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Abstract— In this paper we discuss the implementation of a
precise reaching controller on an upper-torso humanoid robot.
The proposed solution is based on a learning strategy which
does not rely on a priori models of the kinematics of the arm
nor of that of the head. After learning, the robot can reach for
visually identified objects in 3-D space by integrating an open
loop and a closed loop component; the open loop controller
allows ballistic movements, while the closed loop one performs
precise positioning of the hand in visual space. Differently from
other approaches we handle the critical case of redundancy in
the head and the arm and propose a solution that although
preliminary possesses some biological relevance.

Index Terms— Visual servoing, reaching, learning, develop-
ment, humanoid robotics.

I. INTRODUCTION

Growing evidence in developmental psychology shows the
importance of motor activity for cognitive development in
humans [1]. In particular it is through manipulation that
infants gain direct access to objects and discover properties
that otherwise would remain hidden. This concerns for ex-
ample properties like weight, shape, texture and softness that
are, if not impossible, at least extremely hard to perceive
by using visual information alone. In adults information
originating from motor activity and direct contact with the
environment, supports perception [2]; during development the
physical interaction with the environment provides infants
with natural invariances that are useful occasions for learning.
Interestingly, motor and perceptual development seem to
follow synchronous schedules as if new achievements in
the motor system were promoting the development of new
perceptual skills [3].

Research in developmental robotics has demonstrated the
importance of motor activity (in particular manipulation) for
visual and haptic perception [4]. One of the limitations of
these approaches is that controlling the interaction between
the robot and the environment is difficult especially when
precise models are not available. Experiments with robots
have thus focused on situations in which the interaction with
objects is relatively simple. For these reasons the investiga-
tion of perceptual development in robots requires addressing
the problem of motor development first.

In this context we focus on reaching, which is a clear
prerequisite for manipulation. Reaching can be solved either
by visual servoing [5] or by a model-based open loop [6],

[7] approach. Visual servoing requires the simultaneous view
of the hand and of the target and it is limited by the rate
of measurement of these two quantities from images. Visual
servoing en force of the feedback loop is robust to noise
and errors guaranteeing convergence to the target even in
the presence of rough estimates of the controller parameters
(typically a visuo-arm Jacobian). On the contrary, an open
loop controller can be as fast as the motors can be at the price
of precision which is bound to the modeling inaccuracies or
sensor noise.

Results in developmental psychology suggest that both
solutions might be adopted by the brain. Clifton et al. [8]
tested whether infants require vision of their hand when
reaching; they found that infants’ ability to touch (and grasp)
objects is independent of whether sight of the hand is
available or not. Another set of experiments [9] show that
later on in development there is an increase of visual guidance
in reaching. Together these results suggest the hypothesis
that there are two “distinct” reaching mechanism: one that
relies on “proprioceptive” information alone and one that
uses “visual feedback” to compensate for errors in the visual
domain. There are studies that show the link of the control
of the gaze in relation to the precision of reaching [10]. In
this paper we integrate the two modes of control with an
approach based on the hypothesis that the target object is
fixated. We use the open loop controller to bring the hand
close to the target. The closed loop controller is activated
when visual feedback from the hand is available. In practice,
we show that the error could be made arbitrarily small. The
problem of redundancy is solved in the first case by imposing
additional constraints on the task. Finally, we describe the
procedure by which the robot learns all the transformations
required by the controllers (the open-loop mapping and the
arm visual Jacobian).

II. PREVIOUS WORKS

In this section we briefly describe previous approaches to
the problem of learning how to reach visual targets with a
robot arm. In the literature the problem is often split into two
components, open loop and closed loop.

The open loop phase requires a sensory-motor map encod-
ing the relationship between the hand visual location and the
arm position. Following a classical procedure, this map can



be decomposed into three parts: the robot forward kinematics
(mapping the hand reference frame into a reference frame
on the robot), the camera projective map (mapping the hand
reference frame into a camera reference frame) and the
hand/eye map (mapping the camera reference frame into
the hand reference frame). Extensive literature is available
describing different calibration procedures for retrieving each
of these basic maps. Suitable kinematic [11] and hand/eye
[12] calibration procedures can be used to retrieve the for-
ward kinematics and the hand/eye maps. Similarly, different
algorithms and strategies have been proposed for cameras
and stereo rigs calibration, a well known problem in itself,
studied mainly in computer vision [13].

