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Abstract— In this paper, we describe the implementation of a
precise reaching controller on an upper-torso humanoid robot.
The solution we propose does not rely on prior models of the
kinematic structure of either the arm or the head. A learning
strategy enables the robot to acquire the required sensory-motor
transformations. After learning the robot is able to precisely
reach for a visually identified object in the 3-dimensional space.
In this technique we use the fixation point (represented in the
head joints motor space) as a reference frame to code the
position of the object and to represent the eye-to-hand Jacobian
matrix. This strategy successfully deals with the kinematic
redundancy of the structure and constraints the dimensionality
of the problem.

Index Terms— Visual servoing, reaching, learning, Jacobian,
humanoid robotics.

I. I NTRODUCTION

To reach for a visually identified object the robot has
to solve an inverse kinematic problem. This problem has
been studied extensively in the robotic literature and many
solutions exist. None of these solutions is easy to implement
in practice. The main limitations are that they usually require
some knowledge of the robot kinematics and that the camera
parameters are either available “a priori” or estimated by
means of a specific calibration procedure. The problem
becomes even more complicated for humanoid robots which
are often characterized by a large number of degrees of
freedom (DOF) and redundancies in the arm and head. The
kinematic of the robot in these systems becomes a complex
function whose estimation is not, in practice, a trivial task.

In general solving the reaching task requires a sensory-
motor map transforming the position of the target in the
visual domain into the arm joint vector which solves the
task. Extensive literature describe calibration procedures for
retrieving at least part of the parameters which characterize
this mapping [1], [2]. These techniques can be quite accurate
but require the robot to operate in somewhat structured envi-
ronment, typically involving a known object (or a calibration
grid), and a calibrated hand pose sensor. Some procedures
have been proposed to relax part of these assumptions. In
particular [3] avoids the need for a calibrated object, whereas
[4] exploits specific kinematic constraints to avoid an explicit
measure of the hand pose.

Depending on how we decide to encode the target position
(and the relative sensory-motor transformation) these calibra-
tion procedures might not be necessary. Assuming that the
robot is fixating the target, the joints of the head implicitly
encode the position of the target in the world. In this case
a simpler approach could be to directly map the joint vector
defining the current head posture to the arm joint vector
corresponding to the configuration of the arm that brings
the hand to the fixation point. We call this map aforward
“motor-motor” map because it is a direct link between the
motor angle of the head and those of the arm [5], [6].

Reaching can be performed by inverting this motor-motor
map. An extension of this approach to redundant manipula-
tors has been proposed in [7].

The procedure to learn the motor-motor map is straight-
forward and can be easily acquired in a “motor babbling”
phase in which the robot moves the arm randomly while
maintaining fixation on the hand. The limitation of these
approaches is that reaching is intrinsically ballistic anddoes
not use visual feedback. The precision of forward map is
learned poses intrinsic bounds on the accuracy of the reaching
task.

This problem can be solved by using a visual servoing
control schema (for a review: [8]). These techniques use
the Jacobian matrix to control the arm so that the visual
distance between the hand and the target is progressively
reduced to zero. [9]–[11] describe procedures to estimate the
Jacobian matrix of a robot. Unfortunately these techniques
do not suggest how to deal with highly redundant systems.
The Jacobian matrix, in fact, is a function of both the arm
and the head joints, and its estimation becomes quickly hard
as the number of joints increases.

A somewhat intermediate approach is described in [12]. In
this case the robot uses stereo vision to compute the position
of the hand in the 3D space; reaching is then accomplished
by inverting the forward mapping between the arm joints
and the 3D position of the hand. This solution employs
a visuomotor map, which naturally maps vision to motor
space. Indeed from the forward map the authors derives the
eye-to-hand visual Jacobianof the arm which allows the
robot to drive the hand to the target with arbitrary precision.
To deal with the degrees of freedom problem the authors



Fig. 1. The humanoid robot James.

propose an approximate solution where the head joint vector
is substituted for by the output of the robot gyroscope. The
drawback of this approach is that it requires prior calibration
of the visual system and no relative movement between the
cameras. In practice this solution forces the robot to maintain
the eyes stationary in a fixed position with respect of the head.

