
Advanced Robotics, Vol. 21, No. 13, pp. 1521–1544 (2007)
 VSP and Robotics Society of Japan 2007.
Also available online - www.brill.nl/ar

Full paper

Reinforcement learning for imitating constrained reaching
movements

FLORENT GUENTER ∗, MICHA HERSCH, SYLVAIN CALINON and
AUDE BILLARD
LASA Laboratory, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland

Received 22 December 2006; accepted 15 May 2007

Abstract—The goal of developing algorithms for programming robots by demonstration is to create
an easy way of programming robots such that it can be accomplished by anyone. When a demonstrator
teaches a task to a robot, he/she shows some ways of fulfilling the task, but not all the possibilities.
The robot must then be able to reproduce the task even when unexpected perturbations occur. In
this case, it has to learn a new solution. Here, we describe a system to teach the robot constrained
reaching tasks. Our system is based on a dynamic system generator modulated by a learned speed
trajectory. This system is combined with a reinforcement learning module to allow the robot to adapt
the trajectory when facing a new situation, e.g., in the presence of obstacles.

Keywords: Programming by demonstration; reinforcement learning; dynamical systems; Gaussian
mixture model.

1. INTRODUCTION

As robots start pervading human environments, the need for more natural human–
robot interfaces is becoming more pressing. In particular, robots should be able
to acquire new abilities through interactions with humans. Imitation learning is
a promising mechanism for conveying new know-how and is widely used in the
animal kingdom [1]. Imitation learning has also been applied to robotics, where it
has also been called programming by demonstration [2].

In order to program a robot by demonstration, there are two main problems
to solve (Fig. 1). The first one is known as the ‘what to imitate’ problem and
consists of extracting the principal constraints that appear in a demonstrated task.
The second is known as the ‘how to imitate’ problem and consists of finding a
solution to reproduce the demonstrated task despite the difference of embodiment

∗To whom correspondence should be addressed. E-mail: florent.guenter@epfl.ch

1522 F. Guenter et al.

Figure 1. Programming a robot by demonstration means that a user demonstrates a task and the
robot has to extract the important features of the task in order to be able to reproduce it in different
situations. It might happen in some special cases that the robot encounters a new situation where the
demonstration does not help to fulfill the task. In this case, there are two possibilities: (i) teach the
robot how to handle the new situation and (ii) let the robot learn by itself how to fulfill the task. In
this paper we implement the second possibility.

or situation [1]. In this paper, we address the ‘how to imitate’ problem. More
precisely, we investigate how a robot can adapt its execution of a learned task
when confronted by a new situation. The robustness of dynamic system control to
perturbations occurring in uncontrolled environments has been demonstrated [3–6].
However, it can happen that the dynamic system alone is not sufficient to handle
any perturbation (e.g., when an obstacle appears on the trajectory generated by the
dynamical system). In those cases, an exploration process is needed, during which
the robot will search for new ways of accomplishing the task.

Reinforcement Learning (RL) is particularly indicated for this type of problem,
as it enables the robot to learn its own new ways of acting, in order to improve
its abilities. RL algorithms have already been successfully implemented in robotic
applications such as swinging up and controlling an inverse pendulum [7], refining
forehand and backhand tennis swing [8] or acquiring a dynamic stand-up behavior
[9, 10]. RL algorithms perform well in discrete environments of small dimensional-
ity. However, to use RL on real robots, the algorithms have to be adapted to tackle
data of high dimensionality lying in continuous time and space. Bradtke and Duff
[11] have derived algorithms for continuous time semi-Markov decision problems,
and Doya [12] proposed methods such as Q-Learning or Actor–Critic [13, 14] for
continuous time and space. To deal with the high computing costs of the RL algo-
rithms for higher dimensionality systems, Peters et al. [15, 16] proposed the Natural
Actor–Critic (NAC) algorithm which is based on function approximation and gradi-
ent descent algorithms [17–21]. More recently, studies on the effect of the reward
function on the speed of learning [22], on the effect of using an inaccurate model
[23] or on new efficient exploration processes [24] have been conducted in the RL
field. In this paper, we will integrate an RL module in the dynamic system that we

Reinforcement learning 1523

have developed in Ref. [25] in order to allow the robot to learn new solutions if the
demonstrations do not provide a sufficient solution for the reproduction of the skill.
This RL module will be based on Peters’ work on the NAC [16].

2. SYSTEM OVERVIEW

Let ξ(t) ∈ R
s describe the complete state of the robot at each time step. In the

application described in the rest of this paper, ξ consists of the joint angles of the
robot arm.

The aim of the algorithm is to reproduce the qualitative features common to
several demonstrated trajectories, while being robust when the situation changes,
e.g., in the face of different initial conditions, target locations or obstacles on the
path. The information flow of the algorithm is illustrated in Fig. 2. After having
being exposed to several demonstrations ξ̇ demo(t) of the task, the algorithm extracts
a generalized form of the original demonstrations ξ̇m(t) using a probabilistic model.
The generalized trajectory is then used to modulate a dynamic system which
produces a trajectory to reach the target ξ g. When facing important perturbations,
such as an obstacle blocking the arm of the robot, it may happen that the dynamic
system alone does not find a satisfying solution to reach the target. To avoid that
type of problem, we have implemented an RL module which allows the robot to
learn how to avoid the obstacles or other perturbations. The RL acts directly on
the modulation of the dynamic system. In this way, the convergence properties of
the dynamic system are preserved. Note that the system described below does not
make any assumption on the type of data and, thus, ξ could be composed of other

Figure 2. Schematic overview of the complete system. In this paper, the variable ξ contains the joint
angle of the robot arm. The speed trajectories ξ̇demo provided by the set of demonstrations are fed
into a learning system that trains a Gaussian mixture model (GMM) in order to build a probabilistic
model of the data. The parameters of the GMM are used in an RL module for generating a trajectory
ξm that modulates a dynamic system with attractor ξg and output speed ξ̇d executed by the robot. The
simulation of the trajectory reproduced by the robot is given by ξ̇ s and is tested to know if it reaches
the target or not. This is done by measuring the distance between the target and the last point of the
trajectory; this distance must be smaller than a given value to validate the task. If the task fails, we
use an RL algorithm which produces a new trajectory ξ̇m in order to correct the modulation and fulfill
the task.

