness of free and open software is becoming better understood from
a business perspective [25]. The free and open model has had a crucial effect
in the field of embedded devices, a large and growing market that overlaps
with robotics, spurred by the existence of embedded Linux [6]. We release
all our work under free and open licenses, in order to encourage their use as
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building blocks. Historically, our “YARP” software grew and developed this
way, principally through a collaboration between robotics groups at MIT and
the University of Genoa 3.

2.3 Interoperating

The closest project in spirit to YARP is that of the Player project [24], and
we take it as an example here of how YARP can interoperate with other ar-
chitectures/frameworks. The Player/Stage software collection is widely used
in the field of mobile robotics, and is the nucleus of a healthy, pragmatic com-
munity of developers. Rudimentary interoperability is possible between these
projects at the device level. Player contains a “yarpimage” driver which can
accept images from a YARP Network. A “stage” driver has been developed
for YARP, which gives access to the 2D robot simulator of that name from
a YARP Network. In fact devices have some similarity in structure between
YARP and Player, but have the crucial difference (at least to our eyes) that
YARP starts with just a thin C++ wrapper which permits direct function
calls while Player devices must operate through a message passing framework
(although that message passing can now be internal rather than across a net-
work). In principle, YARP devices should be easy to wrap up systematically
and efficiently for Player (since no assumptions are made about the commu-
nication model), but the other direction is not so easy.

The driver mechanism in both projects gives a very straightforward way to
integrate quickly with what could otherwise be incompatible middleware. At a
higher level of potential interoperation, both projects are free and open source,
they both have documented network protocols, both have made an effort to
allow different transports, and both are reasonably portable. So a determined
individual will probably be able to make them work together on any given task.
Neither YARP nor Player is aimed at users unwilling or unable to program.
Such users benefit from these projects indirectly, through for example the ICub
platform, which is being built using YARP to support users from different
disciplines including neuroscience and experimental psychology.

3 Devices and Drivers

Code reuse becomes difficult at the level where algorithms communicate with
the low-level hardware. The OS layer of YARP tries to minimize dependencies
between algorithms and the hardware for which we define a constant interface
(threading, memory, network, filesystem). Unfortunately more specific hard-
ware (motor control boards and frame grabbers are popular examples) requires

7



h=vaopen(“/dev/tty1”);
vasetBaudRate(57600);
vasetDataBits(8);
vasetParity(false);
…
int newpos=100;
vamove_to(h,newpos);
…
vaclose(h);

User Code

h=vbopen(“/dev/usb”);
…
double newpos=100;
vbgoto(h,newpos);
…
vbclose(h);

A)

B)

VABoard API

R
S
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U
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B

User Code

API

Figure 4. Example of code dependency. A) VABoard is a motor control board which
interface to the robot through serial port. The user’s code contains code to initialize
the board and control the robot through the API library provided by the vendor.
B) A new motor control board is connected to the robot; this new device has a
USB interface and a different API. The differences are propagated to the user’s code
which must be rewritten.

a more sophisticated mechanism. In these cases vendors provide device drivers
and a set of APIs to the user. The API comes in the form of a static or dy-
namic library which is linked to the user’s code. Unfortunately APIs vary a
lot even within devices that belong to the same family. Even worse the API
of the same hardware may vary on different operating systems or change on
future releases of the hardware. User code becomes dependent on the particu-
lar board for which it was initially developed and bound to the decisions and
assumptions of the vendor. For example vendor A might decide to use integers
to represent the position of a motor joint, wheras vendor B might decide to use
a floating point variable. Otherwise interchangeable devices may have different
“initialization” procedures. Consider for example a motor control board which
has a serial interface to the host computer; the API of this board will probably
require that some parameters (port number, baud rate, number of data bits,
etc) are specified when the device is created. Suppose now that we obtain a
more recent release of the same board that now has a USB interface. In this
case the parameters to initialize the board are different and we are forced to
rewrite all processes that use it (the situation is represented in Figure 4).

We call devices which can only be accessed using vendor supplied material
“sticky devices” because they tend to make the particular set of assumptions
chosen by the vendor stick to the user’s code. A logical step in such a situation
is to wrap the functionality supplied by the vendor in a facade, so that source
code dependencies are reduced. In YARP wrappers can be made individually,
compiled and built separately, and optionally used across the network. This
mechanism produces a level of separation between device-specific code and
user code that is effective for “quarantining” the sticky devices. This is achieved
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in three ways: (i) definition of interfaces for families of devices (ii) localization
and separation of device initialization and creation (iii) creation of network
wrappers and separation between devices and communication.

Note that when we talk about “interfaces” here we do not refer to the interface
description languages used in CORBA and other systems, but simply to a
consistent API in C++. Concerns related to communication are addressed in
point (iii), not (i). We keep communication and device interfaces separate,
so that users can exploit one and not the other as they wish, and also code
written to use a device remotely can later be made local with only a cost
of a single extra virtual method call compared to calling the vendor’s API
directly. This is important so that users don’t need to go through a painful
porting process if they discover at some point that remote operation is too slow
for their application – for example, an implementation of the vestibular-ocular
reflex might require a very tight loop between sensors and motors.

3.1 Device Interfaces

An interface to a YARP device is the specification of the functionalities it
provides. In practice in C++ an interface is a virtual base class, whose member
functions define the ensemble of functionalities a device must implement in
order to provide that interface. A YARP device is a “wrapper” class which
implements all methods declared in its interface. A single device can of course
expose more than a single interface (in C++ this is implemented through
multiple inheritance). All details specific to the hardware (vendor’s API and
library) are handled in the wrapper class and are hidden behind its interfaces.
The idea is that changes in the hardware are caught by the wrapper class and
never propagated to the user code. As a result, if interfaces are well designed,
the impact on the code due to hardware change is minimized. Of course,
unique features of a device can be exposed in a new interface, but without
much benefit over using the vendor’s code directly for that specific feature.
And any code written using that novel interface will need to be reworked if
another device is substituted.