Although the final result of these procedures can be ex-
tremely accurate, the standard calibration techniques require
the robot to operate in a highly structured environment (typi-
cally represented by a calibrated grid or a known object) with
a precisely calibrated hand pose sensor (typically a stereo
rig), which is not desirable in certain applications. Alternative
procedures have been proposed in order to relax some of
the above assumptions. In [14] for example, an hand/eye
calibration procedure which does not use a calibration object
is proposed. Other approaches have introduced the possibility
of performing a kinematic calibration without measuring the
hand pose [15] by relying on proprioception and specific
kinematic constraints (e.g. by keeping the hand stationary
with respect to the ground, used as reference).

For certain applications the classical calibration procedures
are not necessary. A simpler approach [6] avoids the estima-
tion of the three maps mentioned above by learning a single
forward map. In this case the map links the head joint position
to the corresponding arm position while maintaining the hand
at the center of the images (fixation). When the robot fixates
the target reaching can be performed by inverting this map
to retrieve the arm command which brings the hand to the
fixation point. Recently this approach has been successfully
extended to redundant manipulators [16], although in the case
of a 2-dimensional visual space.

The closed loop controller requires knowledge of the Jaco-
bian of the open loop map. It can be derived analytically from
mathematical differentiation of the function describing the
forward map itself. Alternatively, some techniques directly
estimate the Jacobian matrix [17], [18] or its inverse [19].

In this paper we integrated together the open [6], [18],
[20] and closed [16], [17] loop strategies, both performed
in the 3-dimensional space. We also propose a procedure to
estimate the Jacobian of the manipulator in the case of a
redundant head and arm. All the transformations required to
perform the task, are autonomously estimated by the robot
without relying on any a priori knowledge about the robot
kinematic structure and without an explicit manual labeling
of the training data.

Fig. 1. The humanoid robot James.

III. THE ROBOTIC SETUP

The experiments described in this paper were carried out
on the robot James (see figure 1 and [21] for more details).
James is an upper body humanoid robot which consists of 22
DOFs, actuated by a total of 23 motors. Torque is transmitted
to the joints by belts and stainless-steel tendons. The head is
equipped with two eyes, which can pan and tilt independently
(4 DOFs), and is mounted on a 3-DOF neck. The arm has
7 DOFs: three of them are located in the shoulder, one in
the elbow and three in the wrist. The hand has five fingers
and is under-actuated with a total of 20 degrees of freedom
controlled by 8 motors.

The head structure has a total of 7 degrees of freedom,
actuated by 8 motors. Four of these motors are used to
independently actuate the pan and tilt movements of the left
and right eyes. To achieve a more human-like motion our
strategy was to couple the movements of the eyes. We used
common tilt αc

t , vergence αd
v and version αc

v . The neck has
three degrees of freedom, denoted θy, θp and θr for yaw,
pitch and roll respectively.

To summarize, the variables relevant to understand the
remainder of the paper are: the head joints qhead =[
αc

t αd
v αc

v θy θp θr

]> ∈ R6 and the first four arm
joints (3 d.o.f. shoulder and elbow) denoted qarm ∈ R4.

IV. GAZE CONTROL

The crucial aspect in the control of gaze concerns the
redundancy of the head. Let ur and vr be the coordinates
of the target on the right image plane. Similarly, let ul and
vl be the coordinates of the target on the left image plane
(see Figure 2). The values of ur, vr, ul, vl are the output of
a visual module which detects the target in the image planes.
Directing gaze toward the target consists in moving the neck
and the eyes so as to obtain ur = 0, vr = 0, ul = 0, vl = 0.
Let us define the vector ũtarget =

[
ur vr ul vl

]> ∈ R4

corresponding to the target location in the image planes.
Under reasonable assumptions, we do not need to impose
simultaneously the four conditions ur = 0, vr = 0, ul = 0,
vl = 0. Our control task can be redefined as the problem of
controlling utarget =

[
ur ul vl

]> ∈ R3 to zero. Clearly,
the task specification does not constrain all the head degrees
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Fig. 2. Two typical images taken from the cameras mounted on the eyes
of the robot (resolution 320×240). The coordinates of the target (the blue
ball) on the image planes will be denoted ul, vl, and ur , vr (respectively
left and right cameras).

of freedom (we are imposing 3 constraints but we have 6 free
variables available). We solve this “redundancy problem” by
using two controllers for the eyes and the neck. The former
controls the eyes version and common tilt to track the object,
while the latter controls neck yaw and pitch to maintain the
eyes “centered” within the neck. Mathematically the above
strategy can be implemented as follows:
{

α̇c
v = Kp(ul + ur)