The technique we propose in this paper integrates the open
loop and the closed loop approaches, as it was previously
proposed in [13]. The main idea consists in learning a suitable
(motor-motor) map to direct the hand close to the fixated
object. The closed loop controller is then activated as soon
as visual feedback of the hand becomes available. Together
these strategies enable the robot to initiate a reaching action
whether or not sight of the hand is available (e.g. when
the hand is out of view or in the dark). The closed loop
controller allows taking advantage of the visual feedback to
arbitrarily reduce the positioning error. Differently from [13],
we propose a methodology to autonomously learn both the
open-loop motor-motor map and the eye-to-hand Jacobian
matrix. The method we propose does not rely on any prior
information about the robot kinematic structure nor it requires
camera calibration or solving the explicit 3D problem.

II. T HE ROBOTIC SETUP

The experiments described in this paper were carried out
on the robot James (see figure 1). The head is equipped with
two eyes, which can pan and tilt independently (4 DOFs),
and is mounted on a 3 DOFs neck. The arm has 7 DOFs:
three of them are located in the shoulder, one in the elbow
and three in the wrist. The hand has five fingers and is under-
actuated with a total of 20 joints controlled by 8 motors thus
resulting in 8 DOFs.

The head structure has a total of 7 degrees of freedom,
actuated by 8 motors. Four of these motors are used to
independently actuate the pan and tilt movements of the
left and right eyes. Even though the eyes can be moved
independently, our strategy was to couple their movements
so to achieve a more human-like motion. We used common
tilt αc

t , vergenceαd
v and versionαc

v.
The neck has three degrees of freedom, denotedθy, θp and

θr for yaw, pitch and roll respectively.
To summarize, the variables relevant to understand the

remainder of the paper are: the head jointsqhead =

lu

lv

ru

rv

Fig. 2. Two typical images taken from the two cameras mounted on the eyes
of the robot (resolution 320×240). The coordinates of the target (the blue
ball) on the image planes will be denotedur , vr , andul, vl (respectively
right and left cameras).

[

αc
t αd

v αc
v θy θp θr

]⊤
∈ R

6 and the first four arm
joints (3 d.o.f. shoulder and elbow) denotedqarm ∈ R

4.

III. G AZE CONTROL

In this section we describe how we control the gaze of
the robot to fixate a visual target. Let(ur, vr) and (ul, vl)
be the coordinates of the target on the right and left image
plane respectively (see Figure 2). Directing gaze toward the
target consists in moving the neck and the eyes so as to
obtain ur = 0, vr = 0, ul = 0, vl = 0. Let us define the
vectorutarget =

[

ur ul vl

]⊤
∈ R

3 corresponding to the
target location in the image planes1. Our control task can be
redefined as the problem of controllingutarget to zero.

A. Head redundancy w.r.t. the task

Clearly, the above task specification (utarget → 0) does
not constrain all the head degrees of freedom (we are
imposingm = 3 constraints but we haven = 6 free variables
available: we remain withn − m = 3 additional degrees of
freedom). To solve this “redundancy problem” we imposed
three additional constraints which are required to be satisfied
when fixating the target:αc

v = 0, αc
t = 0 and θr = 0.

Mathematically the above constraints are implemented as
follows:

{

α̇c
v = Kp(ul + ur)

θ̇y = Kyαc
v

,

{

α̇c
t = Kt(vl + vr)

θ̇p = Krα
c
t

, (1)

Vergence is instead controlled separately:

α̇d
v = Kp(ul − ur). (2)

Finally, the neck roll degree of freedomθr is maintained
fixed, i.e.θd

r = 0.
The proposed control strategy allows us to asymptotically

fixate the target (ul → 0, vl → 0, ur → 0 which implies
vr → 0) while also guaranteeing an asymptotically straight
gaze (αc

v → 0, αc
t → 0). Moreover, by choosing a suitable

value for the gainsKp, Ky, Kt and Kr it is possible to
achieve an asymptotic behavior with the eyes moving rapidly
on the target and the neck following the eye movement with
a slower movement.

1We here assume that the cameras are horizontally aligned, i.e.ur = vr



IV. REACHING

In our formulation the problem of reaching consists in
moving the robot arm so as to reach with the hand an
observed target. Classically, reaching passes trough the es-
timation of the cartesian position of a targetx̃target ∈ R

3

(with respect to a robot centered reference frame) using
the stereo camera system. Given that the head is moving,
we havex̃target = F (qhead,utarget) for a suitably defined
function F . In practice, the estimation of this function is
a delicate calibration procedure consisting in two steps: a
camera calibration and a kinematic calibration [1], [12].

Given the target position, reaching can be performed by
means of the forward kinematic mapG, which gives the
hand cartesian positioñxhand as a function of the robot arm
configuration:x̃hand = G(qarm). The combination of the
mapsF andG can be used to perform open and closed loop
target reaching2.