As discussed previously, initialization parameters may introduce annoying de-
pendencies in the user’s code. To solve this we have defined a common interface
to all devices (the DeviceDriver interface) which normalizes how devices are
initialized and un-initialized, and, more importantly, how initialization param-
eters are passed to them. In particular this interface defines two methods:

virtual bool open(yarp::os::Searchable& config)=0;
virtual bool close()=0;

This open method initializes the device. Initialization parameters are passed
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VABoard.ini
Name=VABoard
Port=/dev/tty1
Baud=57600
Bits=8

Name=VBBoard
Port=/dev/usb

VBBoard.ini

Figure 5. Interfaces allow code reuse. VABoard and VBBoard (see Figure (4)) now
implement the same interfaces (through their respective wrapper classes). The user’s
code accesses the hardware through these interfaces and is not aware of the details of
how the methods are actually implemented. The different initialization parameters
are listed in configuration files and are thus separated. VABoard and VBBoard are
now completely interchangable.

to the function as a (typically nested) list of key-value entries represented as
a Searchable object. A Searchable can contain all possible parameters that
devices might require for initialization. Initialization parameters for devices
are stored in “.ini” files (again in the form of a list of key-value entries). A
process that wants to open a device reads the file and transfers its content
into a Searchable object. This class plays a role in YARP similar to that of
the ConfigFile class in Player/Stage, except generalized to work for parameters
expressed as command line arguments, or passed across the network, or created
in a GUI, etc. – we abstract across all the possible sources of configuration
settings. The configuration object is passed to the device through the open
function. It is worth stressing that up to now this procedure is totally device
independent, because the parameters are just copied and not interpreted by
the process. It is only in the implementation of the open method (in the
wrapper class of the device) where the Searchable object is parsed to extract
the parameters that will be used to inizialize the device. The Searchable object
is designed so that it can collect information about how it is used, yielding
some basic documentation about the parameters relevant to a given device.

The close method performs all the operations required to shut down the device
properly and release all the resources it was using. No parameters are required
by this function.

YARP defines interfaces to broad families of devices. For example this is a
partial list of the interfaces defined for generic devices that generate a stream
of color images (frame grabbers):
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• IFrameGrabberRgb, methods in this interface provide access to the most
recent frame acquired by the device, and information about its size (number
of columns and rows);

• IFrameGrabberControls, specifies a set of functionalities to control how the
device performs the acquisition, like shutter speed, brightness and gain.

Interfaces to motor control devices are more difficult to define. Control boards
designed for industrial applications have often a quite standard interface which
provides a PID control algorithm and position or velocity control modes.
Things become more complicated when we consider also programmable de-
vices that can implement virtually an infinite set of functionalities and control
algorithms. For this reason interfaces to control boards have been defined on
the basis of the control paradigm they implement. Accordingly, YARP defines:

• IEncoder : group all methods providing access to the motor encoders, like
methods for reading the current position and velocity of each axis;

• IPositionControl : methods to control each axis by specifying its position;
• IVelocityControl : methods to control each axis by specifying its velocity;
• ITorqueControl : methods to control the amount of force/torque exerted by

each axis.

These last interfaces are independent of the particular algorithm the control
board implements to realize the corresponding functionality. These details are
delegated to specific interfaces. For example IPidControl includes methods to
interface to a PID controller, such as for example to read or set the values of
the gains.

To summarize, interfaces captures similarities among devices and allows sep-
arating device dependent code from user code. To the extent that user code
uses interfaces shared by other devices, another device can be substituted later
without change to that part. This includes devices with different initialization
procedures, or different APIs (see Figure 5). Devices can also be nested or
assembled into composite structures if necessary.

3.2 A factory of devices

Encouraging device access through interfaces achieves a good level of sep-
aration between vendor/device specific APIs and user level code. Interfaces
alone, however, do not guarantee a complete level of separation. In practice
users must still specify the type of device they want to create. Care must
be taken to avoid this introducing unwanted coupling between device specific
code and user code. A common software engineering practice is to localize ob-
ject creation so to minimize the amount of code that is responsible for object
creation and initialization. We have seen that in YARP part of this is realized
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by the DeviceDriver interface, which encourages all initialization procedures
to be performed inside a standard open method. We then go one step further,
and encourage device creation to be delegated to a factory. The factory con-
tains a list of all devices available in YARP and the corresponding functions
to call to create them. It receives a list of initialization parameters, creates the
device, and initializes it through the DeviceDriver interface (this is similar to
the DeviceTable in Player). If the process is successful a valid pointer to the
device is returned. This pointer is the only “access point” to the device and
(via dynamic casts) its interfaces.

The whole process of creation, initialization and interface access is managed
by the PolyDriver object. Under good “portable” usage in YARP, the user
accesses devices via PolyDriver, asking for their creation through the Poly-
Driver::open()) method. This works just the same as the open() method we
talked about for specific devices, except now our configation object (read from
file, command line, network, GUI, etc.) specifies which device we want as well
as all its options. If the driver is successfully created the factory returns a
valid pointer which is stored inside the PolyDriver. The lifecycle of the device
is managed by the PolyDriver, and interfaces to the device are acquired via
the PolyDriver::view() method (see Figure 6).

3.3 An example: accessing a motor control board

For example suppose we want to use the test_motor device. In YARP this is
a fake device which simulates a control board for testing purposes. This device
supports the IPositionControl and IVelocityControl interfaces. To begin with,
we first create an instance of the PolyDriver. The actual device is create by
calling the PolyDriver::open() method specifying the symbolic name of the
device (test_motor):

PolyDriver device;
device.open("test_motor");

We could also be more specific and pass in configuration options, but we
keep things simple here. Now we can get the interfaces we want from our
test_motor by calling the PolyDriver::view() method:

IPositionControl *ipos=NULL;
device.view(ipos);

IVelocityControl *ivel=NULL;
device.view(ivel);
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Figure 6. Device creation and initialization. Creation of devices in YARP is delegated
to a factory object. Users access devices through instances of the PolyDriver. The
Figure describes the following situation. Process1 controls a robotic head and needs
to access the robot frame grabber (whose symbolic name is “dragonfly”) and to the
control board connected to the motors of the head (“mboardA”). Process1 creates
an instance of PolyDriver and opens the device; the symbolic name of the device is
passed as a parameter of the open function, together with initialization parameters
read from a .ini file. The PolyDriver hands over these parameters to the factory
which creates an instance of the device and returns it to the PolyDriver. Subsequent
calls to the driver are entirely handled by the PolyDriver itself. Process1 calls view
to acquire the appropriate interfaces to the device. A similar procedure is performed
by the same process or other processes (Process 2 in Figure) to create instances
of different devices. The important point is that calls to the YARP API for each
specific device from the processes can be just one level of indirection away from
vendor-supplied code.

