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ABSTRACT
This paper presents a proof-of-concept of a robot that is
adapting its behaviour on-line, during interactions with a
human according to detected play styles. The study is part
of the AuRoRa project which investigates how robots may
be used to help children with autism to overcome some of
their impairments in social interactions. The paper mo-
tivates why adaptation is a very desirable feature of au-
tonomous robots in human-robot interaction scenarios in
general, and in autism therapy in particular. Two differ-
ent play styles namely ‘strong’ and ‘gentle’ are investigated
experimentally. The model relies on Self-Organizing Maps
and on Fast Fourier Transform to preprocess the sensor data.
First experiments were carried out which discuss the perfor-
mance of the model. Related work on adaptation in socially
assistive and therapeutic work are surveyed. In future work,
with typically developing and autistic children, the concrete
choice of the robot’s behaviours will be tailored towards the
childrens interests and abilities.

Keywords
Interaction styles, adaptation in interaction, behaviour clas-
sification

1. INTRODUCTION
This study is part of the AuRoRa project [1], an ongoing
long-term project which investigates the potential use of
robots to help children with autism to overcome some of
their impairments in social interactions [7].

Children with autism have impairments in communication,
social and imagination skills. Autism is a spectrum disorder
and children have very different abilities and skills. In our
perspective, any robotic mediated therapy therefore needs
to consider the individual nature of child-robot interactions.
One constraint is to make sure that the interaction between
children and the robot will be ‘playful’ for the children (we

need to consider here the notion of playfulness as it applies
in autism, cf. section 2.2 below). The advantage of making
the child interact with a robotic platform is to reduce the
complexity of the interaction and creating a predictable en-
vironment for play to begin with, so that it can be easier
for the child to feel at ease during the interaction in order
to experience and understand better the interactions taking
place. The premise of our work is that, progressively, the
complexity of the environment can be increased if the child
is making sufficient progress.

One stream of research in the Aurora project is focusing on
the potential role of the robot as a mediator, i.e. as a salient
object that helps children to interact with other children or
adults [14, 15, 16] . In the other stream of research we focus
on the robot as an autonomous toy. Here, a main objective
in our research is for the robot to be able to recognize on-line
the type of interaction induced by the child so that the robot
can adapt to the interaction in order to behave more appro-
priately to the child’s specific abilities and needs. At first
step towards this goal, the robot should be able to maintain
‘appropriate’ (i.e. intermediate, balanced) levels of interac-
tion, e.g. not too strong and not too weak. Note, we consider
the child’s abilities as they are expressed through interaction
with the robot, resulting in different play styles. The child’s
therapeutic needs in this context are not addressed directly,
but only indirectly by encouraging therapeutically relevant
interactive behaviour involving touch [7]. The present pa-
per presents a proof-of-concept of a robot that is adapting
its behaviour on-line during interactions with the children
according to detected play styles. Specifically, we show an
Aibo robot that can classify specific child-robot interactions
on-line, using self-organizing maps. We demonstrate how
the robot can adapt its behaviour on-line to the child (i.e.
to the interaction). Importantly, this work goes beyond pre-
liminary work that classified and characterized interactions
off-line, i.e. after the interactions had taken place [17, 18,
19] .

The remainder of the paper is structured as follows. Section
2 explains more precisely the motivation of this research.
Section 3 characterizes the classification process. The imple-
mentation of the algorithm is described in section 4. Section
5 describes preliminary trials. Related work is discussed in
more detail in section 6. Conclusions and future work close
the paper.



2. MOTIVATION
2.1 Autism
Autism refers to autistic spectrum disorders which can ap-
pear at many different degrees and refer to different skills
and abilities. The main impairments highlighted by the Na-
tional Autistic Society are:

Impaired social interaction: Difficulties to make a sense
of a relationship with others, difficulties to guess or even
understand what the other’s intentions, feelings and mental
states are.

Impaired social communication: Difficulties with verbal
and non-verbal communication (for example, difficulties to
understand facial gestures).

Impaired imagination: Difficulties to have imaginative
play, for example.