1524 F. Guenter et al.

variables, e.g., the position of the robot’s end effector or the data projected in a
latent space as done in Ref. [26].

2.1. Probabilistic encoding and generalization

In this section, we briefly summarize the Gaussian mixture regression (GMR [27])
procedure used to obtain a single ‘model’ trajectory from several demonstrations.
This application has been described in detail in Refs [26, 28]. The principle of this
method is to model the joint distribution of an ‘input’ and ‘output’ variable as a
Gaussian mixture model (GMM). In our case, the output variables are the velocities

ξ̇ and the input variable is the time t . If we join those variables in a vector υ =
[

t

ξ̇

]

it is possible to model its probability density function as:

p(υ) =
K∑

k=1

πkN (υ;µk, �k), (1)

where πk is a weighting factor, and N (υ;µk, �k) is a Gaussian function with mean
µk and covariance matrix �k:

N (υ;µk, �k) = 1√
(2π)d |�k|

e(− 1
2 (υ−µk)

T�−1
k (υ−µk)), (2)

where d is the dimensionality of the vector υ. The mean vector µk and covariance
matrix �k can be separated into their respective input and output components:

µk = [µT
k,t µT

k,ξ̇
]T (3)

�k =
(

�k,t �k,t ξ̇

�k,ξ̇ t �k,ξ̇

)
. (4)

This GMM can be trained using a standard EM algorithm, taking the demonstra-
tions as training data. We, thus, obtain a joint probability density function for the
input and the output. As it is a GMM, the conditional probability density function,
i.e., the probability of the output conditioned on the input is also a GMM. Hence,
it is possible, after training, to recover the expected output variable ξ̇m, given the
observed input variable t :

ξ̇m(t) =
K∑

k=1

hk(t)
(
µk,ξ̇ + �k,ξ̇ t�

−1
k,t (t − µk,t)

)
, (5)

where the hk(t) are given by:

hk(t) = πkN (t;µk,t , �k,t)∑K
k=1 πkN (t;µk,t , �k,t)

. (6)

Reinforcement learning 1525

Figure 3. (Left) GMM (described in Section 2.1) trained with the 26 kinesthetic demonstrations of
the the box task. ξ1 to ξ4 are the four joint angles of the robot arm. The thin lines represent the
demonstrations and the thick lines the generalization ξ̇m retrieved by using the GMR. The ellipses
represent the Gaussian components of the joint probability distribution. (Right) Different trajectories
generated using the modulated dynamical system (described in Section 2.2). The reproduced
trajectories (dash-dotted line) are qualitatively similar to the modulation trajectory ξm (solid line),
although they reach the goal from different initial positions.

The variance of this conditional probability distribution is given by:

�ξ̇(t) =
K∑

k=1

h2
k(t)(�k,ξ̇ − �k,ξ̇ t�

−1
k,t �k,t ξ̇). (7)

Thus, in our application, after training, the GMM can be used to generate a
movement by taking the expected velocities ξ̇m(t) conditioned on time t . This
movement is taken to be the one to imitate. This method is illustrated in Fig. 3
on the left graphic, where one sees a set of trajectories (light gray lines), the
Gaussian mixture components modeling them (ellipses) and the expected trajectory
(thick line). Moreover, the variances of the GMM can provide an indication about
the variability of the observed variables. At any given time, variables with low
variability across demonstrations can be interpreted as more relevant to the task
than variables with high variability.

2.2. Dynamic system

The dynamic system that we use is a spring and damper system inspired by the
VITE model of human reaching movement [4]. It allows the robot to bring
its arm smoothly to the target, following a straight trajectory (in the absence of
perturbation):

ξ̈ (t) = α
(−ξ̇ (t) + β(ξ g − ξ s(t))

)
(8)

ξ̇ (t) = ξ̇ s(t) + ξ̈ (t)�t. (9)

1526 F. Guenter et al.

The constants α, β ∈ R[0,1] are control parameters, ξ̇ and ξ̈ are the current speed
and acceleration of the dynamical system, ξ s is the simulated current position of the
robot and ξ g represents the target position (the goal).

As there are some tasks for which the robot must follow a specific trajectory to
reach the goal (e.g., putting an object in a box), we have to modulate the output of
the dynamic system in order to fulfill these tasks. Our solution is to give to the robot
a weighted average between the output of the dynamic system and a modulation
speed as command:

ξ̇ d(t) = (1 − γ (t))ξ̇ (t) + γ (t)ξ̇m(t), (10)

where ξ̇m is the desired speed used to modulate the system and ξ̇ d is the speed
command for the robot. In order to ensure the convergence of the system on the
target, we need to force the second term to zero at the end of the task. To realize
this, we modulate ξ̇m with the parameter γ which varies according to:

γ (t) = ((T − t)/T)2, (11)

where T is the duration of the observed movement and γ (t) ∈ R[0,1]. Equation (11)
ensures a smooth decay to zero for the modulation term ξ̇m(t) (see Fig. 4).