Checking if ivel and ipos are non-NULL assures us that test_motor really
supports the respective interfaces. This is reminiscent of the treatment of
interfaces in something like DCOM, but is grossly simplified, implemented
directly with the C++ type system so that we can be just one virtual call away
from the native device API. We can now call methods of the IPositionControl
interface to (for example) move joint number 0 to the angular position of
40deg, with the velocity of 5deg

s
and acceleration of 100deg

s2 :

ipos->setRefAcceleration(0, 100);
ipos->setRefSpeed(0, 5)
ipos->positionMove(0, 40);

(The use of degrees rather than radians in YARP interfaces is part of a bias
towards keeping all data as human-readable as possible.) Or we could use
the IVelocityControl interface to move axis 1 at a smooth velocity of 5deg

s
,

accelerating to that velocity at 100deg
s2 :

ivel->setRefAcceleration(1,100);
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Figure 7. Network wrappers allow device remotization. A generic Server Network
Wrapper exports the YARP interface of VABoard so that it can be accessed re-
motely by another machine. At the other side of the communication link the Client
Network Wrapper exports the same interface of the remote device so that it can be
transparently accessed by the client code. The local device and the Client Network
Wrapper are totally interchangable, the only difference between the two is in term
of performance (the time it takes to execute a function) and initial configuration.

ivel->velocityMove(1, 5);

The same code would do something for all of the motor devices we have that
implement these interfaces. The details might vary a bit but in principle the
overall behavior should be consistent.

3.4 Device Remotization: Network Interfaces

A final level of separation is achieved by supporting device remotization, or
operation across the network via proxies. This feature is desirable for many
reasons. It allows separate compilation and execution of different parts of the
system, to avoid (for example) the existence of motor control libraries on just
a single OS constraining you to also do image processing on that same OS.
It makes distributed processing easier, letting you shift processing to extra
machines when the load becomes high. Remotization is in practice one of
the major benefits of offered by YARP and Player. They achieve that goal
is somewhat different ways. In Player, devices are responsible for producing
their own messages (represented as a C structure, with the Player library
responsible for marshalling/de-marshalling). In YARP, message production
is done at the level of device families. The use of standard YARP APIs for
families of devices makes it straightforward to substitute in a proxy instead
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of a local device. By using YARP ports for communication, with their defined
protocols, remotization also gives us portability across different platforms, as
it naturally defines a network interface that can be used to make resources
available on one platform to processes compiled and running on a different
one. This decouple the compilation, build environment, libraries, operating
system and language dependencies of hardware and user software.

The remotization mechanism relies on the communication layer (see Section 4)
and on two Network Wrapper devices, one acting as a Server and the other
acting as a Client. Both network devices implement the very same interface of
the device they wrap: the only difference is that they do not connect directly
to the hardware but act as network proxies, talking to each other using a
predefined protocol, which involves one or more YARP Ports configured for
RPC and/or streaming as the nature of the device dictates (see Figure 7).

A process that wishes to connect to the remote device using the YARP code-
base creates an instance of the Client Network Wrapper (the YARP code-base
could be avoided by working with the network protocol directly, as described in
Section 4). This wrapper exports exactly the same interface of the “wrapped”
device so the process can pretent that it is connected to a real device. The
Client Network Wrapper converts calls from the process into messages, sends
them to the other end of the communication link, and, in case a reply is ex-
pected, waits for data and dispatches it to the calling process. The Server
Network Wrapper waits for incoming connections from the network. In addi-
tion it creates an instance of the wrapped device to which it forwards requests
from the network. If requests involve a reply theses are sent back to the call-
ing port so that they are received by the remote client. The Server Network
Wrapper gains access to the local device through its interface; as such it is a
total independent entity that can be reused for devices of the same family.

4 Transporting data

A very basic problem that keeps cropping up in robotics projects is simply
how to move data around between sensors, processors, and actuators. There’s
a universe of “middleware” solutions in existence for communication (see the
survey in [10] and the related-work review in [4]). Our own preferred solution
in YARP has the following features:

. We use an abstract model of communication that is transport-neutral and
peer-to-peer.

. The underlying transport used for each individual connection between peers
can be selected independently. Choices such as network versus shared mem-
ory, tcp versus udp, unicast versus multicast, text versus binary, which of
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several networks to transmit on, etc can be made on a case by case basis.
We encourage such details to be external configuration choices rather than
properties embedded in programs.

. We are careful to have one text-mode transport that is extremely easy to
implement, for those who wish to interact with a YARP system without
using any of the YARP libraries or executables. We believe this is very
important for supporting interoperability, and providing a gentle slope to
integrating YARP into an existing system or vice versa.

. The model of communication is not intertwined with our ideas about how
devices work or how processes should be started/stopped. Thus users can
“cherry-pick” the parts that work for them.

Communication in YARP generally follows the Observer design pattern. Spe-
cial port 1 objects deliver messages to any number of observers (other ports),
in any number of processes, distributed across any number of machines, using
any of several underlying communication protocols.