As a consequence of the above impairments, children often
choose a world of repetitive patterns (e.g. they often play
in a repetitive way).

2.2 Play
There is no precise definition about play, mostly because
many fields are involved. This multidisciplinarity also re-
sults in the coexistence of various classifications of play.
Among them, a classification given by Boucher [4, 5] is par-
ticularly relevant for our study in the sense that it merges
the notion of exploration with the idea of social interaction.

Play is a vehicle for learning [6]. Through certain kinds
of play, children can construct some understanding, in the
sense of active construction of meaning. Play can thus de-
velop skills in many fields: logical memory and abstract
thought, communication skills and social skills. Moreover,
it is a medium for self expression.

Children with autism have a relative potential for play but
they often encounter obstacles, the causes of which are still
not clear. These impairments (among them, impairments in
socio emotional inter-subjectivity, in joint attention and in
Theory of Mind) impair interactions in general and, more
specifically, imply a lack of spontaneous and social reci-
procity during play. These three impairments, in addition
to the potential deficits in higher order representation may
explain the difficulties encountered in pretend play. The dis-
ability in perceiving the coherence of categories and concepts
can also be a reason why autistic children perceive objects
in their parts and not as the whole which is part of a weak
central coherence theory.

As a result, to facilitate autistic children’s play with a robot,
it is necessary to focus on the interaction, because interac-
tion is decisive in the process of learning through play. If
the robot is able to identify on-line the way a child interacts
with the robot, then it can adapt to it more accurately. The
adaptation should lead to a level of interaction encouraging
the child to continue playing, and it should lead to robot’s
behaviours that are more appropriate to the current child’s
needs. For example, the robot should be able to detect force-
ful interaction and regulate the interaction so that the child
is still engaged in the interaction but without signs of force.

From this point of view, the process of adaptation would
become bidirectional: firstly the robot adapts to the child
and secondly, the robot may influence the child’s behaviour
in return.

3. CLASSIFICATION OF INTERACTION
People are used to describing an interaction verbally, by ob-
serving and listening to what constitutes the interaction. In
a natural context we evaluate interaction subjectively, which
means we usually don’t use any objective measure to decide
if e.g. an interaction is gentle or strong, repetitive or non
repetitive etc. Instead, we use our own human senses and
we may use as well our previous experience from similar in-
teractions to classify and evaluate any interaction we are
involved in. The challenge in this study is to classify the
interaction objectively (i.e. automatically) from the robot’s
point of view. The interface between the child and the robot
(Aibo robot) are the different sensors of the robot. This im-
plies that we can use these quantitative measurements to
evaluate, analyze and classify any interaction. Our initial
idea was to run some experiments by playing with an Aibo
robot according to a predefined interaction type, thus col-
lecting all the sensor data necessary for the later analysis
in order to see if and how it could be possible to match
subjective human description of interaction with quantita-
tive data. To simplify the problem, we decided to classify
the interaction into two classes only: Gentle and Strong.
An interaction is classified as ‘gentle’ if the participant is
touching the robot gently, without signs of force. Note, this
may also include an interaction with a child not or almost
not touching the robot. On the contrary, if the participant
touches the robot with signs of force, then the interaction is
classified as ‘strong’.

For such a classification, what is important is how a par-
ticipant touches the Aibo and not which part of the robot
the participant is touching. Consequently, the sensors which
will contribute to the input data for the classification will be
regarded as one global variable. This is possible by normal-
izing the input data values (repartitions into 10 bins) and
computing the sum of these normalized data.

Moreover, in this first approach we wanted the classification
process to be as independent from the robot’s behaviour as
possible. That is why we only focussed on sensors which are
(almost) not influenced by the Aibo’s motion and sounds it
emits but are at the same time determined by an interaction
with a child. Therefore, we considered as input sensors for
the analysis only sensors corresponding to the touch of the
head (1 sensor), the touch of the chin (1 sensor) and the
touch of the back (3 sensors).