θ̇y = Kyαc
v

,

{
α̇c

t = Kt(vl + vr)
θ̇p = Krα

c
t

, (1)

where αc
v and αc

t are the eyes tilt and common version and
where θy and θp are the yaw and pitch movement of the
neck. In the proposed control scheme, the vergence degree
of freedom αd

v , which corresponds to the distance of the
target does not influence the neck position and is therefore
controlled separately from the neck:

α̇d
v = Kp(ul − ur). (2)

Finally, the neck roll degree of freedom θr is maintained
fixed, i.e. θd

r = 0.
The proposed control strategy allows us to asymptotically

fixate the target (ul → 0, vl → 0, ur → 0 which implies
vr → 0) while, at least within the mechanical limits of the
head, also guaranteeing a straight gaze (αc

v → 0, αc
t → 0).

V. REACHING

In this section, we describe the two approaches we fol-
lowed to solve the reaching task on our robot. The first
method uses the forward mapping between the arm joint
space and the three dimensional position of the hand rep-
resented in the head reference frame. The second method
uses a visual servoing technique to control the speed of the
arm to minimize the position of the hand in the image plane
with respect to a desired target (the fixated object).

A. Open Loop Reaching

Suppose that the robot is tracking a target as described
in Section IV. In the assumption of perfect tracking (the
visual error is zero), the three dimensional spatial position
of the target with respect to the robot, denoted x̃target ∈

R3, is a function of the head configuration qhead =[
θy θp θr αd

v αc
v αc

t

]> ∈ R6. However, the repre-
sentation of the target position, x̃target, in terms of the
full head configuration, qhead, is redundant. Specifically, the
same target position can be represented by different head
configurations. To obtain a one to one mapping between
the target position and the head configuration we have to
analyze the gaze controller. The latter maintains θr stationary
(θd

r = 0) and poses additional constraints on the head
joints. In particular the controller minimizes αc

t and αc
v

(see equation (1)) so that they converge to zero (αc
t → 0

and αc
v → 0). Ideally, after fixation is achieved, we have

qhead =
[
θy θp 0 αd

v 0 0
]> ∈ R6. Since there exists

a one to one mapping between the three dimensional position
of the target x̃target and the three non-zero variables θy, θp

and αd
v , we can define xtarget =

[
θy θp αd

v

]> ∈ R3. This
new variable xtarget ∈ R3 uniquely codes the spatial position
of the target in a way that resembles a three dimensional
polar representation. In particular θy and θp code azimuth and
elevation, while distance is substituted with αv (the vergence
angle).

If the robot tracks the hand, the same subset of the head
joint space can be used to code the spatial location of
the hand: xhand =

[
θy θp αd

v

]> ∈ R3. Under these
assumptions, the forward mapping farm relates the arm
configuration qarm with the position of the hand xhand:

xhand = farm(qarm), farm : R4 −→ R3. (3)

In the next section we show how a neural network could be
trained to approximate farm.

Suppose now that the robot is fixating a target and that
we want to control the robot to reach for it. Formally the
problem can be formulated as determining the value of qarm

which solves the following optimization problem:

min
qarm

‖xhand − xtarget‖2 , (4)

where xtarget is measured from the encoders of the head,
while xhand is computed from qarm through Eq. (3). Given
the redundancy of the arm kinematics this minimization has
infinite solutions. We constrained the problem by forcing one
of the joints, for example joint number 2 (one of the shoulder
joints), to remain as close as possible to a predefined value
q20:

min
qarm

[
‖xhand − xtarget‖2 + (qarm,2 − q20)

2
]
. (5)

The optimization of (5) can be performed numerically
using various algorithms. In our implementation, we used
the downhill simplex method [22].

B. Learning the open loop reaching

To learn the forward map of Eq. (3) we programmed
the robot to perform random movements with the arm



(chosen to uniformly sample a predefined region in the
robot workspace). During this “exploratory” phase the robot
tracked the hand, and collected samples of the form:(

qi
arm,xi

hand

)
i=0,1...

. A neural network was then trained
to learn the relation:

xhand = f̂arm (qarm) , (6)

which approximates Eq. (3).
In the experiment reported in this paper we collected a

data set of about 2890 samples that we divided in a training
set (Ntrain = 2168 samples) and a test set (Ntest = 725
samples). The neural network we employed was the Recep-
tive Field Weighted Regression model proposed by [23]. This
network implements an online learning method, meaning that
a learning step is performed every time a new sample is
presented to the network. All samples in the training set were
shown to the network in a random order. After each training
step the performance of the network was validated on the
whole test set, by computing the Mean Squared Error (MSE)
between each sample in the test set, and the corresponding
network output.