4.1 The YARP Network

For the purposes of YARP, communication takes place through “connections”
between named entities called “ports”. These form a directed graph, the “YARP
Network”, where ports are the nodes, and connections are the edges. Each port
is assigned a unique name, such as “/icub/camera/left”. Every port is registered
by name with a “name server”. The goal is to ensure that if you know the
name of a port, that is all you need in order to be able to communicate with
it from any machine. The YARP name server (YNS) is a generalization of
DNS name service on the public internet for converting from domain names
to IP addresses. It is not concerned just with machines but all the details
necessary to make a connection with a specific resource. The YARP name
server is designed to be easily used by clients who are not themselves using
the YARP libraries or executables.

The purpose of ports is to move data from one thread to another (or several
others) across process and machine boundaries. The flow of data can be manip-
ulated and monitored externally (e.g. from the command-line) at run-time. It
can also be accessed without using the YARP libraries or executables, since the
relevant protocols are documented. If messages follow YARP guidelines, then
they can be automatically converted to and from a “text mode” connection,
enabling human monitoring and intervention in the system, and providing an
easy way to experiment with integration with non-YARP modules.

1 Don’t confuse YARP ports with TCP/IP socket port numbers. We use the word
“port” to refer to the former and “port number” to refer to the latter.
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Ports can be on different machines and OSes

machine 1 (Linux)

yarpdev

tracker

machine 2 (Linux)

motor_control

machine 3 (Windows)

yarpview

yarpview

/camera /tracker/imagemcast

/viewer1

mcast

/tracker/position

/motor/position

tcp

/viewer2udp

Figure 8. Example of a network of ports. Images are transmitted from a camera
(“/camera”) port to a viewer (“/viewer1”) port and the input of a visual tracker
(“/tracker/image”). The tracker annotates the image, for example by placing a
marker on a tracked point, and transmits that to another viewer (“/viewer2”).
The tracker also sends just the tracked position from a position output port
(“/tracker/position”) to a input controlling head position (“/motor/position”). Every
port belongs to a process. They do not need to belong to the same process or be on
the same machine as each other. Every individual connection can take place using
a different protocol or physical network – in the figure multicast, udp, and tcp are
shown.

A port can send data to any number of other ports. A port can receive data
from any number of other ports. Connections between ports can be freely
added or removed, and may use different underlying transports. The use of
several different transports and protocols allows us to exploit their best char-
acteristics. TCP is reliable, it can be used to guarantee the reception of a
message. UDP can be faster than TCP, but without guarantees. Multicast
is efficient for distributing the same information to large numbers of targets.
Shared memory can be employed for local connections. Text-mode operation
is much more human-friendly, and a good place to get started with external
integration. Figure 8 shows a very simple network of ports for a visual tracking
application.

Connections between ports in YARP can carry replies if desired (and if the
underlying protocol supports that), so conventional “RPC” (remote procedure
call) style synchronous operation is possible. We encourage streaming rather
than RPC whenever possible, because RPC can make a network brittle by
introducing strong coupling of timing between processes. For our implemen-
tation of ports, we have broken them down into several logically separable
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parts:

. The carrier factory (called “Carriers”); carrier is our generic name for any
different transport or protocol that can carry a connection. This factory
maintains a list of managers for different kinds of connection. The user can
extend this list with their own custom types of connection (for example, for
a kind of network we’ve never considered, or a different implementation of
an existing carrier).

. The core communications module (called “Port”). This will manage connect
requests, disconnects, reading, writing, and various administrative details.
It defers to the carrier factory to create specific connections and knows very
little about their nature.

. Reader and writer buffers (called “PortReaderBuffer” and “PortWriterBuffer”).
In order for communication to be efficient and avoid unnecessary copies,
objects being transmitted generally need to be left untouched until commu-
nication is complete. With the variety of possible connections and options
possible, the details of this can become complicated. YARP implements a
certain set of policies we think are good in the reader/writer buffer classes.
These are wrapped around the Port class to provide a BufferedPort class
that gives both a simple interface and efficient implementation, while keep-
ing buffering and communication separable for those with strong opinions
about how one or the other should be done.

. The YARP network interface (called “Network”). Provides methods for ma-
nipulating parts of the network, such as creating or removing connections
between ports.

The YARP name server is a simple program using a single ordinary port as
its input; in the past, it had its own special protocol but now it is just like
any other YARP program. This is possible because ports can operate without
access to a name server if desired; it is another separable component.

4.2 Human readable/writable communication

There is a constant tension between using binary formats and human-readable
formats. Binary formats can be much more efficient, but text mode formats can
be easier to work with and study experimentally. The value of text formats and
protocols has been seen time and time again in the short history of computing
(postscript, http, html, xml, etc.). YARP is constructed so that both binary
and text mode operation is possible.

The YARP communications system is written in two parts. The first part is a
set of “carriers” which do the work of providing connections between ports, so
that data can be faithfully transmitted from a source to a destination byte-for-
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byte. The second (separable) part of the communication system is a standard
data format. This standard is specified independently from the carriers, so
that the carriers could be reused by someone with different opinions about
data representation, but helper functions and classes make it easy to meet.
This format is called the “bottle” format for historical reasons 2 . The bottle
representation is based on a nested structure of certain familiar primitive types
– lists, integers, floating point numbers, strings, binary blobs, and a special
“vocab” type that is basically an integer in binary mode (for fast dispatching)
and a string in text mode (for easy reading and writing). The important point
is that binary and text representations are interchangeable. Under normal
operation, ports can be sending easy-to-parse binary messages to each other,
but then when a human eavesdrops on that data or tries to insert a message,
they can still understand and generate the messages in text mode. Bottle-
style messages can be expressed in several interchangeable representations:
binary, text, command-line options, configuration files etc. We find that under
various conditions sometimes we want the same kind of data coming from file,
command line options, or across the network, so is convenient to have all the
various representions mapping to a homogeneous structure.

In principle, evolution of communication protocols in YARP can be relatively
painless. Since new “carriers” can be added freely, new and old versions could
live side by side for a release or two. Ideally, something like today’s text mode
format should be honored for a long time, as a connection protocol of last
resort.