In this paper we tackle the reaching problem with a differ-
ent approach, originally proposed in [5] and here extended to
the case of a redundant head and arm. Instead of representing
the target position in the cartesian spacex̃target, we use
a representation in a spacextarget homogeneous to the
previous one but strictly related to the robot motor space.
With this representation no camera calibration is needed and
a fully autonomous learning can be performed.

A. Open Loop Reaching

Suppose that the robot is tracking a target as described
in Section III. Ideally, after fixation is achieved, we have
qhead =

[

θy θp 0 αd
v 0 0

]⊤
∈ R

6. Since there exists
a one to one mapping between the three dimensional position
of the targetx̃target and the three non-zero variablesθy, θp

andαd
v, we can definextarget =

[

θy θp αd
v

]⊤
∈ R

3. This
new variablextarget ∈ R

3 uniquely codes the spatial position
of the target in a way that resembles a three dimensional
polar representation. In particularθy andθp code respectively
azimuthandelevation, while distanceis substituted withαv

(the vergenceangle).
If the robot tracks the hand, the same subset of the head

joint space can be used to code the spatial location of
the hand:xhand =

[

θy θp αd
v

]⊤
∈ R

3. Under these
assumptions, theforward mappingfarm : R

4 −→ R
3 relates

2Given an observed targetutarget with the head in the positionqhead,
the open loop reaching is the result of:

qarm = arg min
q

‖G(q) − F (qhead,utarget)‖ .

When the hand is visible on the image plane,residual (image plane) errors
can be reduced implementing a visual servoing controller:

q̇arm = −
∂G

∂q

# ∂F

∂u
(uhand − utarget),

whereA# is the Moore-Penrose pseudo-inverse of the matrixA.

the arm configurationqarm with the position of the hand
xhand:

xhand = farm(qarm), farm : R
4 −→ R

3. (3)

In the next section we show how a neural network could be
trained to approximate the arm forward mapping (Eq. 3).

Suppose now that the map has already been learned and
that the robot is fixating a target to be reached. Formally the
problem can be formulated as determining the value ofqarm

which solves the following optimization problem:

min
qarm

(J) = min
qarm

‖xhand − xtarget‖
2
, (4)

wherextarget is measured from the encoders of the head,
while xhand is computed fromqarm through Eq. (3). Given
the redundancy of the arm kinematics the minimization (4)
has infinite solutions. We constrained the problem by forcing
one of the joints, for example joint number 2 (one of the
shoulder joints), to remain as close as possible to a predefined
valueq20:

min
qarm

(Jc) = min
qarm

[

‖xhand − xtarget‖
2

+ (qarm,2 − q20)
2
]

.

(5)
The optimization of (5) can be performed numerically

using various algorithms. In our implementation, we used
the downhill simplex method as implemented in [14].

1) Learning the open loop reaching:To learn the forward
motor-motor map of Eq. (3) we programmed the robot
to perform random movements with the arm. During this
“exploratory” phase the robot tracked the hand, and col-
lected samples of the form:

(

qi
arm,xi

hand

)

i=0,1...
. A neural

network was then trained to learn the relationxhand =
f̂arm (qarm), which approximates Eq. (3).

In the experiment reported in this paper we collected a
data set of about 2890 samples that we divided in a training
set (Ntrain = 2168 samples) and a test set (Ntest = 725
samples). The neural network we employed was the Recep-
tive Field Weighted Regression model proposed by [15]. This
network implements an online learning method, meaning that
a learning step is performed every time a new sample is
presented to the network. All samples in the training set
were shown to the network in a random order. After each
training step the performance of the network was validated
on the whole test set, by computing the Mean Squared Error
(MSE) between each sample in the test set,xi

hand, and the
corresponding network output,̂xi

hand. The plot in figure 3
shows the trend of the error on the test set during learning. At
the end of the training the network reached the performance
of MSE= 5.7 (with STD= 10.4).

