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Abstract. One of the first steps of any visual system is that of locating
suitable interest points, ‘salient regions’, in the scene, to detect events,
and eventually to direct gaze toward these locations. In the last few years,
object-based visual attention models have received an increasing interest
in computational neuroscience and in computer vision, the problem, in
this case, being that of creating a model of ‘objecthood’ that eventually
guides a saliency mechanism. We present here an model of visual atten-
tion based on the definition of ‘proto-objects’ and show its instantiation
on a humanoid robot. Moreover we propose a biological plausible way to
learn certain Gestalt rules that can lead to proto-objects.

1 Visual Attention

Spatial attention is often assimilated to a sort of ‘filter’ of the incoming infor-
mation, a ‘spotlight’, an internal eye or a ‘zoom lens’. In particular it is believed
to be deployed as a spatial gradient, centered on a particular location. Even if
supported by numerous findings (see [1] for a review), this view does not stress
enough the functional role of the attentional system in an agent with a body.

The external world is sensed continuously and it is not necessarily mapped
into some complicated internal model (although it is also clear that internal
models are required to predict the future course of actions or to compensate
specific dynamic effects of movement [2]). This idea has been summarized by
O’Regan in the following statement:

The world as an outside memory [3].

This sentence remarks the fact that it is important to consider the problem of
vision, and perception in general, deeply rooted in the physical world. Given that
changes in the world seem to be easily detectable, it would be cheaper to mem-
orize, for example, only a rough representation of the external world updating
it when changes happen and directly accessing the sensory data when detailed
information is needed. Moreover, it is not possible to model perception without
simultaneously considering also action, so it is logical to think that perception is
biased toward representations that are useful to act on the environment. To an
extreme, Maturana and Varela [4] and the proponents of some of the dynamical
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approaches to the modeling of cognitive systems [5], define cognition as effec-

tive action. That is, cognition is the actions taken by the agent to preserve its
coupling with the environment, where clearly, if action is not effective then it is
likely that the agent dies (which ends the coupling with the environment).

In the specific instance of visual attention this corresponds to ask whether
attention is deployed at the level of objects (‘object-based’) or at space locations
(‘space-based’). Object-based attention is equivalent to thinking that attention
is geared to the use of the objects, that depends on the internal plan of the
agents, its current status, and very importantly of its overall goal [6]. The idea
of object-based attention is also supported by the discovery in the monkey of a
class of neurons (mirror neurons) which not only fire when the animal performs
an action directed to an object, but also when it sees another monkey or human
performing the same action on the same object [7]. Indeed, this tight coupling
of perception and action is present in in visual attention too: it has been shown
in [8] that more object-based attention is present during a grasping action.

Object-based attention theories argue that attention is directed to an ob-
ject or a group of objects, to process specific properties of the selection, rather
than generic regions of space. There is a growing evidence both from behavioral
and from neurophysiological studies that shows, in fact, that selective attention
frequently operates on an object based representational medium in which the
boundaries of segmented objects, and not just spatial position, determine what
is selected and how attention is deployed (see [9] for a review). This reflects the
fact that the visual system is optimized for segmenting complex scenes into repre-
sentations of objects to be used both for recognition and action, since perceivers
must interact with objects and not just with disembodied spatial locations.

But how can we attend to objects before they are recognized? To solve this
contradiction Rensink [10, 11] introduced the notion of ‘proto-objects’, that are
volatile units of visual information that can be bound into a coherent and sta-
ble object when accessed by focused attention and subsequently validated as
actual objects. In fact, it is generally assumed that the task of grouping pix-
els into regions is performed before selective attention is involved by perceptual
organization and Gestalt grouping principles [12].

Guided by these considerations we developed a general proto-object based
visual attention model and designed a biological motivated method to learn how
to pre-segment images into proto-objects.

This article is organized as follows: Section 2 contains an introduction on the
modeling of human visual attention. Section 3 details the robot’s visual system
and the proposed model, and in Section 4 some results are shown. In Section 5 a
new method to build better proto-objects is described, with numerical validation
in Section 6. Finally in 7 we draw some conclusions and future work.