4.3 Connection protocol

The connection protocol is the protocol used for a single connection from an
output port to an input port. It has two main phases, the handshake phase,
and the message phase. We begin once the sender has successfully opened a
bidirectional streaming connection of some kind (presumably a tcp connection)
to the receiver. First comes the handshake phase:

. Transmission of protocol specifier: Sender transmits 8 bytes that iden-
tify the “carrier” that will be used for the connection. The carrier can require
switching to some other form of stream, or using a particular strategy for
encoding data. The transmission of the initial 8 bytes is the only part of
this protocol that is defined in terms of bytes sent.

2 From YARP’s online documentation: The name of this class comes from the idea
of throwing a "message in a bottle" into the network and hoping it will eventually
wash ashore somewhere else. In the very early days of YARP, that is what commu-
nication felt like.
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. Transmission of sender name: Sender transmits the name of the port it
is associated with. How this name is encoded and sent is the concern of the
specific carrier.

. Transmission of extra header material: Sender and receiver may engage
in further communication as needed for the specific carrier.

At the end of this phase, the sender and receiver are both “aware” of which
carrier is in use (this may have involved discarding the original stream and
switching to a new one – e.g. mcast, udp, shared memory) and both are aware
of the identifier of the port at the other end of the connection. This can be
important for collaboration during connection shutdown.

Next comes the message phase. After the handshake, the connection is (as
far as YARP is concerned) quiescent until either the sender decides to send a
message across it. It is technically possible for the receiver to initiate activity
– we’ll return to this issue.

. Transmission of index: Carrier-dependent. Some carriers will require
statistics about the message (such as its length) to be given at the begin-
ning. YARP binary carriers have a fairly elaborate index, due historically
to a limitation of the QNX message-passing API. Text-mode carriers have
no index at all, since it is unreasonable to expect a human to be able to
generate one.

. Transmission of payload: The actual message is transmitted in a carrier-
dependent way.

. Acknowledgement of payload: The receiver may acknowledge transmis-
sion in some way. Carrier-dependent.

The message phase repeats as often as the user wants. Note that the descrip-
tion so far is very loose – just about every aspect of a connection is carrier-
dependent. What does YARP actually expect of connections, in order to build
on them?

. After the handshaking phase, both sides of a connection know the names of
the other side. This is important for housekeeping.

. After the handshaking phase, a connection endpoint must have certain
knowledge about the connection that it can report to YARP. It will be
connection-based or connectionless. It will be text mode or binary. It will
deliver acknowledgements or not. It will be able to deliver replies or not.
It will be active or “fake” (in multicast, many logical connections can be
serviced with a single active connection – these details are taken care of at
the carrier level).

The important point about the communication protocol is that is polymorphic
and allows heterogeneous use – the protocol on each connection between two
ports can be controlled independently. This allows for system evolution, where
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8-byte magic number protocol

‘Y’ ‘A’ 0xE4 0x1E 0 0 ‘R’ ‘P’ tcp

‘Y’ ‘A’ 0x61 0x1E 0 0 ‘R’ ‘P’ udp

‘Y’ ‘A’ 0x62 0x1E 0 0 ‘R’ ‘P’ multicast

‘Y’ ‘A’ 0x63 0x1E 0 0 ‘R’ ‘P’ shared memory

‘C’ ‘O’ ‘N’ ‘N’ ‘E’ ‘C’ ‘T’ ‘␣’ text

‘C’ ‘O’ ‘N’ ‘N’ ‘A’ ‘C’ ‘K’ ‘␣’ text-with-ack

‘G’ ‘E’ ‘T’ ‘␣’ ‘/’ . . . http

. . . . . .
Table 1
Partial list of YARP connection “magic numbers” – the eight initial bytes of a
connection in YARP specify the desired protocol to use from that point on. Magic
numbers are commonly used in all sorts of file formats intended for interchange.
YARP’s rather strange magic numbers for binary formats (“YAnnnnRP”) evolved in
order to be compatible with earlier versions of itself.

new protocols are introduced, potentially mapping onto radically different
physical networks, virtual networks, or external middleware.

4.4 YARP without YARP

Suppose some YARP programs are running and we want to send or receive
data from them. For example, suppose there is a YARP port called “/motors”
which will accept commands to move a motor. For concreteness, let’s imag-
ine we have started the following standard YARP programs (on the same or
different machines):

yarp server
yarpdev --device test_motor --axes 2 --single_port --name /motors

The “yarpdev” program here creates a port called “/motors” that can accept
command to a fake set of motors (2 axes or degrees of freedom), and report
on their state. Normally we would interact with the motor through a device
API that takes care of communication details. But if for some reason we can’t
use the YARP codebase, what can we do?

YARP ports listen to incoming connections of a certain default initial carrier
(tcp), always ready to make new connections for input or output. Suppose we
can discover that “/motors” is listening on port number 10022 of our current
machine (we could discover that using netstat on Linux, or by querying the
YARP server as we’ll see shortly). We can then connect manually to the port
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as follows:

user types system responds

$ telnet 127.0.0.1 10022 (telnet startup message)

CONNECT foo Welcome foo

help (an explanation of available commands)

* This is /demo at tcp://127.0.0.1:10032 ...

Everything so far would be basically the same for any YARP port. For people
who have used MUDs, IRC, or serial interfaces to hardware, it should all seem
vaguely familiar. Of course we don’t suggest actually using telnet, it is just a
placeholder for socket communications in the user’s language of choice. So far
all our communications have been “administrative” – we have communicated
with the port but not really with the program that owns it. To do that, we
send payload data. For the text-mode carrier we’ve chosen (determined by the
8 initial bytes we sent, “CONNECT␣” in this case), this is done by typing “d”,
hitting return, then writing a text-mode representation of the data we want
to send. Let’s try it:

user types system responds

d (no response, waiting for data)

help (a list of available yarpdev commands)

d (no response, waiting for data)

[get] [axes] [is] [axes] 2 [ok]

d (no response, waiting for data)

[set] [pos] 0 100.0 [ok]

We have determined that there are indeed two axes available as we requested
when starting yarpdev, and have set the position target for the first axis to
100.0 units. We could go on to query positions, use other interfaces, etc. We can
disconnect by closing our connection (or, more politely, sending the message
“q”).