B. Closed Loop Reaching

By measuring the visual distance between the hand and
the target, we can improve the reaching accuracy by imple-
menting a closed control loop. The underlying idea consistsin



performing a preliminary (open loop) reaching movement and
then refining the action by visually correcting any residual
error. A classical closed loop implementation based on the
forward model (3) would be the following:

q̇arm = −

[

∂farm

∂qarm

]#

(xhand − xtarget),

where A# denotes the Moore-Penrose pseudo-inverse of a
matrix A. However, if we are fixating the target, we do not
have direct access toxhand which, instead, requires to fixate
the hand. A possible solution consists in directly measuring
xhand by temporarily shifting the robot attention to the hand.
Alternatively, our idea is to estimate the eye-to-hand Jacobian
matrix which relates arm velocitieṡqarm with hand velocities
in the image planėuhand =

[

u̇r u̇l v̇l

]⊤
:

u̇hand = J̃ (qarm,qhead) q̇arm, (6)

where J̃ ∈ R
3×4 depends on both the configuration of the

arm and the head. In practice, assuming sufficiently small arm
movements∆qarm, we can use the following approximation:

∆uhand = J̃ (qarm,qhead) ∆qarm, (7)

where ∆uhand = [∆ur, ∆ul, ∆vl]
⊤ is the image plane

displacement resulting from the arm movement∆qarm. Due
to the additional constraints posed by the head tracker, we
showed that only a subset ofqhead, xtarget, is sufficient to
uniquely identify the position of the head, so we can rewrite
equation (7) as:

∆uhand = J̃ (qarm,xtarget) ∆qarm, J̃ ∈ R
3×4. (8)

Moreover, after the preliminary open loop reaching move-
ment, we know thatxtarget = f̂(qarm) so that Eq. (8) can
be further simplified to:

∆uhand = J (qarm) ∆qarm, J ∈ R
3×4 (9)

whereJ depends only on the arm joint configurationqarm.
Using (9) as an approximation for (6), we can implement

the following closed loop controller:

q̇arm = −k · J#(qarm)uhand, J# ∈ R
4×3, (10)

wherek is an arbitrary positive scalar. This control law min-
imizes the errore = ‖uhand − utarget‖

2 and asymptotically
drives the visual position of the handuhand to the visual
position of the targetutarget = 0.

1) Learning the Closed Loop Reaching:To implement
(10) we need to evaluateJ (actually its pseudo-inverseJ#).

As described in Section IV-A.1, the robot moves the
arm randomly, while maintaining gaze on the hand. At the
end of each movementj the arm is in a configuration
qj

arm, while the eyes are fixating the hand (uhand ≈ 0)
with a straight gaze (the head tracker has reached con-
vergence). Each arm configuration corresponds to a differ-
ent value ofJj = J

(

qj
arm

)

. Now the robot inhibits the
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Fig. 3. Left: learning of the arm forward function. Right: learning the arm
jacobian. The plots represent theMSE on the test set during learning. See
text for more details

head tracker and performs a sequencem of small arm
movements∆qk

arm which perturbuhand of small amounts
∆uk

hand:
(

∆uk
hand,∆qk

arm

)

k=0,1...,m
. All m perturbations

∆uk
hand and ∆qk

arm are linearly related throughJi as
described in Eq. (8). From thesem observations we can
derive a least squares estimation ofJj from which, in turn,
we can compute the pseudo-inverseJ

#
j .

Re-iterating this procedure leads to the collection of a
series of examples:

(

qj
arm,J

#
j

)

j=0,1...
. An approximation

Ĵ# of J# is finally obtained by training a neural network:

g (qarm) , g : R
4 −→ R

12, (11)

whose output components are the coefficients ofĴ# ∈ R
4×3.

We report here the result of a learning session. The
robot explored 210 different arm positionsqj

arm randomly
distributed within a region of the workspace. In each of these
positions the robot executedm = 10 perturbations∆qk

arm

and estimated an exampleJ#
j for the neural network. We

trained the neural network on a subset ofNtrain = 158 ele-
ments (training set); each sample was shown to the network
only once and then discarded. Following each training step,
we evaluated the performance of the network by computing
MSEon the remainingNtest = 52 elements (test set). At the
end of the training the error on the test set wasMSE = 2
(STD = 7.1). Figure 3 reports the plot of the error during
learning.

V. RESULTS

In this section we report the results of the experiments
we carried out to quantify the performance of the reaching
movements. Following the proposed strategy, in order to
reach for the target we first need to fixate it, i.e.utarget = 0.
Clearly, the image plane distance‖uhand − utarget‖ =
‖uhand‖ can be used as a rough estimate of the reaching
precision, i.e. of the Cartesian distance between the target to
be reached and the position of the hand.