3.1 Analysis of temporal data
We conducted some preliminary experiments to get sensor
data to analyze during the explorative phase of the study.
The experimental setup was a participant interacting with
an Aibo for around five minutes, who was asked to play
during the whole session in the same way (either gently or
strongly). In total, we did 6 runs, 3 with ‘gentle interaction’
and 3 with ‘strong interaction’. The experiment involved
two different adult participants, one person did one run with
‘gentle’ interaction and one with ‘strong’ interaction and the
other participant did the other 4 runs. The idea of having



two different participants was initially to decrease the risk
of having a classification depending on the person interact-
ing with the robot, however, one of the participants ended
up doing most of the experiments. Note, this particular ex-
periment is preliminary in nature, future work will involve
a larger number of participants and experimental runs.

We analyzed the changes over time of the sum of the five
external sensor data distributed into bins. Differences ap-
peared clearly: when graphically displayed, temporal data
from ‘Gentle interaction’ trials were made of many ‘blobs’
(see Fig. 1), while temporal data from ‘Strong interaction’
trials were mainly made of ‘peaks’ (see Fig. 2). Only one run
with strong interaction was showing more confusing results
but it was also because the participant was not interacting
purely strongly during this run. We therefore excluded the
results of this run for the further analysis. Given the visu-
ally different patterns, methods for automatic classification
were investigated.
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Figure 1: Gentle interaction: typical ‘blobs’ in tem-
poral data.
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Figure 2: Strong interaction: typical ‘peaks’ in tem-
poral data

3.2 Fast Fourier Transform
Since the temporal data from ‘Gentle interaction’ trials were
made of a lot of blobs, while temporal data from ‘Strong
interaction’ trials were mainly made of peaks it became in-
teresting to focus on the frequency spectrum which would
exhibit clear differences: for gentle interaction, there would
be higher magnitudes for lower frequency and it would be
the contrary for strong interaction. Moreover we wanted the
method to be able to not distinguish similar patterns ex-
hibited at different time steps: the method should be shift
invariant.

Both these reasons made us select the Fourier Transform as
a further step in our analysis [9]. Fourier transform is an
invertible function which has, among other properties, the
property of being shift invariant, and which decomposes a

function into a continuous spectrum of its frequency com-
ponents. Several variants coexists; among them the Fourier
Transform for discrete signals and the Fast Fourier Trans-
form which is also for discrete signals but has a complexity
of O(n · ln n) instead of O(n2) for the discrete Fourier Trans-
form.

3.3 Self-Organizing Map
In a next step of the study, we wanted to automate the
classification of the interaction properly, so that differences
observed by eye on the magnitude of the FFT could be re-
flected in the quantitative analysis. Since we had no a priori
information on the topology of the data, we decided to use
a method which only requires poor or no a priori knowledge
of the present problem and also allowed the model to learn
from the data and generalize. Therefore we decided to use
Artificial Neural Networks and more specifically the Self Or-
ganizing Map (SOM) which provides a topology preserving
mapping from high dimensional space to map units.

SOM relies on unsupervised, competitive learning. A spe-
cific weight, from the same dimension as the input data, is
attached to each neuron (node) of the network. Each node
is connected to the adjacent ones according to a neighbor-
hood rule which influences the topology of the map. The
SOM is made of two phases: the training phase during which
weights of the nodes are updated and the mapping phase,
during which the classification or categorization of data can
be made [12].

Training phase. First of all the network is initialized (ei-
ther by random initialization, by initial samples, or through
linear initialization). This process defines initial weight vec-
tors, one for each node of the network. Then, input data
are presented one by one to the network (random selection).
For each input data, the distance is measured according to
a predefined metric between the input vector and each node
of the network. The node minimizing the distance is called
the Best Matching Unit (BMU). Afterwards, the weights are
updated according to the following equation [3] :

w′

j = wj + ǫ(t) · hrs · (v − wj) j = 1, ..., ‖K‖ where

• wj is the weight for the node j
• w′

j is the updated weight for the node j
• ‖K‖ is the size of neighbourhood K(wi(v)) for the win-

ner node wi(v).