By default, the motor port will stream encoder readings from the motors to
any reader that connects. To subscribe to this stream, we simply connect as
above and then type “r” to reverse the connection. Reversing means to invert
which side should take the initiative in sending data.

Suppose we wanted to send messages more efficiently? We start out the same
way, connecting via TCP, and then give the “magic number” of the carrier we
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want to use (tcp binary, udp, mcast, shmem, etc). Understanding these carriers
is a bit harder than basic text-mode operation, but they are documented.

One part we skipped at the start was how to discover how to access ports
in ths first place. If we know the port we want is called “/motors”, how do
we discover where it is? We can in fact talk to the yarp name server using
exactly the same protocol that we have described here. What socket port the
name server listens to is reported when it starts (and can be configured, or
discovered using a broadcast protocol).

So, with a running YARP system, we can discover and communicate with
running programs, sending commands and reading data, without using any
YARP libraries or executables. All the steps we’ve gone through are trivial in
any language with a basic socket library (we’re not using any special features
of telnet, it is just for demonstration purposes). It is important to remember,
though, that while we’ve been communicating with the “/motors” port using
text across tcp, at the same time the same port could be communicating with
other programs via binary messages over udp or multicast etc. We believe
the existence of the bottle format for communicating with YARP processes
makes it much easier to experiment with and build bridges to in text-mode
(like http for the web), while gracefully supporting switching to binary-mode
communication when the situation demands it.

5 RobotCub and ICub

RobotCub is a collaborative project funded by the European Commission un-
der the Framework 6 program and it is part of the Cognitive Systems effort
coordinated by the Unit E5 [27]. One of the goals of RobotCub is that of cre-
ating an open platform where many other projects could thrive by exploiting
a common hardware and software infrastructure. RobotCub has also the goal
of making the ICub (this is the name of the robot) the platform of choice for
several other research groups worldwide and, simultaneously, to advance our
knowledge of natural and artificial cognitive systems.

One of the tenets of the RobotCub stance on cognition is that manipulation
plays a key role in the development of cognitive capability. Consequently, the
design is aimed at maximizing the number of degrees of freedom of the upper
part of the body (head, torso, arms, and hands). The lower body (legs) is made
to support crawling on the four limbs and sitting on the ground in a stable
position with smooth autonomous transition from crawling to sitting. This
allows exploration of the environment, grasping and manipulation of objects
lying on the floor. The total height is estimated to be around 105cm. The total
number of degrees of freedom (DOF) is 53 of which 41 in the upper body (7
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Figure 9. The ICub at various stages of construction. Panel A) shows the head of
the robot with part of the embedded electronics and sensors; in B) the upper torso
showing also the left hand; C) shows a first realization of the legs (now improved);
D) a tentative assembly of the entire robot.

for each arm, 9 for each hand, 6 for the head and 3 for the torso and spine).
Each leg consists of six additional degrees of freedom. The sensory system will
include binocular vision and haptic, cutaneous, aural, and vestibular sensors.
Functionally, the system should be able to coordinate the movement of the eyes
and hands, grasp and manipulate lightweight objects of reasonable size and
appearance, crawl using its arms and legs, and sit up. This allows the system
to explore and interact with the environment not only by manipulating objects
but also through locomotion.

The philosophy adopted by RobotCub is that of the free software movement,
as codified by the General Public License (GPL). On the software side, the
RobotCub project adopted YARP and contributed to the development of some
new specific features. For the hardware, we selected the GPL license for the
sources and FDL for documentation and drawings. While it is clear how to
apply these licensing schemes to source code (e.g. C++), we need to clarify
how to apply them also to hardware designs.
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5.1 Open Source hardware

The phrase “Open Source hardware” might sound strange, but in fact it is
a plain transfer of the open source philosophy to the entire design of the
RobotCub platform. The design of the robot started from the preparation of
specifications (e.g. estimation of torque, speed, etc.), a typical 3D CAD mod-
eling, and eventually in the preparation of the executive files which are used to
fabricate parts and for assembly. Without good documentation it is very com-
plicated to build and assemble a full robot. This means that documentation
(as for software) is particularly important.

The CAD files, in some sense, can be seen as the source code, since they
are the “preferred form of the work for making modifications to it”, in the
language of the GPL. They get “compiled” into 2D drawings which represent
the executive drawings that can be used by any professional and reasonably
well-equipped machine shop either to program CNC machines or to manually
prepare the mechanical parts. This compilation process is not fully automated
and requires substantial human intervention. There is a clear dependency of
the 2D drawings on the original 3D CAD model. To enable the same type of
virtuous development cycle as occurs in open source software, the 3D CAD is
required, since changes happen in 3D first and get propagated to 2D later. In
addition, assembly diagrams, part lists, and all the material produced during
the design stage should be included to guarantee that the same information
is available to new developers.

One difference between software and the hardware design is that there are cur-
rently no effective formats for interchange of 3D models. Proprietary systems
such as SolidWorks and Pro/E can import and export a range of formats, but
going from one to another is lossy, destroying information needed for produc-
tion and leaving just the basic geometrical shape. So in practice, designs are
tied to tools produced by a particular vendor, and interoperability between
hardware design tools is limited. In RobotCub we were forced to choose a
specific set of tools for mechanical and electronic CAD and future upgrades
will have to strictly adhere to these standards. Due to the absence of open
source professional design tools, RobotCub uses proprietary products. This is
an unfortunate situation, but there is no practical alternative at the moment.
The “C++” and “gcc” of CAD do not yet exist.

As a practical matter, the simple duplication of RobotCub parts does not
require the use of any of these tools since we provide all executive drawings
and production files (e.g. Gerber files for the PCBs). For modification, the
design tools are somewhat expensive (educational discounts or educational
releases exist). Free of charge viewers are currently available for all file types
in question.
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For RobotCub, we decided to license all the CAD sources under the GPL
which seems appropriate given their nature. Associated documentation will
be licensed under the FDL. These will be made available through the usual
source code distribution channels (e.g. repositories, websites).