2 Computational models of visual attention

A dominant tradition in space-based theories of visual attention was initiated
with a seminal paper by Treisman and Gelade [13]. They argued that some pri-



mary visual properties allow a search in parallel across large displays of target
objects. In such cases the target appears to ‘pop out’ of the display. For example
there is no problem in searching for a red item amongst distractor items colored
green, blue or yellow, while searching for a green cross is much more difficult
when distractors include red crosses and green circles (‘feature conjunction’).
Treisman and Gelade proposed that in the pop-out tasks preattentional mecha-
nisms permit a rapid target detection, in contrast to the conjunction task, which
was held to require a serial deployment of attention over each item in turn. They
suggested the division of the attention in two stages: a first ‘preattentive’ one
that is traditionally thought to be automatic, parallel, and to extract relatively
simple stimulus properties, and second stage ‘attentive’ serial, slow, with lim-
ited processing capacity, able to extract more complex features. They proposed
a model called Feature Integration Theory (FIT) [13], in which a set of low-level
feature maps extracted in parallel on the entire input image (preattentive stage)
are then combined together by a spatial attention window operating on a master
saliency map (attentive stage).

In the literature a number of attention models that follow this hypothesis
have been proposed, e.g . [14, 15] (for a complete review on this topic see [16]).
An important alternative model is given by Sun and Fisher [17], which propose
a combination of object- and feature-based theories. Presented with a manually
segmented input image, their model is able to replicate human viewing behavior
for artificial and natural scenes. The limit of the model is the use of human seg-
mentation of the images, in practice, it employs information that is not available
in the preattentive stage, that is before the objects in the image are recognized.

2.1 Proto-objects and visual attention

It is known that the human visual system extracts basic information from the
retinal image in terms of lines, edges, local orientation etc. Vision though does
not only represent visual features but also the things that such features charac-
terize. In order to segment a scene in items, objects, that is to group parts of
the visual field as coherent wholes, the concept of ‘object’ must be known to the
system. In particular, there is an intriguing discussion underway in vision sci-
ence about reference to entities that have come to be known as ‘proto-objects’ or
‘pre-attentive objects’ [10, 11, 18], since they need not to correspond exactly with
conceptual or recognizable objects. These are a step above the mere localized
features, possessing some but not all of the characteristics of objects. Instead,
they reflect the visual system’s segmentation of current visual input into candi-
date objects (i.e. grouping together those parts of the retinal input which are
likely to correspond to parts of the same object in the real world, separately from
those which are likely to belong to other objects). Hence the “objects” which we
will be concerned with are segmented perceptual units.

The visual attention model we propose simply considers these first stages of
the human visual processing, and employs a concept of salience based on proto-
objects defined as blobs of uniform color in the image. Since we are considering



an embodied system we will use the output of the model, implemented for real-
time operation, to control the fixation point of a robotic head. Then, through
action, the attention system can go beyond proto-objects, discovering “true”
physical objects [19, 20]. The proposed object-based model of visual attention
integrates bottom-up and top-down cues; in particular, top-down information
works as a priming mechanism for certain regions in the visual search task.

3 The model

In Figure 1 there is the block diagram of the model. We will describe in details
in the following each block.

The input is a sequence of color log-polar images [21]. The use of log-polar
images comes from the observation that the distribution of the cones, i.e. the
retinal photoreceptors involved in diurnal vision, is not uniform. Cones have a
higher density in the central region called fovea (approximately 2◦ of the visual
field), while they are sparser in the periphery. This distribution influences the
scanpaths during a visual search task [22] and so it has to be taken into account to
better model overt visual attention. The log-polar mapping is in fact a model of
the topological transformation of the primate visual pathways from the Cartesian
image coming from the retina to the visual cortex, that takes also into account
the space-variant resolution of the retinal images. This transformation can be
well described as a logarithmic-polar (log-polar) mapping [21]. Figure 2 shows
an example image and its log-polar counterpart.

One advantage of log-polar images is related to the small number of pixels and
the comparatively large field of view. In fact the lower resolution of the periphery
reduces the number of pixels and consequently the computational load of any
processing, while standard algorithms can still be used on the high resolution
central part (the fovea).