A. Open Loop

The first attempt to reach the target consists in using the
learned motor-motor map (3) and the strategy (5) Clearly, if
the forward kinematic function (3) were perfectly represented
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Fig. 4. Open loop image plane errorsuhand for different choices of the
redundant variableq20. On the horizontal axisur andul; vertical axisvr
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and if the target were reachable, then, after (5), we would
havexhand = xtarget, which implies‖uhand − utarget‖ =
0. In practice, the model (3) cannot exactly represent the
system kinematic3. Therefore, even tough we can findqarm

such thatxhand = f̂arm(qarm) it is not guaranteed that after
the movement execution‖uhand − utarget‖ = 0. Figure 4
shows the image plane errors after the execution of the open
loop movement. The plot has been obtained by fixating a
target and performing a series of open loop movements. Each
open loop movement was different because (5) was solved
by choosing a different valueq20.

B. Closed Loop

Residual visual errors can be reduced by a visual closed
loop control strategy (10), started immediately after the
open loop phase. Relatively weak conditions on the learned
Jacobian [16] guarantee the convergence of the image plane
errorsuhand to zero, and therefore the convergence of the
handxhand to the targetxtarget. Figures 5 shows how the
hand is actually driven to the exact image center in both
the image planes. Accuracy is improved but at the cost of a
slower execution speed (see Figure 5 right); faster executions
couldn’t be obtained by increasing the control loop gains, due
to the frame rate (thirty milliseconds) and the delays in the
visual processing (hand localization and tracking). Finally, it
is important to notice the quasi-linearity of the path followed
by the hand during the closed loop phase. This linearity
denotes a good accuracy of the learned Jacobian.

C. Superimposed Open and Closed Loop

Finally, we tested an alternative control strategy based
on activating the closed loop phase immediately after the
hand becomes visible on both image planes. Practically,
a feedforward control performs the open loop part of the
reaching movement and it does not require the hand to be
visible in the image plane. The feedback control instead
corresponds to the closed loop part of the movement and
can be activated when the hand has been localized in both
the image planes (see Figure 6).

3Part of the representational errors are related to the representation of
the kinematic function, in this case the so called Receptive Field Weighted
Regression model. Part are due to the mechanical plays and backlash of the
mechanical structure.
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Dashed trace: open loop. Right: time response of the closed loop and open
loop strategy on the left image plane. Solid line:ul. Dashed lines:vl.

Fig. 6. Scheme of the simultaneous open and closed loop control.

With this control strategy when the open and closed
loop controllers are active, the system receives position and
velocity control simultaneously4. A comparison between this
control strategy and the one proposed in Section IV-B is
given in Figure 7. The image plane movement (Figure 7)
is much more regular resulting and the execution time is
reduced (right part of Figure 7).

D. Null space movement

In order to validate the quality of the Jacobian estimation,
we tested the effects of a null space movement on the primary

4In our system, a position commandqarm,d is always translated into
a trajectory following command by moving the hand along a trajectory
qarm(t), t ∈ [0, T ] such that:T is the execution time,qarm(0) is
the arm position when the command is received,qarm(T ) = qarm,d

is the desired final position and finallẏqarm(t) = 0, ∀t > T . If a
velocity commandq̇arm,d is received while executing a position command
qarm(t), the original velocity command is transformed into a new one:
q̇arm = q̇arm(t) + q̇arm,d.
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movements shown in Figure 8.

task (keepinguhand = 0) as proposed in [10]. A simple way
to perform this testing is the following control strategy:

q̇arm = −k1 · J
#uhand + k2(I − J#J)w, (12)

whereI ∈ R
4×4 is the identity matrix,w 6= 0 is a randomly

chosen vector inR4 andk1, k2 are positive constants. Ideally,
the strategy (12) should allow arm movementsq̇arm 6= 0
while leaving the hand positionuhand unperturbed. Practi-
cally we observed a minimal image plane movement (Figure
8) as oppposed to a relatively large arm movement (Figure
9). These results further prove the quality of our Jacobian
estimation.

VI. CONCLUSIONS

We have described the implementation a 3D reaching
controller. Our solution integrates an open loop and a closed
loop phase. The former improves the action velocity allows
to initiate a reaching movement when the hand is not visible.
The latter employs visual feedback to improve precision.

The robot autonomously acquires the required sensory-
motor transformations without prior information about the
kinematic structure of the robot. The only simplification
was the use of a color marker to visually localize the hand
of the robot. Our assumption is that the hand localiza-
tion/identification is a separate problem that is already solved
when the robot starts learning to reach. (see for example in
[17], [18]).

The proposed learning strategy allows autonomous esti-
mation of the forward motor-motor map and of the eye-to-
hand visual Jacobian. The estimation of the Jacobian is is

fully autonomous and does not impose any constraints on
the number of the degrees of freedom that are actuated.
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