5.2 The design process

The design process of RobotCub has been a distributed effort as for many
open source projects. Various groups developed various subcomponents and
contributed in different ways to the design of the robot including mechanics,
electronics, sensors, etc. In particular, a whole design cycle was carried out for
the subparts (e.g. head, hand, legs) and prototypes built and debugged. The
final CAD and 2D drawings were discussed and then moved to the integra-
tion stage. Clearly, communication was crucial at the initial design stage to
guarantee a uniform design and a global optimization.

The distributed design broke down at the integration stage where the indus-
trial partner 3 stepped in to carry out integration, verification and consistency
checks. The design and fabrication of the control electronics was also subcon-
tracted to a specialized company. It is important to stress the collaboration
with industry for a project of this size and with these goals and requirements.
For many reasons building a complete platform involves techniques and man-
agement that is better executed by applying industrial standards. One example
that applies to RobotCub is the standardization of the documentation.

A further strategy used in RobotCub is that of building early. Each subsystem
was built as soon as possible and copied also as soon as possible. In several
cases debugging happened because the copies of the robot did not work as
expected or easy to fix problems were spotted. Sometimes the documentation
had to be improved. Unfortunately, this strategy was applied less extensively
to some of the subparts which are or were still under design and debugging.

The design stage will be completed by the realization of ten copies of the ICub.
This will further test the documentation and in general the reliability of the
overall platform including software, debugging tools, electronics, etc. The first
release of the ICub will be consolidated after this final fabrication stage.

The actual design of the robot had to incorporate manipulation by provid-
ing sophisticated hands, a flexible oculomotor system, and a reasonable bi-
manual workspace. On top of this, the robot has to support global body
movements such as crawling, sitting, etc. These many constraints were consid-
ered in preparing the specifications of the robot and later on during the whole

3 Telerobot Srl, Genoa
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design process.

The behaviors we set forward for representing the robot’s skills generate two
types of constraints:

• kinematics: about the geometrical construction of the robot;
• dynamics: about the forces and torques we require from the robot.

The possibility of achieving certain tasks is favored by a suitable kinemat-
ics, and in particular this translates into the determination of the range of
movement and the number of controllable joints (where clearly replicating the
human body in detail is impossible with current technology). Kinematics is
also influenced by the overall size of the robot. We decided a priori to target
the size of a three and a half year old child (approximately 1m tall). Actual
dimensions were taken from studies in ergonomics and x-ray images [22]. This
size can be achieved with current technology. QRIO [26] is an example of a
robot similar in size although with less degrees of freedom. In particular, our
specifications had to consider hands and moving eyes. Also, we wanted to
consider the workspace and dexterity of the arms and thus a three degree of
freedom shoulder was a requirement.

Considering dynamics, the most demanding requirements appear in the inter-
action with the environment. Impact forces, for instance, had to be considered
for the crawling behavior, but also and more importantly, developing cogni-
tive behaviors such as manipulation might require exploring the environment
erratically. As a consequence, it is likely that impacts will occur with various
parts of the robot structure. This turns out to require strong joints, gearboxes,
and powerful actuators or alternatively passive compliance and soft materials.
In order to evaluate the scale (order of magnitude) of the required forces we
ran simulations of various behaviors in a reasonable model of the robot. These
dynamic simulations provided data for starting the design of the robot.

At a more general level we had then to evaluate the available technology,
compared to the experience of the RobotCub consortium and the targeted size
of the robot: it was decided that electric motors represent the most suitable
technology for the ICub, given also that it has to be ready according to a
very tight schedule in the span of the RobotCub project. Other technologies
(e.g. hydraulic) are left for a “technology watch” activity and they were not
considered further.

In addition, given the size of the robot, and given the power density available,
considerations of speed for certain joints lack significance: i.e. given the power
and the torques required, speed is a consequence rather than a design param-
eter. In certain cases, in comparing to human data, clearly also the power
density is much lower than desired (e.g. the wrists cannot possibly support
the weight of the robot).
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Finally, the ICub is not only about motors, sensors are equally important. Also
in this case, we had to deal with and exploit the available technology as best
we could. The robot has vision, audition, joint sensors, force sensors, tactile
sensors - where possible - and temperature sensors in many of the motors. The
robot can give feedback through a speaker. ICub will thus include a plethora of
sensors as cameras, microphones, gyroscopes, linear accelerometers, encoders
(or other positional sensors), temperature and current consumption sensors,
force/torque, and tactile sensors. The choice of these components is clearly
related to the robot specifications.

To recapitulate, the constraints of size and available technology determine a
good part of the design choices - i.e. our freedom in deciding which components
to use. In parallel, we simulated some of the robot’s behaviors to determine
the required joint torques. These two pieces of information were then used in
selecting the best available motors compatible in size, torque, and strength. As
we mentioned earlier, speed is a consequence rather than a design parameters
here, although, in simulation we examined the dependency of speed to torque
for crawling.

Other design choices are related to the embedded electronics and the structure
of the software. The ICub will have many sensors and actuators working in
parallel. We would like to exploit this parallelism also at the computational
level and, consequently, the ICub API was mapped one-to-one onto YARP.

5.3 Modularity

The ICub design is modular across two dimensions, namely, the mechanical
hardware and the control structure. Mechanically, the robot has a certain
degree of modularity which allows for improvements without a full-blown re-
design activity. The controller is modular in the sense that it is made of several
layers. Each layer can be replaced with a different technology and/or imple-
mentation without much suffering.

When we consider hardware modularity, we need to strike a balance between
the desirability of a global optimization and the advantages of modular and
dependable design. The current design probably reflects more the desire to
achieve certain functionalities, within a given size, in a constrained setting
of three years dedicated to design rather than the search for the quality and
maintainability of the robot in the long term. In essence, the ICub is and will
remain a research platform. It cannot be considered akin to the AIBO, nor a
more industrial realization like the HRP2.