3.1 Feature extraction

As a first step the input image at time t is averaged with the output of a color
quantization procedure (see later) applied to the image at time t− 1. This is to
reduce the effect of the input noise. The red, green, blue channels of each image
are then separated, and the yellow channel is constructed as the arithmetic mean
of the red and green channels. Successively these four channels are combined to
generate three color opponent channels, similar to those of the retina. Each
channel, normally indicated as R+G−, G+R−, B+Y −, has a center-surround
receptive field (RF) with spectrally opponent color responses. That is, for ex-
ample, a red input in the center of a particular RF increases the response of the
channel R+G− , while a green one in the surrounding will decrease its response.
The spatial response profile of the two sub-regions of the RF, ‘center’ and ‘sur-
round’, is expressed by a Gaussian, resulting in a Difference-of-Gaussians (DoG)
response. A response is computed as there was a RF centered on each pixel of
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Fig. 1. Block diagram of the model. The input image is first separated in the three
color opponency maps, then edges are extracted. A watershed transform creates the
proto-objects on which the saliency is calculated, taking into account top-down biases.

the input image, thus generating an output image of the same size of the input.
This operation, considering for example the R+G− channel is expressed by:

R+G−(x, y) = α · R ∗ gc − β · G ∗ gs (1)

The two Gaussian functions, gc and gs, are not balanced: the ratio β/α is chosen
equal to 1.5, consistent with the study of Smirnakis et al . [23]. The unbalanced
ratio preserves achromatic information: that is, the response of the channels to
a uniform gray area is not zero. The model does not need to process achromatic
information explicitly since it is implicitly encoded, similarly to what happens
in the human retina’s P-cells [24]. The ratio σs/σc, the standard deviation of
the two Gaussian functions, is chosen equal to 3. To be noted that by filtering
a log-polar image with a standard space-invariant filter leads to a space-variant
filtered image of the original Cartesian image [25]. Edges are then extracted on
the three channels separately using a generalization of the Sobel filter due to [26],
obtaining ERG(x, y), EGR(x, y) and EBY (x, y). A single edge map is generated
combining the tree outputs with a pixel-wise max(·) operator:

E(x, y) = max {|ERG(x, y)| , |EGR(x, y)| , |EBY (x, y)|} (2)

3.2 Proto-objects

It has been speculated, that synchronizations of visual cortical neurons might
serve as the carrier for the observed perceptual grouping phenomenon [27, 28].
The differences in the phase of oscillation among spatially neighboring cells are



Fig. 2. Log-polar transform of an image. It is worth noting that the flower’s petals, that
have a polar structure, are mapped vertically in the log-polar image. Circles, on the
other hand, are mapped horizontally. Furthermore, the stamens that lie in the center
of the image of the flower, occupy about half of the corresponding log-polar image.

believed to contribute to the segmentation of different objects in the scene.
We have used a watershed transform (rainfalling variant) [29] on the edge map
to simulate the result of this synchronization phenomenon and to generate the
proto-objects. The intuitive idea underlying the watershed transform comes from
geography: a topographic relief is flooded by water, watershed are the divide
lines of the domains of attraction of rain falling over the region. In our model
the watershed transform simulates the parallel spread of the activation on the
image, until this procedure fills all the spaces between edges. Differently from
other similar methods the edges themselves will never be tagged as blobs and
the method does not require complex membership functions either. Moreover
the result does not depend on the order in which the points are examined like
in standard region growing [30]. As a result, the image is segmented into blobs
which are either uniform or with a uniform gradient of color.

The definition of proto-objects is directly derived from the choice of the
feature maps: i.e. closed areas of the image uniform in color.

A color quantized image is formed averaging the color inside each blob. The
result is blurred with a Gaussian filter and stored: this will be used to perform
temporal smoothing by simply averaging with the frame at time t + 1 to reduce
the effect of noise and increase the temporal stability of the blobs. After an
initial startup time of about five frames, the number of blobs and their shape
stabilize. If movement is detected in the image then the smoothing procedure is
halted and the bottom-up saliency map becomes the motion image.