• hrs = exp(
−d(r,wi(v))

2)

σ(t)2
) ∀r ∈ K(wi(v))

• ǫ and σ are monotonic decreasing functions of time.

By simplifying, we can say that time being static, the closer
a node is from the BMU, the more it will learn; and globally,
the network will learn less and less when time is growing.
The presentation of the entire set of input data constitutes
what we call an ‘epoch’. A training phase can result from
the succession of many epochs.

Mapping phase. Once the network has been trained, it
can be used for classifying (categorizing) data from the same
space as the input data used for the training phase. A data
from the latter space will be presented to the nodes suc-
cessively. The node activated is the node corresponding to
the BMU with regards to the same metric as used for the
training phase.



3.4 Whole process of classification
The whole process of classification of interaction styles can
be synthesized as follows: globally, temporal sensor data
will be preprocessed to be used in the process of classifi-
cation. The preprocessing results in a computation of the
magnitude of the FFT algorithm which itself uses prepro-
cessing of temporal data to consider the input sensors data
as a whole global variable (see Fig. 3). The training phase
of the SOM is made off-line (see Fig. 4) while the mapping
phase and its coresponding preprocessing are made on-line
(see Fig. 5).
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Figure 3: Data Preprocessing for FFT
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Figure 5: Unit process of classification and adapta-
tion to the interaction style

4. IMPLEMENTATION
4.1 Communication process
The robot used in this study is the Sony Aibo ERS-7. Its
control programming is achieved using URBI (Universal Real-
Time Behaviour Interface) [2]. Sensor/motor data are trans-
mitted through a wireless LAN to a laptop. The Aibo sends
current states of its sensors every 32ms. The laptop ana-
lyzes periodically the sensor data, classifying on-line the in-
teraction correspondingly and sending the information back
to the Aibo which then changes its behaviour accordingly.
The process of classification of the interaction is written in
Java.

4.2 Parameters for the process of classification
and adaptation

We needed vectors of sufficient dimension to get a good re-
sult for the SOM. Experimentally, we got good results by
using an input vector of dimension 512 (it had to be a power
of 2 due to the FFT algorithm we were using). Input vec-
tors for the SOM were therefore of dimension 512 and each
component of the vector was respectively the magnitude of
the component of the vector resulting from the FFT. The
network had a rectangular topology and was made of 10*10
nodes. We used random initialization and 5 epochs for the
training which was made off-line.

However, once the training phase had been finished, all the
behaviour classification was made on-line, the FFT algo-
rithm being computed on-line as well as the activation of
nodes for the SOM. But since this process was time consum-
ing, and since the magnitude of the Fourier transform did
not change significantly over a few time steps, we decided to
set a frequency which would be more suitable. Experimen-
tally it was found that updating the magnitude on the FFT
once in 120 updates of the sensor data was efficient. After
every update of the interaction state through the classifica-
tion, the Aibo got informed of the result in order to adapt
its own behaviour on-line. Note, future work will consider
to run the classification on-board the robot. For monitor-
ing and practicality purposes the use of the laptop seemed
appropriate.

5. VALIDATION OF THE MODEL
5.1 Validation of the topology of the SOM map
We did two different trainings, each of them with a random
intialization. We then characterized the nodes of each of the
network according to the following rules: a node activated
only by data from Gentle interaction is called ‘gentle node’;
a node activated only by data from Strong interaction is
called ‘strong node’; a node activated by both data is called
‘hybrid node’; a node never activated is called a ‘null node’.

We analyzed the topological repartition of gentle nodes on
the one hand and of strong nodes on the other hand, and
looked at the ratio of hybrid nodes and the ratio of null
nodes. For having a performant and coherent classification
of the interaction, a necessary condition is that the SOM
map clearly distinguishes topologically two regions, one cor-
responding to the ‘gentle’ nodes and the second regrouping
the ‘strong’ nodes. Moreover, the proportion of hybrid and
null nodes should be very low compared to the proportion
of gentle and strong nodes so that there are not two many
cases in which the Aibo will not be able to ‘decide’ between
strong and gentle interaction. Besides, hybrid nodes should
be mostly on the border or next to the border between gentle
and strong regions (by opposition to any of the inner part of
the regions): this would correspond to a smooth transition
between the two regions.