The plot in figure 3 shows the trend of the error on the test
set during learning. At the end of the training the network
reached the performance of MSE = 5.7 deg2 (with STD =
10.4 deg2).

In the experiment reported in this paper the network was
trained offline. This was done to simplify the analysis of
the results and to perform cross-validation on a predefined
test set. However, the learning algorithm we used is purely
incremental (each sample was shown to the network only
once and immediately discarded), so in this regard it would
be straightforward to convert the same approach to an online
implementation.

C. Closed Loop Reaching

If the robot could visually measure the distance between
the hand and the target, reaching could also be solved visually
by implementing a closed control loop. This consists in
performing a preliminary (open loop) reaching movement and
then refining the action by visually correcting any residual
error.

We know that the Jacobian matrix relates arm velocities
q̇arm with hand velocities in the image plane u̇hand =[

u̇r u̇l v̇l

]>:

u̇hand = J̃ (qarm,qhead) q̇arm, (7)

where J̃ ∈ R3×4 depends on both the configuration of the
arm and the head. In practice, assuming sufficiently small arm
movements ∆qarm, we can use the following approximation:

∆uhand = J̃ (qarm,qhead) ∆qarm, (8)

where ∆uhandis the image plane displacement resulting from
the arm movement ∆qarm. Due to the additional constraints
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Fig. 3. Left: learning of the arm forward function. Right: learning the arm
jacobian. The plots represent the MSE on the test set during learning. See
text for more details

posed by the head tracker, we showed that only a subset of
qhead, xtarget, is sufficient to uniquely identify the position
of the head, so we can rewrite equation (8) as:

∆uhand = J̃ (qarm,xtarget) ∆qarm, J̃ ∈ R3×4. (9)

Moreover, after the preliminary open loop reaching move-
ment, we know that xtarget = farm(qarm) so that Eq. (9)
can be further simplified to:

∆uhand = J (qarm)∆qarm, J ∈ R3×4 (10)

where J depends only on the arm joint configuration qarm.
Suppose now that the robot has to reach for an ob-

ject, whose visual position is represented by utarget. To
solve this problem the controller of the arm needs to com-
pute the arm command which minimizes the error e =
‖uhand − utarget‖2. When the head tracker has achieved
convergence on the object, utarget ≈ 0 and e ≈ ‖uhand‖2.
Due to the redundancy of the arm, the minimization of e
can have infinite solutions. Among them, the minimum norm
solution corresponds to the minimum joint speeds, that is:

q̇arm = −k · J#uhand, J# ∈ R4×3, (11)

where J# is the Moore-Penrose pseudo-inverse of J. In
practice xtarget = farm(qarm) is estimated through Eq.
6, so only an approximated value Ĵ# will be available.
Convergence is guaranteed if Ĵ# · J > 0 [24].

D. Learning the Arm Jacobian

As described in Section V-B, the robot moves the arm
randomly, while maintaining gaze on the hand. At the
end of each movement j the arm is in a configuration
qj

arm, while the eyes are fixating the hand (uhand ≈ 0).
Each arm configuration corresponds to a different value
of Jj = J

(
qj

arm

)
. Now the robot inhibits the head

tracker and performs a sequence m of small arm move-
ments ∆qk

arm which perturb uhand of small amounts
∆uk

hand:
(

∆uk
hand, ∆qk

arm

)
k=0,1...,m

. All m perturbations
∆uk

hand and ∆qk
arm are linearly related through Ji as

described in Eq. (9). From these m observations we can
derive a least squares estimation of Jj from which, in turn,
we can compute the pseudo-inverse J#

j .
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Fig. 4. Open loop performance, for different choices of the redundant
variable q20 (image plane errors uhand, in pixels). On the horizontal axis
ur and ul; vertical axis vr and vl (always in pixels). The hand position in
the image plane is represented by the small circles. Each circle corresponds
to a different open loop movement, i.e. a different value of q20.

−60 −40 −20 0 20
−40

−20

0

20

40

60

−60 −40 −20 0 20
−40

−20

0

20

40

60

Left eye Right eye

Fig. 5. Traces of different closed loop control actions. Each trace correspond
to a different Cartesian position of the target to be reached (which is always
at the center of the image planes). All the traces end up in the image center
thus indicating that the visual errors are completely eliminated by the closed
loop controller.