A feature or a stimulus catches the attention if it differs from its immediate
surrounding. To replicate this phenomenon in the system we compute a measure
of bottom-up salience as the Euclidean distance in the color opponent space be-
tween each blob and its surrounding. However a constant size of the spot or focus
of attention would not be very practical and rather it should change depending
on the size of the objects in the scene. To account for this fact the greater part



of the visual attention models in literature uses a multi-scale approach filtering
with some type of ‘blob’ detector (typically a DoG filter) at various scales [16].
We reasoned that this approach lacks continuity in the choice of the size of the
focus of attention (see for example Figure 3). We propose instead to dynami-
cally vary the region of interest depending on the size of the blobs. That is, the
salience of each blob is calculated in relation to a neighborhood proportional to
its size. In our implementation we consider a rectangular region 3 times the size
of the bounding box of the blob as surrounding region, centered on each blob.
The choice of a rectangular window is not incidental: filters over rectangular
regions can be computed efficiently by employing the integral image as in [31].

The bottom-up saliency is thus computed as:

Sbottom−up =
√

∆RG2 + ∆GR2 + ∆BY 2 (3)

∆RG = 〈R+G−〉blob − 〈R+G−〉surround

∆GR = 〈G+R−〉blob − 〈G+R−〉surround

∆BY = 〈B+Y −〉blob − 〈B+Y −〉surround

where 〈〉 indicates the average of the image values over a certain area (indi-
cated in the subscripts). The top-down influence on attention is, at the moment,
calculated in relation to the task of visually searching for a given object. In
this situation a model of the object to search in the scene is given and this in-
formation is used to bias the saliency computation procedure. In practice, the
top-down saliency map, Stop−down, is computed as the Euclidean distance in
the color opponent space, between each blob’s average color and the average
color of the target, with a formula similar to (4). Blobs that are too small or
too big in relation to the size of the images are discarded from the computation
of salience with two thresholds. The blob in the center of the image (currently
fixated) is also ignored because it cannot be the target of the next fixation. The
total salience is simply calculated as the linear combination of the top-down and
bottom-up contributions:

S = ktd · Stop−down + kbu · Sbottom−up (4)

The center of mass of the most salient blob is selected for the next saccade, in
fact it has been observed that the first fixation to a simple shape that appears
in the periphery tends to land on its center of gravity [32].

3.3 Inhibition of return

In order to avoid being redirected immediately to a previously attended loca-
tion, a local inhibition is transiently activated in the saliency map. This is called
‘inhibition of return’ (IOR) and it has been demonstrated in human visual psy-
chophysics. In particular Tipper [33] was among the firsts to demonstrate that
the IOR could be attached to moving objects. Hence the IOR works by anchor-
ing tags to objects as they move; in other words this process seems to be coded
in an object-based reference frame.



Fig. 3. The effect of a fixed size Difference-of-Gaussians filter. Blobs smaller of the
positive lobe of the filter are depressed while larger ones are depressed in their centers.

Our system implements a simple object-based IOR. A list of the last 5 po-
sitions visited is maintained in a head-centered coordinate system and updated
with a FIFO (First In First Out) policy. The position of the tagged blob is stored
together with the information about its color. When the robot gaze moves —
for example by moving the eyes and/or the head — the system keeps track of
the blobs it has visited. These locations are inhibited only if they show the same
color seen earlier: so in case an inhibited object moves or its color changes, the
location becomes available for fixation again.

4 Results on sample images

Even if our model is inherently built not to work on static images, we have tried a
comparison with the model of Itti et al . [15], using the same database of images
they use [34]. It consists of 64 color images with an emergency triangle and
relative binary segmentation masks of the triangle3. First, the original images
and segmentation masks are cropped to a square and transformed to the log-
polar format (see Figure 4 (a) and (b) for the Cartesian remapped images).
To simulate the presence of a static camera, the images are presented to the
system continuously and, after five ‘virtual’ frames, the bottom-up saliency map
is confronted with the mask. In this way we measure the ability of the system
to spot the salient object in the images, simulating the pop-out phenomenology.
The obtained result is that in 49% of the images a point inside the emergency
triangle is selected as the most salient (see an example in Figure 4 (c)). However
a direct comparison with the results of Itti and Koch in [34], by counting the
number of false detection before the target object is found, is not possible since
after each saccade the log-polar image changes considerably.