In spite of these stringent requirements the ICub shows modularity and macro-
subgroups can be identified in the hand plus forearm, in the arm (entire arm),
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Figure 10. The layered structure of the ICub. The lowest level is the DSP layer
which directly connects to the motors and/or sensors. The next hardware level is
represented by the PC104 HUB which interfaces on one side to all data sources
and controllers and on the other to the GBit Ethernet network. The next layer is a
distributed computation engine made of a set of standard PCs which communicate
through YARP. On top of this the RobotCub partners will develop a cognitive
architecture. Communication is defined by protocols as for example, from the DSP
to the motors, from the PC104 to the DSP, and from the YARP processes to the
PC104. Standardization at this level favors reusability and dependability of the
system.

in the head, the torso, and the legs. These parts can be built and maintained,
developed, and assembled separately. Finer grained modularity is not possible
because of the placement of the motors and the routing of the tendons. The
electronics represent another element of complication since the control cards
for certain groups are not localized within the groups (e.g. the hand controllers
are in the upper arm section).

Assembly techniques have been considered for mechanical parts and details
have been optimized to favor mechanical realization (e.g. tendon routing has
been considered and the assembly sequence optimized whenever possible).
Nonetheless the realization of the hands (the most complicated parts of the
robot) requires considerable time and effort.
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At the controller level, modularity is described by at least three layers:

• the DSP-controller level;
• the HUB-coordination level (interface);
• the control architecture.

The DSP level consists of a set of controller cards that can drive the motors
directly but also by virtue of programmability enable the preparation of lo-
cal sophisticated control algorithms. These controller cards were specifically
designed for the ICub. They communicate through a set of four CAN bus
backbones to a Pentium-based HUB card which can do both synchronization
of sensorial and motoric data and run simple control loops in case they are
needed to be local to the hardware (for very tight timing). The Pentium, a
PC104 format CPU card, is interfaced to YARP processes through a Gbit Eth-
ernet cable. The interface at this level is fully YARP-compatible and specified
at the level of ports or device drivers. The YARP processes form the control
architecture and can implement complex cognitive behaviors (as indicated in
Figure 10).

Protocols are specified at each level. Electrical between the controllers and
the motors (determined by the motor specifications), software and electrical
(CAN) between the DSP and the PC104 HUB, also software at the level
of the YARP packets that travel on the GBit Ethernet cable, and clearly
software between the modules of the cognitive architecture. Replacement of
components, as long as the protocols remain unchanged, is likely to require
only the redesign of the appropriate layer. For example, the obsolescence of
the DSP microcontroller currently in use may lead to a new version that can
be made compatible with the current CAN bus specification.

6 Conclusions

In recent years we have seen the beginning of many new and ambitious robotic
projects [8, 9, 1, 28]. However research to provide intelligence to these com-
plicated robots is advancing at a snail’s pace. Accumulating knowledge in the
form of working demonstrable systems is plagued by the difficulty of forming
teams, on agreeing on standards, and in general by the lack of a critical mass
in any existing laboratory no matter the size or funding.

The problem of artificial intelligence is a deep one, and since it began to be
investigated, each generation of researchers has grossly underestimated the
problems. For example, the Summer Vision Project of 1966 at the MIT AI
Lab planned to implement figure/ground separation and object recognition
on a set of objects such as balls and cylinders in the month of July, and then
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extend that to cigarette packs, batteries, tools and cups in August [14]. As
it turns out, if they had written decades rather than months, it would still
have been over-ambitious. Significant progress can certainly be made either
because of a breakthrough in our understanding of the problems or through
a slower accumulation of knowledge. Or it can be due to a combination of
these two elements. We, like many others, are drawn to robotics as a way to
confront the “real” problems of intelligence head on. This has the advantage
of exposing unforeseen opportunities that embodiment brings with it [16], but
the downside that it requires a lot of time spent building hardware. It would
be beneficial to build a community that can accumulate knowledge and make
effective progress, and to expand the niche of humanoid robotics and artificial
intelligence to the point where it is healthy and self-sustaining.

In this respect, the parallel with the commercial PC is easily made. The success
of the PC was determined, among other factors, by the definition of hardware
standards that everybody could understand, copy, and reimplement. From
time to time new standards were required (e.g. the ISA bus slowly left space
to PCI slots) but the system flourished. Under the hood, the PC is a few
orders of magnitude faster and of larger storage capacity. On the software
side, the benefit of a common architecture allowed the creation of operating
systems and application software consisting of several millions of lines of code.
Without a standard hardware things might have been more difficult. A PC of
today is the modern version of the Ship of Theseus 4 , everything changed but
the PC is still considered a PC.

Is robotics really facing the same challenges as the computer industry three
decades ago [5]? It is clearly difficult to foresee the future of humanoid robotics.
However a few dedicated software platforms are appearing as either commer-
cial [20] or academic [24] products (see also [10] for a survey). It is easier to
imagine a scenario where common standards both in software and hardware
will find the fertile soil to flourish when isolated breakthroughs will happen.

The problem of dealing with diverse hardware and software in robotics is a
complicated one – see [13] for a good description of the many and various prob-
lems. The key insight from the Free Software community is the value a common
social contract, granting mutually beneficial rights that greatly reduce both
the direct and organizational cost of software integration. Regardless of the
technical measures we pursue, adopting such a social contract in at least a
part of the humanoid robotics community would be a key advance. We be-
lieve that this will occur naturally “bottom-up” through pseudo-evolutionary
forces: models of software development that are long-lived and fertile will sur-

4 The Ship of Theseus – the mast gets replaced, the planks get replaced, over time
everything may get replaced, but it is still in some important sense the same ship
(“paradox of identity”)
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vive, other forms will die off. The rate at which this will occur is hard to
say, and could be influenced by education. For example, a common fear is
that such approaches are incompatible with commercial exploitation; in fact
they are not, as has been learned in many other fields including embedded
devices [6]. They do change the rules of the game though, which is disruptive.
We should welcome that disruption.
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