For security reasons, we have implemented a system to avoid reaching the joint
limits of the robot HOAP3. For that, we use a parameter L in order to decrease the
speed amplitude when we approach the joint limits. The position update is done as
follow:

ξ d(t + 1) = ξ d(t) + Lξ̇ d(t)�t, (12)

where:

L =
{

F(ξ d
t) if ξ d(t) ∈ [ξ d

min, ξ
d
max]

0 if ξ d(t) /∈ [ξ d
min, ξ

d
max], (13)

and:

F(ξ d) = 1 −
∣∣∣∣arctanh

(
1.52 ×

(
ξ d(t) − ξmean

ξ d
max − ξ d

min

))10∣∣∣∣. (14)

The shape of the L parameter within the joint limits [ξ d
min, ξ

d
max] is shown in Fig. 5.

In the system described in Ref. [25], the modulation ξm is given by (5). For
the system described in this paper, this is available only for the first trial q = 1
(q denotes the trial number). During this first trial, if the system fails to reach the
target, the modulation can be changed by using the RL module.

2.3. RL

In order to allow the robot to find a new solution when it fails to reach the target, in
our system we have added a reinforcement learning module. This module acts on
the dynamic system through the modulation variable ξ̇m(t) by optimizing the means
µk,ξ̇ of (1).

Reinforcement learning 1527

Figure 4. Evolution of the parameter γ along time.

Figure 5. Evolution of the parameter L as a function of ξd.

By default, for the first trial q = 1 (where q denotes the trial number), the means
µk,ξ̇ are given by the GMM model. Thus, we avoid interference of the RL module if
the dynamic system is sufficient to ensure the reproduction of the task. If the system
fails to reach the target by using the initial GMM, the RL is applied to learn a new
set of means µk,ξ̇ for the GMM. The whole learning process is done in simulation
even though we will implement the system on the robot. It is indeed not realistic to
make 100 or 200 trials with the robot in a real environment. It is much more efficient
to simulate the process and to find a solution after a few seconds. The advantage of
RL techniques over other direct path-planning techniques is that it allows the robot
to handle different type of situation. The robot is able to learn by exploring the
solution space and discovering new solutions.

The algorithm we have used for the reinforcement learning module of our system
is the episodic NAC algorithm presented in Refs [15, 16]. The NAC is a variant of
the actor–critic method for RL. In the critic part of the NAC, the policy is evaluated
by approximating the state-value function. For the approximation, an adaptation of
an LSTD(λ) (least square temporal difference) algorithm [17, 29] called LSTD-Q(λ)

[15] is used (see Appendix). In the actor part, the policy is improved by using
the ‘natural’ gradient descent [21], which is a steepest gradient descent algorithm
with respect to the Fisher information matrix. The use of approximation functions
and ‘natural’ gradient descent makes this algorithm efficient enough to deal with
multiple-degree-of-freedom systems.

1528 F. Guenter et al.

The first step is to define the policy of our system. In order to explore the space
of the parameters, we introduce a stochastic Gaussian control policy:

ρ(ξ̇ r, ξ̇m, �ξ̇) = 1√
(2π)d |�ξ̇ |

e
(− 1

2 (ξ̇ r−ξ̇m)T�−1
ξ̇

(ξ̇ r−ξ̇m))
, (15)

where ξ̇m is the modulation speed of the dynamical system defined in (5), �ξ̇ is
the covariance matrix (see (7)) of the Gaussian control policy, and ξ̇ r is the noisy
command generated by ρ(ξ̇ r , ξ̇m, �ξ̇) and used to explore the parameters space.
We consider here that the demonstrations performed by the user are sufficiently
informative to allow the robot to reproduce the task in standard conditions. We thus
choose to keep the covariance matrix �ξ̇ in order to respect the constraints taught
by the demonstrator during the exploration process of the RL module.

The parameters of the policy that we want to optimize are the means µk,ξ̇ that
represent the means of the GMM model. By learning new means µk,ξ̇ , we will be
able to generate new trajectories ξ̇m

q that will help the dynamic system to avoid the
obstacle smoothly.

The episodic reward function used to evaluate the produced trajectory is defined
as follows:

rq(ξ̇
r, ξ r) =

T∑
t=0

−c1|ξ̇ r
t − ξ̇m

t,q=1| − c2|ξ r
T − ξ g|, (16)

where c1 > 0, c2 > 0 ∈ R are weighting constants, ξ r is the simulated noisy
command used to explore the solution space, ξm

t,q=1 is the modulation speed of
the first trial (see (7)) and ξ g is the target position. Thus, the reward function is
determined by a term that represents the similarity between the current trajectory
and the original modulation given by the GMM, and a term that represents the
distance between the target and the last point of the tested trajectory.

The effect of the first term on the reward function is that rq tends to a maximum
rq < 0 in most of the cases. As the trajectory ξm

t,q=1 is the expected output of
the GMM and does not depend on the target, it does not reach the target in most
of the cases. Thus, after the learning, if the target is reached, there is still a
difference between the current trajectory ξm

t,q and the initial trajectory ξm
t,q=1 due

to the deformation needed to reach the target.
The effect of the second term on the reward function is that rq tends to a maximum

when ξm
t,q reaches the target. The obstacle is implicitly represented in this term.

During the learning, when the arm is blocked by a obstacle, the last point of the
trajectory ξ s

T does not reach the target, thus the second term of rq does not reach
zero with a obstacle on the trajectory.

The following algorithm is applied separately on each µk,ξ̇ (described in Sec-
tion 2.1). For ease of reading, we will thus omit the index k in the following de-
scription. In the critic part of the algorithm, for the policy evaluation, like in most
RL algorithms, we evaluate the expected reward of a command ξ̇ r for a state ξ̇ s.