Other experiments were carried out on a robotic platform called Babybot
[35]. This is a humanoid upper torso which consists of a head, an arm and a
hand. From the point of view of the sensors, the head is equipped with two

3 http://ilab.usc.edu/imgdbs/, last access 30/05/2007.



Fig. 4. Result on a sample image taken from [34]. (a) is the log-polar input image and
(b) the corresponding taget binary mask. (c) is the bottom-up saliency map.

Fig. 5. Example saliency maps. (b) is the bottom-up saliency map of the image (a).
(d) is the top-down saliency map of (c) while searching for the blue airplane.

log-polar cameras and two microphones for visual and auditory feedback. The
attentional system were used to guide the object recognition system and to guide
the robot in manipulation tasks [35, 20]. Two examples of saliency maps from
the input images of the robot are shown in Figure 5: in (b) there is a purely
bottom-up (ktd = 0, kbu = 1 in Equation (7)) map which is the result of the
processing of the scene in (a); in (d) there is a purely top-down (ktd = 1, kbu = 0)
map output after the processing of (c). In Figure 6 there are the saliency maps
of two images with different settings of ktd and kbu.

Moreover using any learning procedure it is possible to estimate which proto-
objects compose a particular object and use this information to attempt a figure-
ground segmentation [20]. An example of these segmentations is shown in Figure
7. Note that even if the result is not visually perfect, it has all the information
to guide a manipulation task [35].

5 A better definition of proto-objects

As said above, object-based theories of attention stress the importance of the
segmentation of the visual input in coherent regions. The term ‘grouping’ (or
‘segmentation’) is a common concept in the long research history of perceptual
grouping by the Gestalt psychologists. Back at the beginning of the last century
they described, among other things, the ability of the human visual system to
organize parts of the retinal stimulus into ‘Gestalten’, that is, into organized



Fig. 6. Combining top-down and bottom-up maps. (b) and (f) are the bottom-up
saliency maps of (a) and (e). (c) and (g) are the top-down ones, while searching re-
spectively for the yellow ball and the blue airplane. In (d) and (h) the bottom-up and
top-down contributions are equally weighted; this can result in clearer maps.

Fig. 7. Example segmentations of objects. (b) and (d) are obtained from (a) and (c)
using the proto-objects that are estimated to belong to the target objects.

structures. They also formulated the so-called Gestalt laws (proximity, common
fate, good continuation, closure, etc.) that are believed to govern our perception.

Nowadays the more typical view of such grouping demonstrations would be
that they reflect non-arbitrary properties within the stimuli, which the visual
system exploits heuristically because these properties are likely to reflect divi-
sions into distinct objects in the real world. In this sense it should be possible
to learn these heuristic properties and hence to learn from the image statistics
better rules to build the proto-objects [12].

5.1 Learning the association fields

A first step in the implementation of the Gestalt laws are the ‘association fields’
[36]. These fields are supposed to resemble the pattern of excitatory and in-
hibitory lateral connection between different orientation detector neurons as



(a) (b)

Fig. 8. (a) Sample input image from the Berkeley Segmentation Database. (b) Complex
cells output to the image in (a) for 0◦ filter of formula (5).

found, for instance, by Schmidt et al . [37]. Schmidt has shown that cells with
an orientation preference in area 17 of the cat are preferentially linked to iso-
oriented cells. The coupling strength decrease with the difference in the preferred
orientation of pre- and post-synaptic cell.

In the literature, association fields are often hand-coded and employed in
many different models with the aim to reproduce the human performance in
contour integration. Models typically consider variations of the co-circular ap-
proach [38–40], which states that two oriented elements are very likely part of
the same curve if they are tangent to the same circle. Our approach is instead to
try to learn these association fields directly from natural images. Starting from
the output of a simulated layer of complex cells, without any prior assumption,
we want to estimate the mean activity around points with given orientations.