Re-iterating this procedure leads to the collection of a
series of examples:

(
qj

arm,J#
j

)
j=0,1...

. An approximation

Ĵ# of J# is finally obtained by training a neural network:

g (qarm) , g : R4 −→ R12, (12)

whose output components are the coefficients of Ĵ# ∈ R4×3.
We report here the result of a learning session. The

robot explored 210 different arm positions qj
arm randomly

distributed within a region of the workspace. In each of these
positions the robot executed m = 10 perturbations ∆qk

arm

and estimated an example J#
j for the neural network. Overall

we collected 210 samples for J#. We trained the neural
network on a subset of Ntrain = 158 elements (training
set); each sample was shown to the network only once and
then discarded. Following each training step, we evaluated
the performance of the network by computing MSE on the
remaining Ntest = 52 elements (test set). At the end of
the training the error on the test set was MSE = 2 pixels2

deg2

(STD = 7.1 pixels2

deg2 ). Figure 3 reports the plot of the error
during learning.

VI. RESULTS

In this section we report the results of the experiments
we carried out to quantify the performance of the reaching
movements. Following the proposed strategy, in order to
reach for the target we first need to fixate it, i.e. utarget = 0.
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Fig. 6. Movement of the hand on the image planes (320×240) during the
execution of different reaching actions. Solid line: closed loop. Dashed trace:
open loop. Clearly the open loop movement drives the hand to the target (the
image centers) with a relatively small error. The closed loop phase reduces
this error to zero.
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Fig. 7. Time response of the closed loop and open loop strategy. Solid
lines: ur and ul. Dashed lines: vr and vl. Remarkably, the open loop phase
is faster but does not drive the hand exactly on the target. The closed loop
is slower but more accurate.

Using the available sensor (i.e. vision) the best we can do to
precisely reach the target is moving the hand to the fixation
point, i.e. uhand −→ 0. Clearly, the image plane distance
e = ‖uhand − utarget‖ can be used as a rough estimate of
the reaching precision, i.e. of the Cartesian distance between
the target to be reached and the position of the hand.

The first attempt to reach the target consists in using (5)
to choose the arm configuration qarm which brings the hand
to the center of the image planes. Clearly, if the forward
kinematic function (3) were perfectly represented and if the
target were reachable, then we would have xhand = xtarget,
which implies that the target-hand Cartesian distance is zero,
e = 0 (see Section V for details). In practice, the model (3)
cannot exactly represent the system’s kinematics , therefore
it is not guaranteed that after the movement execution e = 0.
Figure 4 shows the image plane errors after the execution
of the open loop movement. The plot has been obtained
by fixating a target and performing a series of open loop
movements. Each open loop movement was different because
(5) was solved by choosing a different value q20.

The residual image plane errors can be reduced by a visual
closed loop control strategy. This control strategy moves the
arm to progressively drive the hand position in the image
planes (uhand) to zero. Figures 5, 6 and 7 show how the hand
is actually driven to the exact image center in both the image
planes. The closed loop controller improves the accuracy of
the reaching movement, but at the cost of a slower execution
speed (see Figure 7). Moreover, it is important to notice the
quasi-linearity of the path followed by the hand (see Figure



5). This linearity denotes a good accuracy of the learned
Jacobian.

VII. CONCLUSIONS

In this paper we have described the implementation of a
reaching behavior that integrates together an open loop and
a closed loop controller. The open loop controller allows
the robot to perform faster movements and does not require
visual feedback from the hand. When sight of the hand
is available the closed loop controller allows for precise
positioning of the hand in the image plane.

We describe an exploration strategy by means of which
the robot autonomously acquires the forward motor map
and the visual Jacobian transformations. Among other things
this strategy allows the estimation of the eye-to-hand visual
Jacobian of the robot. The estimation of the Jacobian is
a well studied task for which several solutions have been
proposed [17]–[19]. None of these works, however, address
the problem of the redundancy of both the head and the
arm. In the experiments reported here the estimation of the
Jacobian is performed with good accuracy for a subset of the
arm workspace and for different head postures. We believe
this is an important contribution with respect to the state of
the art.

We do not rely on prior information about the kinematic
structure of the robot. The only major simplification was
that we used a color marker to visually localize the hand
of the robot. Our assumption is that the hand localiza-
tion/identification is a separate problem that needs to be
solved before learning to reach. Previous work have sug-
gested procedures by which the robot could autonomously
learn to solve this task [25], [26]. It will be interesting to
see how these approaches can be integrated with the work
described in this paper.
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