Reinforcement learning 1529

That is generally done by the evaluation of the action–value function defined as:

Qρ(ξ̇ r, ξ̇ s) = E

{ ∞∑
t=0

γ trt |ξ̇ r, ξ̇ s

}
, (17)

where γ ∈ R[0,1] is a discount factor and rt is the immediate reward. Note that this
model is for a non-episodic task. In the same way, we can define the value function
as:

V ρ(ξ̇ s) = E

{ ∞∑
t=0

γ trt |ξ̇ s

}
. (18)

As shown in Ref. [15], these two expressions allow us to define an advantage
function:

Aρ(ξ̇ r, ξ̇ s) = Qρ(ξ̇ r, ξ̇ s) − V ρ(ξ̇ s), (19)

where Aρ(ξ̇ r, ξ̇ s) represents the advantage of action ξ̇ r over the state ξ̇ s. To adapt
the NAC to an episodic task, we formulate the discounted sum of the advantage
function along one trial as:

T∑
t=0

γ tAρ(ξ̇ r, ξ̇ s) = rq(ξ̇
r, ξ r) +

T∑
t=0

γ t+1V ρ(ξ̇ s
t+1) − V ρ(ξ̇ s

t) (20)

= rq(ξ̇
r, ξ r) + γ T +1V ρ(ξ̇ s

T +1) − V ρ(ξ̇ s
0). (21)

Note that for a episodic task, γ T +1V ρ(ξ̇ s
t+1) = 0. In order to have an efficient

algorithm we use a linear approximation function for V ρ(ξ̇ s):

V ρ(ξ̇ s) ≈ φ(ξ̇ s)′vq, (22)

where vq ∈ R
T is a vector of weights and φ(ξ̇ s)′ ∈ R

T is the transpose of a feature
vector. In our case, since only V ρ(ξ̇ s

0) in (21) has to be evaluated, we need only one
basis function to approximate V ρ(ξ̇ s). Thus, we can arbitrary set φ(ξ̇ s) = 1 and
approximate the value function at time t = 0 by using only the weight vq .

Following Ref. [15], we approximate the advantage function with:

Aρ(ξ̇ r, ξ̇ s) ≈ ∇µ ln ρ(ξ̇ r, ξ̇m, �ξ̇)
Twq, (23)

where wq is a vector of weights that is equal to the approximation of the natural
gradient of the expected return. By introducing the approximation presented in
(21)–(23), we obtain:

T∑
t=0

γ t∇µ ln ρ(ξ̇ r, ξ̇m, �ξ̇)
Twq + vq ≈ rq(ξ̇

r, ξ r). (24)

1530 F. Guenter et al.

To find the natural gradient w we will use an LSTD-Q(λ) algorithm (see Appendix).
For that, we have to define a new basis function by using (18) and (23):

φ̂ =
N∑

t=0

γ t [1, ∇µ ln ρ(ξ̇ r, ξ̇m, � ξ̇)
T]T. (25)

With this new basis function, we can rewrite (24) in a vectorial form:

φ̂ · [vq, wT
q]T ≈ rq(ξ̇

r, ξ r). (26)

By using LSTD-Q(λ) (see Appendix) we are then able to approximate w and v.
For each trial q, we compute the basis function φ̂ and the episodic reward rq(ξ̇

s) to
update the sufficient statistics Aq and bq (see Ref. [17]):

Aq = Aq−1 + φ̂q φ̂
T
q (27)

bq = bq−1 + φ̂qrq. (28)

At the initialization, A1 is set to I and b1 is set to 0. These sufficient statistics are
then used to update the critic parameters vq and wq :

[vq, wT
q]T = A−1

q bq . (29)

After multiple trials, wq converges to the natural gradient of the expected return.
Thus, once w has converged over a window h, i.e., ∀τ ∈ [0, . . . , h], the angle
between wq+1 and wq−τ � ε, we are able to update the parameters (for each
Gaussian of the GMM separately) µq,ξ̇ in order to optimize the expected return:

µq,ξ̇ = µq−1,ξ̇ + αlearnwq, (30)

where αlearn ∈ R[0,1] is the learning rate. Once the parameters µξ̇ are updated, we
have to forget a part of the sufficient statistics A and b in order to approximate the
new gradient w:

Aq ← βAq (31)

bq ← βbq, (32)

where β ∈ R[0,1]. The algorithm then converges to an optimum with respect to the
reward.

The goal of the RL part of the system is to produce a trajectory ξ̇m that will be
used to modulate the dynamic system according to (10). Thus, at each update of the
means µk,ξ̇ , we test the new trajectory ξ s produced by the dynamic system in order
to stop the learning as soon as a satisfying solution is found. As we are, for the time
being, only interested in goal-directed reaching movements, we test the distance
between the last point of the trajectory ξ s

T and the target. The task is considered as
fulfilled if |ξ s

T − ξ g| < d, where d ∈ R represents the maximal distance we want to
obtain.

Reinforcement learning 1531

3. EXPERIMENTS

We have chosen two tasks for testing the algorithm. The first one consists of putting
an object into a box and the second one consists of grasping a chess queen on a table.
The robot that we use is the humanoid robot HOAP3 from Fujitsu. It has a total of
25 D.O.F.s, but for the manipulation tasks of this paper, we use only the 4-D.O.F.s
arm. To generate ξ̇m by training the GMM, we have performed 26 kinesthetic
demonstrations on the robot for each task. It means that, for each demonstration,
the demonstrator moved the robot arm to perform the task. The robot recorded
the trajectories of its 4 D.O.F.s using its own encoders. The specification of the
demonstration for the first task was to raise the hand in order to reach the box from
above. For the second task, the specification was to grasp the chess queen following
either a vertical movement (to grasp it from above) or a horizontal movement that
is constrainted by the need of a specific direction.

Once we have extracted the generalized speed ξ̇m of the first task, by using only
the dynamic system described in Section 2.2, the robot is able to reproduce the task
with various starting points and for various locations of the box (see Ref. [25]).
However, the dynamic system alone is not able to find satisfying solutions for the
avoidance of possible obstacles obstructing the trajectory. In those experiments, we
have introduced such an obstacle. When the obstacle lies in the trajectory of the end
effector of the robot, the RL module helps the robot reach the goal by avoiding the
obstacle while trying to still satisfy the constraints of the movement shown during
the demonstrations (i.e., reaching the goal with a bell-shaped trajectory).