The SOM maps give both good results (see Fig. 6 which
provides a graph of the first map). For each of them, the
number of hybrid nodes is respectively 9 and 7 out of 100,
while the number of null nodes is respectively 1 and 0. For
the first map, all the hybrid nodes are on the border. For
the second map, 3 hybrid nodes are not directly on the bor-



der but 2 of them are first neighbours of border nodes and
the third on is second neighbour. This corresponds to a
smoother transition between the two regions.

 

   

 

       

Figure 6: Map of a SOM. legend : white for ‘gentle’

node, black for ‘strong’ node, stripes for ‘hybrid’ node, blobs

for ‘null’ node

5.2 Validation of the on-line classification and
the on-line adaptation of the robot

The model is accurate if it satisfies the following constraints:

• A gentle interaction does not activate a strong node
but activates one of the three other kinds of nodes; a
strong interaction does not activate a gentle node but
activates one of the three other kinds of nodes.

• The classification can be made on-line.
• The Aibo detects a change of the class of interaction

and classifies the new interaction accurately (with an
eventual short delay).

• The Aibo can adapt its behaviour on-line with respect
to the kind of interaction recognized.

To test these different constraints we did various experi-
ments with a human playing with the Aibo robot. The set
of Aibo’s possible behaviors remained the same in all the
experiments: it was standing and waiting for at least one of
its five external sensors to be activated. Whenever one of
the latter sensors was activated, it started a) wagging the
tail if it had detected a gentle interaction, or b) barked if
it had detected a strong interaction. The rationale behind
this choice was as follows: as described above, in child-robot
play we want the robot to be able to maintain an interme-
diate level of interaction, not too strong, not too gentle. In
this work, barking was used as a representative behaviour
that might induce a human to ‘back off’, thus calming the
interaction. Wagging the tail was used as an indicator to
encourage interaction. Note, in future work with typically
developing and autistic children the concrete choice of these
behaviours will be tailored towards the children’s interests
and abilities.

If the Aibo had detected a middle interaction (corresponding
to an activation of either null or hybrid node on the SOM
map), its current reaction to tactile stimuli remained the
same. Its initial state corresponded to a gentle interaction.

We ensured that the succession of interaction levels detected
by the robot and the corresponding node activated on the
SOM map were stored in a file. According to the experi-
ment, the participant had to play either gently or strongly,
or alternating gentle and strong interactions. The partici-
pant had to maintain the same level of interaction until the
Aibo had classified and adapted to this level.

Each time the participant changed her way of interacting
with the robot, the time at which it happened was stored
as well as the time at which the Aibo adapted its behavior
accordingly.

Note, future work will cope with more frequent changes in
play style, since child users will not be instructed how to
play.

Experiment 1.
In this experiment, we wanted to ensure the Aibo was able
to recognize each type of interaction and keep recognizing it
for the whole duration of the interaction.

This experiment consisted of two runs of three minutes each.
The participant interacted with the Aibo on a gentle level
of interaction only during the first run and on a strong level
of interaction only during the second run. For each run,
42 updates of the classification of the interaction happened
with no errors in the classification. Actually, during the
‘gentle’ interaction, 39 times the winner node of the SOM
was a ‘gentle’ one, 3 times it was a ‘hybrid or null’ one and
it was never a ‘strong’ one. In the same way, during ‘strong’
interaction, 41 times the winner node of the SOM was a
‘strong’ one, once it was a ‘hybrid or null’ one and it was
never a ‘gentle’ one.