The extension of the fields is chosen to be of 41x41 pixels taken around each
point, and the central pixel of the field is the reference pixel. We have chosen
to learn 8 association fields, one for each discretized orientation of the reference
pixel. Despite this quantization, to cluster the different fields, the information
about the remaining pixels in the neighbor is not quantized, differently from
other approaches, i.e. [41]. There is neither a threshold nor a pre-specified num-
ber of bins for discretization and thus we obtain a precise representation of the
association fields. In the experiments we have used the images of the Berkeley
Segmentation Database [42], that consists of 300 images of 321x481 and 481x321
pixels (see Figure 8 (a) for an example).

For mathematical convenience and to represent orientation precisely, we have
chosen to use a tensor notation. Hence for each orientation of the reference pixel,
we calculate the mean tensors associated with the surrounding pixels, from the
41x41 patches densely collected from 200 images of the database. These mean
tensors will represent our association fields.

5.2 Feature extraction stage

There are several models of the complex cells of V1, but we have chosen to use
the classic energy model [43]. The response at orientation θ is calculated as the



sum a quadrature pair of even- and odd-symmetric filters:

Eθ =

√

(I ∗ fe
θ )

2
+ (I ∗ fo

θ )
2

(5)

Our even-symmetric filter is a Gaussian second-derivative, the corresponding
odd-symmetric is its Hilbert transform. In Figure 8 (b) there is an example of
the output of the complex cells model for the 0◦ orientation. Then the edges are
thinned using a standard non-maximum suppression algorithm. The outputs of
these filters are used to construct our local tensor representation.

Second order symmetric tensors can capture the information about the first
order differential geometry of an image. Each tensor describes both the orien-
tation of an edge and its confidence for each point. In practice a second order
tensor is denoted by a 2x2 symmetric matrix and can be visualized as an ellipse,
whose major axis represents the estimated tangential direction and the differ-
ence between the major and minor axis the confidence of this estimate. Hence a
point on a line will be associated with a thin ellipse while a corner with a circle.
The tensor at each point is constructed by direct summation of three quadrature
filter pair output magnitudes as in [44]:

T =

3
∑

k=1

Eθk

(

4

3
n̂T

k n̂k − 1

3
I

)

(6)

where I is the 2x2 identity matrix, Eθk
is the filter output as calculated in (5)

with θk corresponding to the direction of n̂k:

n̂1 = (1, 0) , n̂2 =
(

1/2,
√

3/2
)

, n̂3 =
(

−1/2,
√

3/2
)

(7)

The greatest eigenvalue λ1 and its corresponding eigenvector e1 of a tensor
associated to a pixel represent respectively the strength and the direction of the
main orientation. The second eigenvalue λ2 and its eigenvector e2 have the same
meaning for the orthogonal orientation. The difference λ1 − λ2 is proportional
to the likelihood that a pixel contains a distinct orientation.

5.3 The path across a pixel

We have run our test only for a single scale, choosing the σ of the Gaussian filters
equal to 2, since preliminary tests have shown that a similar version of the fields
is obtained with other scales as well. Two of the obtained fields are in Figure 9.
It is clear that they are somewhat corrupted by the presence of horizontal and
vertical orientations in any of the considered neighbors and by the fact that in
each image patch there are edges that are not passing across the central pixel.
On the other hand we want to learn association field for curves that do pass
through the central pixel.

We believe that this is the same problem that Prodöhl et al . [45] experienced
using static images: the learned fields supported collinearity in the horizontal and
vertical orientations but hardly in the oblique ones. They solved this problem
using motion to implicitly tag only the important edges inside each patch.
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Fig. 9. Main directions for the association fields for the orientations of 0◦ (a) and 67.5◦

(b) in the central pixel.

Once again the neural way to solve this problem can be the synchrony of the
firing between nearby neurons (see Section 3.2). We considered for each image
patch only pixels that belong to any curve that goes through the central pixel.
In this way the dataset contains only information about curves connected to the
central pixel. Note that we select curves inside each patch, not inside the entire
image. The simple algorithm used to select the pixels is the following:

1. put central pixel of the patch in a list;
2. tag the first pixel in the list and remove it from the list. Put surrounding

pixels that are active (non-zero) in the list;
3. if the list is empty quit otherwise go to 2.