For the second task, the constraint to fulfill is focused on the approach direction in
order to grasp the chess queen without knocking it down. To model this constraint
in simulation, we use a forbidden volume around the chess queen. It means that, if
the center of the hand penetrates this volume, we consider that the chess queen is
knocked down and thus that the reproduction of the task has failed. The RL is then
used to grasp the chess queen without entering the forbidden volume.

3.1. Box task

This section provides the results of experiments aimed at evaluating the abilities
of the RL module. In the first part, the whole system is tested and the learning is
stopped when a satisfying solution has been found for ξ s (as stated in Section 2.3).
In the second part, we will use another criterion to determine the end of the learning,
a convergence criterion. In this case, the learning is stopped only when an optimal
solution has been found for ξm. This is equivalent to a system which would
reproduce a trajectory only by RL without using a dynamic system (in other words,
we do not consider ξ d).

3.1.1. Whole system. Figure 6 on the left represents a typical example of what
we want to obtain with the RL. The target (represented by a small circle) lies on the
top of the cubic box and the obstacle is represented by the thinner box. The obstacle

1532 F. Guenter et al.

Figure 6. (Left) The dynamic system alone would have produced the trajectory represented by the
dotted line. By using the RL module, the algorithm is able to find a different trajectory that avoids the
obstacle (in thick line). The trajectory produced by the modulation speed ξ̇m (in thin line) does not
reach the goal. The learning has been interrupted before the convergence because a satisfying solution
has been found for ξd. (Right) Here, we can see that the trajectory produced by ξ̇m reaches the goal.
In this example, we use a convergence criterion to stop the learning in order to show the convergence
of the RL module.

Figure 7. Evolution of the reward function during the learning phase of the two examples shown in
Fig. 6. This curve is a mean over 12 runs of the system in identical situations. The first vertical line (a)
represents the average number of trials needed when the learning is interrupted as soon as a satisfying
solution is found (see Section 3.1.1). The second vertical line (b) represents the average number of
trials needed when the learning is interrupted by a convergence criterion as described in Section 3.1.2.

is placed in the middle of the trajectory generated using the modulated dynamic
system without any learning (dashed line). By using the RL module, the system has
been able to find a solution for ξ d (solid line) that avoids the obstacle. We observe
in Fig. 7 that it takes around 330 trials in simulation to find a solution. We can see
that the reward function tends to an optimum, but the learning is interrupted before

Reinforcement learning 1533

Figure 8. Average number of trials needed by the RL module to find a solution to reach the target as
a function of the middle point coordinate of the obstacle.

the complete convergence of the system (as soon as a satisfying solution for ξ d is
found). In Fig. 6 on the left, we can observe the effect of the interruption on the
modulation ξm (the thin line), i.e., ξm avoids the obstacle but does not reach the
goal.

To verify that the system is not sensitive to the particular choice of obstacle
location, we have conducted a set of simulations whereby the obstacle position
varies along a vertical plan that crosses the trajectory. We thus obtain a mapping
of the number of trials needed by the RL module to find a solution as a function of
the obstacle location. Due to the stochastic process used to explore the parameters
space, we have used the average on a few runs of the RL module at each point to
have a good representation of the different areas where the system has difficulties
to find some solutions. Figure 8 represents this mapping for an average of four runs
at each point. We can observe that it can find a solution for most locations in less
than 300 steps. In simulation, it represents approximatively 40 s when the system
runs on a PC equipped with a Pentium 4, 2.4 GHz processor. The area which still
causes some problem to the system is when the obstacle is placed at the lowest
position. This can be explained by the fact that the system tends to find a solution
by passing under the obstacle (this is due the reward function). Along the Y -axis
of the robot, we also observe more problems when the obstacle gets far from the
robot. This is due to the fact that the setup is not centered in the middle of the robot
workspace, thus when Y increases the robot tries to pass aside the obstacle and gets
stuck because of its joint angles limits.

3.1.2. RL module. To show the convergence of the RL system (represented by
ξm), we have changed the criterion to stop the learning. We use here a convergence
criterion, when rq(ξ

s) has converged over a window hr (i.e., ∀τ ∈ [0, . . . , h], the
mean difference between rq and rq−τ � εr), the learning is stopped. By using the
convergence criterion, the learning continues until ξm reaches the goal. That can

1534 F. Guenter et al.

be observed in Fig. 6 on the right. In Fig. 7, we observe the convergence of the
reward function to an optimum around −300 which is a higher value than in the first
example, but we also need an average of 1370 trials to converge to this optimum.

By comparing the two graphics in Fig. 6, we can see that using the distance to the
target or a convergence criterion does not influence significantly the final result for
ξ s, but rather influences the time needed to find a satisfying solution (see Fig. 7).

The other advantage of using the distance to the target as a stopping condition can
be seen in the case of a trajectory that is not suddenly blocked by an obstacle. In this
case, the distance criterion do not enable the learning. If the criterion for stopping
the learning is a convergence criterion, the learning is done in every case even when
a solution already exists.

3.1.3. Stochastic exploration process. In order to study the convergence property
of the RL algorithm, we have conducted a series of tests to have statistics on the
number of trials that we need to converge to a solution. The box and the obstacle
have the same position for all the experiments, only the starting position is moving.
We have defined 23 starting positions equally distributed along a vertical line. For
each of these positions, we have made 22 runs of the RL algorithm without the
help of the dynamic system. To limit the computation time, we have limited the
maximum number of steps to 10 000 steps.