Experiment 2.
In this experiment, we tested the capacity of the Aibo to
adapt its behaviour in a changing interaction. The partici-
pant was asked to interact gently and strongly with no con-
straints on the changes of the interaction styles. The only
constraint was to touch quite regularly the five tactile sen-
sors. The purpose of the experiment was to test the Aibo’s
capability of adaptation over time involving all five tactile
sensors. We did one run that lasted around eight minutes.
The Aibo adapted correctly to the interaction (see Fig. 7)
but with a certain delay (which was comprised between 10s
and 19s). Fig. 7 compares the Aibo’s behaviour transitions
(as a consequence of adaptation) to the changes in the par-
ticipant’s behaviour scored subjectively.
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Figure 7: Example of the dynamics of the robot’s
adaptation to the interaction: The first graph represents

the subjective interaction level over time; the second graph

shows the robot’s accurate adaptation with a delay. On the

y-axis, 1 stands for ‘Strong’ and 0 for ‘Gentle’



Experiment 3.
Since autistic children sometimes play in a repetitive way, it
is very likely that some of them will continue touching the
same sensor. We therefore needed to test our model in this
special case and also especially because the Aibo’s sensors
involved in the interaction were different in nature: while
the sensor on top of the head and the three sensors on the
back returned values that could all vary continuously from
a minimum value to a maximum value (analogical sensors),
the chin sensor value could be either zero or one (numeric
or boolean sensor) which means that its equivalent after
repartition into bins is either 0 or bin 9.

We conducted five trials. For each of them the participant
had to touch only one sensor, respectively the chin sensor,
the head sensor, the back sensor on the front, the back sensor
in the middle and the back sensor on the back. For each
trial, the participant could change the level of interaction
(from gentle to strong, from strong to gentle) whenever she
wanted. Results showed that the Aibo adapted correctly to
the interaction for trials focussing on the head and the three
back sensors while there were some surprising results for the
trial focusing on the chin sensor. We observed two kinds of
possible errors in the adaptation: a) The Aibo was not able
to detect a gentle interaction within 1 minute (1 minute is a
long time compared to the average time of adaptation to a
new interaction level), or b) The Aibo had detected a gentle
interaction for a very short time (around 4 seconds), the
participant was keeping interacting subjectively gently but
the Aibo started barking, which means it appeared to her
the interaction had become strong. This situation happened
when the subjective gentle interaction was done in a way
that the chin sensor was still activated (the Aibo wagged
its tail). As explained above, the chin sensor can take only
two values which are 0 or 1, which means, after repartition
into bins, that value 1 (activation of the chin sensor) will
correspond to a very high value (bin 9), even if the activation
is done quite gently, (but with a sufficient pressure).

Moreover, our model for classifying data takes mainly two
factors into account: a) the relative magnitude of the fre-
quencies of the Fast Fourier Transform of one vector of sen-
sor data exhibit which frequencies are predominant, which
is directly linked to the rhythm of the interaction (e.g du-
ration of touch of sensors, periodicity of touch of the robot
on any of her five sensors etc.); b) the FFT respects the lin-
ear property. Consequently, if the chin sensor gets activated
very often, even with quite gentle touch, then a lot of high
values will constitute the input vector and the result of the
classification may be affected.

This shows a limitation of our model: the model should
be used with caution when integrating boolean sensors. If,
for example, there is only one boolean sensor in five and
there is a good repartition of activation of sensors, then the
classification will work well. But if the boolean sensor is
activated too often, it might lead to a wrong classification.
Note, it also seems impossible to delimit precisely the border
between strong and gentle interaction subjectively.

Experiment 4.
In the present experiment, we decided to avoid the risk of
having errors induced by the boolean sensor; consequently,

the participant had to respect the constraint of not touch-
ing the chin sensor, but she could touch all the four other
sensors. The participant could change from one level of in-
teraction to another (gentle, strong) whenever she wanted
but she tried to vary the duration of time between the time
the Aibo adapted to the current interaction and the time
she changed the interaction afterwards.

The idea was to check experimentally that the delay of adap-
tation was not directly influenced by the rhythm of changes
in the subjective interaction. This idea is linked to the fact
that we use a finite vector of data to classify the interaction,
which means, we take into account only a limited history of
the interaction. And since this vector is updated like the
process of a sliding window with a stationary length, the
duration necessary to classify the interaction should belong
to a very short interval of data.