Figure 9 represents the statistics (mean and standard deviation) for the 23 starting
positions. Position 1 is the lowest position on the vertical line while position 23 is
the uppermost (see sample trajectories in Fig. 10). We can see in Fig. 9 that the
RL algorithm has more difficulties to find a solution for the lower starting position.
This is certainly due to the fact that it is more difficult to keep the bell shape of the

Figure 9. Statistics of the number of trials needed to converge to a solution. As abscissa, we have
the starting position (23 starting positions equally distributed along a vertical line; position 1 is the
lowest and 23 is the uppermost position). As ordinate, we have the mean and standard deviation of
the number of trials for each run of the RL algorithm. We observe here that the solution seems to be
more difficult to obtain with the lower starting points.

Reinforcement learning 1535

Figure 10. We observe here the different trajectories for six selected starting positions. The number
for each graph corresponds to a position represented in Fig. 9. The number 01 represents the lowest
starting point and the 23 the uppermost. We have not represented the trajectories for which the RL
module has not found a solution within the 10 000 trials.

1536 F. Guenter et al.

Figure 11. Histograms of the number of trials needed to converge to a solution for the six starting
positions shown in Fig. 10. The number of trials was limited to 10 000. We observe here that, for each
starting point, there is at least one run where the RL algorithm has not found a satisfying solution.
Like in Fig. 10, we see that this problem is more important in the lower starting positions.

demonstrated trajectory while finding a way between the obstacle and the box than
satisfying the same bell shape by passing above the obstacle.

This phenomenon can also be observed in Figs 10 and 11. These graphics
represent the different trajectories for six chosen starting positions. The trajectories
for which the RL algorithm has not found a satisfying solution within the 10 000

Reinforcement learning 1537

trials are not shown in those graphics. The big standard deviations we observe in
Fig. 9 for the lower positions are due to the failure of the RL algorithm.

3.2. Chess task

For this experiment, we have modified the episodic reward function in order to
include a negative reward if the reproduced trajectory penetrates the forbidden
volume V :

rq(ξ̇
s, ξ s) =

T∑
t=0

−c1|ξ̇ s
t − ξ̇m

t,q=1| + c2P(ξ̇m
t,q) − c3|ξ s

T − ξ g|, (33)

where:

P(ξ̇m
t,q) =

{−1 if ξ̇m
t,q ∈ V

0 if ξ̇m
t,q /∈ V .

(34)

We have conducted the same series of experiments as for the box task. The position
of the queen is fixed and we have chosen 23 starting positions distributed along a
horizontal line in front of the robot. The first position is situated in front of the robot
and the last position in the right. The task is reproduced using the right arm. For
this experiment, the stopping condition is that ξ s

q has avoided V and that ξ s
T ,q is on

the target. Figure 12 represents the trajectories for six selected starting positions.
We observe that when the starting position is not in front of the queen, the preferred
solution is to grasp the queen from above, but we observe some exceptions for
starting positions 1, 9, 17 and 21.

Figure 13 represents the statistics of 11 runs of the system for each starting point.
As in the box task, we observe cases of failure of the algorithm. This phenomenon
is more accentuated for the left-most positions (from 1 to 9). This is due to the
fact that we are near the joint angle limit for these starting positions. For starting
positions 10–14, the task is reproduced correctly at the first trial. These starting
positions are in front of the chess queen and then the dynamic system is sufficient
for grasping the queen. For a starting position on the right, RL is necessary but a
solution is found in a small number of trials, except for the two last positions that
are near the joint limits.

4. DISCUSSION

In Section 3, we have compared two ways of using RL. The first one consisted in
evaluating the trajectory ξ s and in interrupting the learning as soon as ξ s reaches
the goal. The second solution was to learn the new ξm, to evaluate the RL until ξm

reaches the goal while avoiding the obstacle.
From the RL point of view, the second solution is the best solution because we

converge to an optimum for the modulation speed ξ̇m. However, for our purpose, it
is not needed. As shown in Section 3.1.2, the resulting trajectory ξ s is similar, but

1538 F. Guenter et al.

Figure 12. Trajectories for the six starting point of the chess task.

the convergence to an optimum takes more time, when learning the optimal ξm. We
have seen in Section 3.1.1 that it takes around 40 s to do 300 trials. By comparing
Figs 9 and 15, we observe important differences in the mean value of the number of
trials needed to find a solution with the two systems. We have a total mean of 3495
trials for the RL alone and a total mean of 1253 for the combination of the dynamic
system and the RL algorithm. The mean time needed by the two systems to find

Reinforcement learning 1539

Figure 13. Statistics of the number of trials needed to converge to a solution for the chess task. As
abscissa, we have the starting position (23 starting positions equally distributed along a horizontal line
from the center to the right of the robot). As ordinate, we have the statistics on the number of trials
needed to find a solution depending on the starting position.

a solution while running on Matlab on a PC equipped with a Pentium 4, 2.4 GHz
processor is 7 min 46 s for the RL alone and 2 min 47 s for the combination of the
two.

This great difference in the mean computation time is mainly due to the cases
where there is no obstacle on the original trajectory. The dynamic system is
sufficient to find a trajectory that reaches the goal; thus, the distance criterion
validates the solution at the first attempt. If we choose to impose the optimum
convergence to stop the learning, we will have many learning steps (around 2500
as shown in Fig. 9 for points 16–23), which will slow down the process even when
the situation does not require it. In other words, for each reproduction, even the
simplest ones, we will have to wait a mean of 5 min 33 s before moving.

A limitation of the system is concerned with the function γ that managed the
importance of the modulation along time. If we want to guarantee that the system
converges to the goal, γ has to be equal to zero at the end of the movement. For this
paper, γ is a fixed function and the influence of the modulation decreases rapidly
with t . Thus, if we have an obstacle at the end of the trajectory, the current system
may not find a solution. In further work, we will investigate ways to learn the
function γ and the possibility to use the RL without the dynamic system so solve
such situations.

5. CONCLUSIONS

In this paper we have presented an algorithm for learning and reproducing goal-
directed tasks with a humanoid robot. At the first attempt to reproduce the task,
the trajectory is generated using a dynamic system modulated by a velocity profile
generated by a GMM trained with a few demonstrations performed by the user. If

1540 F. Guenter et al.

Figure 14. Histograms of the number of trials for each run for six selected starting positions of the
chess task.

there are some perturbations that cannot be handled by the dynamic system alone,
an RL method is used in order to adapt the centers of the GMM components that
encode the modulation speed and therefore find another smooth solution.

We have tested the system on two different tasks. In the first task, an obstacle
perturbs the trajectory and the system has to find a new solution. In the second
task, the goal is to grasp a chess piece. Due to the morphology of the robot, it
cannot grasp the chess piece from every direction. Here, the system can be used to

Reinforcement learning 1541

Figure 15. Statistics of the number of trials needed to find a solution with the dynamic system
associated to the RL algorithm. We observe that the mean increases when the starting point goes up
to point 16. For point 17 and above, the obstacle is no longer on the trajectory and the system finds a
solution at the first attempt.

optimize the task. The advantage of the reinforcement learning is that it can handle
a lot of different and unexpected situations.

While there is still room for improvements, the results presented here strengthen
the idea that imitation should not be considered as a passive repetition of a task,
but rather as an active process, in which exploration plays a significant and often
underestimated role. They show that RL is a suitable paradigm for implementing
such an explorative process.

Acknowledgments

The work described in this paper was partially conducted within the EU Inte-
grated Project COGNIRON (‘The Cognitive Companion’) and funded by the Eu-
ropean Commission Division FP6-IST Future and Emerging Technologies under
contract FP6-002020, and EU Project IST-2004-004370 RobotCub (ROBotic Open-
architecture Technology for Cognition, Understanding, and Behavior). It was also
supported by the Swiss National Science Foundation through grant 620-066127 of
the SNF Professorships program.

REFERENCES

1. K. Dautenhahn and C. L. Nehaniv, Imitation in Animals and Artifacts. MIT Press, Cambridge,
MA (2001).

2. A. Billard and R. Siegwart, Robotics and Autonomous Systems, Special Issue: Robot Learning
From Demonstration. Elsevier, Amsterdam (2004).

3. G. Schoner, M. Dose and C. Engels, Dynamics of behaviour: theory and application for
autonomous robot architecture, Robotics Autonomous Syst. 16, 213–245 (1995).

1542 F. Guenter et al.

4. M. Hersch and A. Billard, A biologically-inspired model of reaching movements, in: Proc.
IEEE/RAS–EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, Pisa, pp. 1067–1071
(2006).

5. I. Iossifidis and G. Schoner, Autonomous reaching and obstacle avoidance with anthropomorphic
arm of a robotics assistant using the attractor dynamics approach, in: Proc. IEEE Int. Conf. on
Robotics and Automation, New Orleans, LA, pp. 4295–4300 (2004).

6. L. Righetti and A. Ijspeert, Programmable central pattern generators: a application to biped
locomotion control, in: Proc. IEEE Int. Conf. on Robotics and Automation, Orlando, FL, pp.
1585–1590 (2006).

7. C. G. Atkeson and S. Schaal, Learning tasks from a single demonstration, in: Proc. IEEE Int.
Conf. on Robotics and Automation, Albuquerque, NM, pp. 1706–1712 (1997).

8. S. Schaal, J. Peters, J. Nakanishi and A. Ijspeert, Learning movement primitives, in: Proc. Int.
Symp. on Robotics Research, Siena, pp. 1805–1815 (2003).

9. J. Morimoto and K. Doya, Acquisition of stand-up behavior by a real robot using hierarchical
reinforcement learning, Robotics Autonomous Syst. 36, 37–51 (2001).

10. S. Iida, M. Kanoh, S. Kato and H. Itoh, Reinforcement learning for motion control of humanoid
robots, in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Sendai, pp. 353–358
(2004).

11. S. J. Bratke and M. O. Duff, Reinforcement learning methods for continuous-time Markov
decision problems, in: Proc. Neural Information Processing Systems Conf., Denver, pp. 393–
400 (1994).

12. K. Doya, Reinforcement learning in continuous time and space, Neural Comput. 12, 219–245
(2000).

13. R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT Press, Cambridge,
MA (1998).

14. V. R. Konda and J. N. Tsitsiklis, Actor–critic algorithms, Adv. Neural Information Process. Syst.
12, 1008–1015 (2000).

15. J. Peters, S. Vijayakumar and S. Schaal, Reinforcement learning for humanoid robotics, in: Proc.
IEEE–RAS Int. Conf. on Humanoid Robots (Humanoids2003), München, pp. 225–230 (2003).

16. J. Peters, S. Vijayakumar and S. Schaal, Natural actor–critic, in: Proc. 16th Eur. Conf. on
Machine Learning, Porto, pp. 280–291 (2005).

17. A. Nedic and D. Bertsekas, Least-squares policy evaluation algorithms with linear function
approximation, LIDS Report LIDS-P-2537, Dec. 2001, Cambridge (2001).

18. R. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement
learning, Machine Learn. 8, 229–256 (1992).

19. R. S. Sutton, D. McAllester, S. Singh and Y. Mansour, Policy gradient methods for reinforcement
learning with function approximation, Adv. Neural Information Process. Syst. 12, 1057–1064
(2000).

20. A. G. Barto and S. Mahadevan, Recent advances in hierarchical reinforcement learning, Discrete
Event Dyn. Syst.: Theory Applic. 13, 343–379 (2003).