The experiment lasted around seven minutes, alternating
longer period for changes in behavior and shorter period
for changes. The longest duration of an interaction was 50
seconds, the shortest was 17 seconds. Fig. 8. represents on
the x-axis the duration of a level of interaction and on the
y-axis the delay of the adaptation to the next interaction
level (e.g. length of gentle interaction and delay to adapt
to the next kind of interaction which will be strong). The
graph shows that there is no linear relationship between the
period of changes in behavior and the delay for adaptation.
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Figure 8: Experiment4 : delay in the process of classifica-

tion and adaptation and corresponding duration of previous

interaction style

6. RELATED WORK
6.1 Educational and therapeutic applications

of human-robot interaction
Long-term (therapeutic) studies with Paro. Two stud-
ies using the seal robot Paro are particularly relevant for our
study since they show that specific everyday life situations
exists in which human-robot interaction can have a posi-
tive effect on well being of human beings and can even be a
significiant factor of performance in therapy. The first long-
term study was focusing on elderly people [22], introducing
Paro into their everyday life in order to analyse the impacts
on their global well being. Paro was introduced daily in
two institutions for elderly people, one for 20 minutes every
day over 6 weeks and the second one for 1 hour every day
over more than one year. Elderly people were free to inter-
act with Paro. Results show that the interaction with Paro
improved the mood state of the participants and made the



elderly people more active and more communicative with
each other and with the caregivers as well.

The second study [13] designed engaging rehabilitation ac-
tivities that combine physical and cognitive rehabilitation.
This experiment lasted three months with a weekly occur-
rence. The participant was a child with severe cognitive and
physical delays. The Paro robot was introduced in the Bo-
bath protocol which is a method used for the rehabilitation
of physical functional skills. Results showed that the inter-
action of the child with Paro seemed to have strengthened
the efficacy of the Bobath protocol.

Involving quantitative data in the diagnosis of autism.
The goal of this research [20, 21] is to impact the diagnosis of
autism by providing the possibility to use quantitative and
objective measurements of social responses. Measurements
are done through both passive observation (through sensors
which record and interpret data during standard clinical
evaluations) and structured interactions with autonomous
robots. Three criteria are mainly analyzed to distinguish
typically developed children from autistic children: gaze pat-
terns, position in the room and vocal prosody. The analysis
of gaze tracking is now an integral part of the clinical evalu-
ation. It relies on linear discriminant analysis of autistic and
gaze patterns. A pilot study with this analysis has shown
that autistic children don’t share the same visual strategy as
typically developed children and also among themselves. In
this study, Scassellati exhibits a very nice application of the
analysis of the interaction. He managed to qualify quantita-
tively criteria of typical human-human interaction through
passive sensors and human-robot interaction analysis.

Long-term study on human-robot interaction in the
context of dancing. This study [24, 23] aims at find-
ing principles for realizing long-term interaction between a
human and a robot. Tanaka et al. decided to run a long-
term study with children and the robot QRIO, in a con-
text relevant and frequent during childhood: dancing. This
study focussed on the off-line analysis of the interaction,
both qualitatively and quantitatively. On the one hand, the
study analysed children’s behaviour and showed that chil-
dren tend to adapt their behaviour to the robot over time;
e.g. they tend to know the robot is weak and tend progres-
sively to treat QRIO softly. On the other hand, the study
points out basic units as requirements for long-term inter-
action, respectively “sympathy” between human and robot
and “variation’ in the interaction style.

6.2 Classification of Human-Robot interaction
Different approaches have been used to classify human-robot
interaction. More recent ones focus on the use of quantita-
tive data for the characterisation of the interaction.

Links between subjective analysis and quantitative
data. Kanda et al. [10] provide an interesting study re-
garding correlations between subjective evaluation (gener-
ally through questionnaires) and quantitative data collected
during human-robot interaction. The experimental setup in-
cludes a participant interacting with a Robovie robot. Both
are equipped with markers and infrared sources are placed
in the environment. Through this setup, it is possible to
collect, during the interaction, quantitative data character-

izing indirectly body movements of both the robot and the
subject. After the interaction phase, the individual is asked
to specify the interaction subjectively according to some cri-
teria which have been defined during a previous study [11].
The comparison between objective and subjective evalua-
tion of the interaction indicates correlations between both
analyses. In this study, Kanda et al. showed the possibility
of characterizing quantitatively styles of interaction. Note,
analysis of the data is off-line (i.e after the interactions have
taken place) and the subjective description of the interaction
focusses on the robot’s behaviour only.

Salter et al. [17] adopt a different approach to show simi-
larities between objective quantitative data and subjective
description of behaviour to specify human-robot interaction.
Contrary to Kanda et al.’s study, Salter et al. focus more on
the participant’s (a child in this study) personality during
the interaction rather than on the robot’s behaviour and
appearance. The subjective evaluation of the children’s per-
sonality takes place before the interactive phase whereby
relatives of the child choose one trait of personality among
a predefined list, which best corresponded to the child. The
interactive phase is made of dyadic child-robot interaction
with a mobile robot called Pekee (Wany Robotics); Off-
line clustering analysis of the data show similarities between
subjective evaluation and quantitative analysis: a) children
which are considered to have the same trait of personality
(among the proposed list) show also similar behaviours to-
wards Pekee, and b) children with the same traits of person-
ality tend to activate the same sensors on the robots (same
patterns of touch).

Towards quantitative sensor analysis of the interac-
tion. In a further study, Salter et al. [19] enumerate a list
of possible states for a mobile robot called Roball and show
that it is possible to define each of the states through sensor
data analysis only. The four different states are: ‘alone’,
‘interacting’, ‘carrying’ and ‘spinning‘. The sensor analysis
relies on off-line temporal analysis of the sensor data and a
‘manual’ classification through visual analysis of the sensor
data which is not automated.

Automated classification and adaptation. In recent
work on an adaptive playground, Derakhshan et al. [8] ap-
plied techniques known from robotics, artificial intelligence
and multimedia to playgrounds. Their aim was to enable a
computerized playground to adapt to children’s behaviour in
such a way that these children feel encouraged to play. The
playground is made of specific tiles and a computer is used
to store and process the data When a child is playing, input
is provided through tactile sensors on the tiles. By adopting
a multi-agent system approach of BDI (Belief Desire In-
tention) in combination with artificial neural networks tech-
niques (with supervised training) the system learns to rec-
ognize various behaviours for either a single child or a group
of children playing. Afterwards, the system can identify
and adapt autonomously while children are playing. This
study is very relevant to our work because it exhibits a dif-
ferent approach to solve the notion of on-line classification
and adaptation in a context of human-computer interaction.
Our study takes a different perspective though; our model
aims at enabling the robotic platform to adapt its own be-
haviour to the interaction style, in order to a) encourage the



child to continue playing, but also b) to enable the robot to
influence the child’s behavior to reach a specific interaction
level. Note, b) is our future goal and only first steps have
been taken into this direction.

7. CONCLUSION AND FUTURE WORK
This paper provided a proof of concept of on-line behaviour
classification and adaptation of a robot’s behaviour accord-
ing to human-robot interaction styles. Experiments have
shown that with our proposed model of classification a) the
Aibo is able to classify a dyadic human-robot interaction it
is involved in on-line, and b) it can adapt to the interac-
tion by changing its own behaviour and thus changing the
interaction with the subject.

The experiments highlighted also some limitations of the
model, particularly concerning the involvement of boolean
sensors in the process of collecting data. Moreover, a future
step in the implementation will investigate running the al-
gorithm on-board and will focus on an optimisation of the
delay in the update of the classification of the interaction
styles as well.

Concerning the process of the Aibo changing its own be-
haviour, more investigations needs to be done to define more
accurately the different relevant behaviours for the context
of child-robot interaction and more specifically for the Au-
RoRa project, i.e. in a therapeutic context involving autis-
tic children. As already mentioned above, in future work
with typically developped and autistic children, the concrete
choice of these behaviours will be tailored towards the chil-
drens interests and abilities.

It is hoped that this study represents a step forward in the
investigation of ‘child’s play’ with robots, involving both
autistic and typically developing children.
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