21. S. Amari, Natural gradient works efficiently in learning, Neural Comput. 10, 251–276 (2000).
22. G. Konidaris and A. Barto, Autonomous shaping: knowledge transfer in reinforcement learning,

in: Proc. Int. Conf. on Machine Learning, Pittsburgh, PA, pp. 497–504 (2006).
23. P. Abbeel and M. Quigley, Using inaccurate models in reinforcement learning, in: Proc. Int.

Conf. on Machine Learning, Pittsburgh, PA, pp. 9–16 (2006).
24. O. Simsek and A. Barto, An intrinsic reward mechanism for efficient exploration, in: Proc. Int.

Conf. on Machine Learning, Pittsburgh, PA, pp. 841–848 (2006).
25. M. Hersch, F. Guenter, S. Calinon and A. Billard, Learning dynamical system modulation for

constraint reaching tasks, in: Proc. IEEE-RAS International Conference on Humanoid Robots,
Genova, pp. 444–449 (2006).

Reinforcement learning 1543

26. S. Calinon, F. Guenter and A. Billard, On learning, representing and generalizing a task in
a humanoid robot, IEEE Trans. Syst. Man Cybernet. B (Special Issue on Robot Learning by
Observation, Demonstration and Imitation) 37, in press (2007).

27. Z. Ghahramani and M. I. Jordan, Supervised learning from incomplete data via an EM approach,
Adv. Neural Information Process. Syst. 6, 120–128 (1994).

28. A. Billard, S. Calinon and F. Guenter, Discriminative and adaptative imitation in uni-manual and
bi-manual tasks, Robotics and Autonomous Syst. 54, 370–384 (2006).

29. J.A. Boyan, Technical update: least-squares temporal difference learning, Machine Learn. 49,
233–246 (2002).

30. D. Bertsekas and J. Tsitsiklis, Neuro-dynamic Programming. Athena Scientific, Belmont, MA
(1996).

APPENDIX

In this appendix we summarize the LSTD(λ) algorithm presented in Refs [17, 29]
and the LSTD-Q(λ) derived from LSTD(λ) in Ref. [15].

To understand LSTD(λ) we have to begin with the temporal difference algorithm
TD(λ). It has been shown that TD(λ) converges to a good approximation of V ρ

when a linear approximation is used [see (22)]. At each step t ∈ [0, T] of one trial
q ∈ [0, Q], we update the TD error as follow:

δt+1 = δt + zt

(
rt + (φ(ξ̇ s

t+1) − φ(ξ̇ s
t))vq

)
(35)

zt+1 = λzt + φ(ξ̇ s
t+1), (36)

where δ0 = 0 and z0 = φ(ξ̇ s
0). zt represents the eligibility trace. At the end of the

trial, we update the weights vq as follow:

vq+1 = vq + αnδT , (37)

where αn is a learning rate. By rearranging (36) and (37), we observe that the update
of the weights v has the form:

vq+1 = vq + αn(d + Cvq + w), (38)

where:

d = E

{
Q∑

i=0

ziri

}
, C = E

{
Q∑

i=0

zi(φ(ξ̇ s
t+i) − φ(ξ̇ s

i))

}
(39)

and w is a zero-mean noise. It has been shown in Ref. [30] that v converged to a
fixed point vλ satisfying d + Cvλ = 0. However, TD(λ) never explicitly compute d
or C.

The idea of the LSTD(λ) algorithm is to explicitly compute from experience the
matrix A and the vector b as follows:

b =
t∑

i=0

ziri , A =
t∑

i=0

zi(φ(ξ̇ s
i) − φ(ξ̇ s

i+1)). (40)

1544 F. Guenter et al.

Thus, after n trials, b is an unbiased estimate of nd and A is an unbiased estimate
of −nC, and we are then able to estimate vλ by computing A−1b. The LSTD-Q(λ)

algorithm is the LSTD(λ) applied to (26).

ABOUT THE AUTHORS

Florent Guenter obtained his BSc and MSc in MicroEngineering with special-
ization in Robotics from EPFL in 2004. He currently pursues his studies at the
Learning Algorithms and Systems Laboratory at EPFL to obtain a PhD degree.
His research interests include robot control and programming by demonstration.

Micha Hersch graduated in Computer Science at EPFL in 2003 and obtained a
Masters in Cognitive Science at the Université Pierre et Marie Curie, Paris, in
2004. He is currently working towards his PhD under the supervision of Professor
Billard at the Learning Algorithms and Systems Laboratory at EPFL.

Sylvain Calinon is a Postdoctoral Fellow at the Learning Algorithms and Sys-
tems Laboratory (LASA), EPFL. He received his PhD in Robot Programming by
Demonstration from LASA, EPFL in May 2007, and his BSc/MSc in MicroEngi-
neering with specialization in Robotics from the School of Engineering at EPFL,
in 2003. His research interests cover Learning by imitation, human–robot interac-
tion, artificial intelligence and machine learning.

Aude Billard is Associate Professor and Head of the Learning Algorithms and
Systems Laboratory at the school of Engineering at EPFL, which she joined in
2002. She serves as President of the EPFL Assembly and as Administrative Com-
mittee member of the IEEE Robotics and Automation Society. She received her
BSc (1994) and MSc (1995) in Physics from EPFL, with specialization in Parti-
cle Physics at the European Center for Nuclear Research. She received her MSc
in Knowlegde Based System (1996) and her PhD in Artificial Intelligence (1998)
from the Department of Artificial Intelligence at the University of Edinburgh. She

was a Post-doctoral Fellow at IDSIA and LAMI (EPFL, 1998–1999). She was a Research Associate
(1999–2000), Research Assistant Professor (2000–2002) and remained an adjunct faculty since then
at the Computer Science Department at the University of Southern California. Her research interests
cover the fields of artificial neural networks, robotics, neural modeling, computational neuroscience
and more generally machine learning. Her work tackles special topics, such as programming through
demonstration, imitation learning and language acquisition.