This procedure removes the influence of horizontal and vertical edges that are
more present in the images and that are not removed by the process of averaging.
On the other hand, we are losing some information, for example about parallel
lines, that in any case are not useful for the enhancement of contours. Note
that this method is completely “parameter free”; we are not selecting the curves
following some specific criterion, instead we are just pruning the training set
from noisy or biased inputs. It is important to note that this method will learn
the natural image bias toward horizontal and vertical edges [46], but it will not
be biased to learn these statistics only, as in Prodöhl et al . [45] when using static
images. A similar approach that uses self-caused motion has been developed in
[47] to disambiguate the edges of a target object from those in the background.

6 Validating the association fields

Figures 10 and 11 show the main orientations and strengths (eigenvalues) of the
mean estimated tensors for the orientations of 0◦ and 67.5◦ of the central pixel,
obtained with the modified procedure described in Section 5.3. The structure
of the obtained association fields closely resembles the fields proposed by others
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Fig. 10. Main directions for the association field for orientation of 0◦ (a) and 67.5◦

(b), with the modified approach. Compare them with the results in Figure 9.

based on collinearity and co-circularity. While all the fields have the same trend,
there is a clear difference in the decay of the strength of the fields. To see this
we have considered only the values along the direction of the orientation in the
center, normalizing the maximum values to one. Figure 12 (a) shows this decay.
It is clear that fields for horizontal and vertical edges have a wider support,
confirming the results of Sigman et al . [41].

The obtained fields can be used with any existing model of contour enhance-
ment, but to test them we have used the tensor voting scheme proposed by
Guy and Medioni et al . [39]. The choice is somewhat logical considering to the
fact that the obtained fields are already tensors. In the tensor voting frame-
work points communicate with each other in order to refine and derive the most
preferred orientation information. We compared the performances of the tensor
voting algorithm using the learned fields versus the simple output of the com-
plex cell layer, using the Berkeley Segmentation Database and the methodology
proposed by Martin et al . [48, 42]. In the databes for each image a number of dif-
ferent human segmentations is available. The methodology proposed by Martin
et al . aims at measuring with ROC-like graphs the distance between the human
segmentations and the artificial ones. We can see the results on 100 test images
and relatives human segmentations in Figure 12 (b), better result are associated
with curves that are located higher in the graph. We can see that there is al-
ways an improvement using the tensor voting and the learned association fields
instead of just using the outputs of the complex cells alone. An example of the
results on the test image in Figure 8 (a), after the non-maximum suppression
procedure, are shown in Figure 13.

7 Conclusion

We have presented the general implementation of a visual attention system em-
ploying both top-down and bottom-up information. It runs in real time on a
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Fig. 11. Difference between the two eigenvalues of the association fields of Figure 10.
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Fig. 12. (a) Comparison of the decay for the various orientations. On the y axis there
are the first eigenvalues normalized to a maximum of 1, on the x axis is the distance
from the reference point along the main field direction. (b) Comparison between tensor
voting with learned fields (PG label) and the complex cell layer alone (OE label).

standard Pentium class processor and it is used to control the overt attention
system of a humanoid robot. Running an attention system on a robotic platform
generates a set of problems which are not apparent when only generating scan
paths on static images. Although not discussed in details here, the robot imple-
mentation requires, for example, a complex management of the IOR together
with a body-centered coordinate system (for representing object locations).

Our algorithm divides the visual scene in color blobs; each blob is assigned
a bottom-up saliency value depending on the contrast between its color and
the color of the surrounding area. The robot acquires information about objects
through active exploration and uses it in the attention system as a top-down
primer to control the visual search of that object. The model directs the attention
on the proto-object’s or center of mass, similarly to the behavior observed in
humans (see Sections 3.2 and 4). In [35, 20] the proposed visual attention system
was also used to guide the grasping action of a humanoid robot.



(a) (b)

Fig. 13. (a) Test image contours using the complex cell layer alone. (b) Test image
contours using tensor voting with the learned fields. Notice the differences with the (a):
the contours are linker together and the gaps are reduced. Especially on the contour
of back of the tiger the differences are evident (bottom images).

A similar approach has been taken by Sun and Fisher [17] but the main
difference with this work is that they have assumed that a hierarchical set of
perceptual groupings is provided to the attention system by some other means
and considered only covert attention. In this sense we have tried to address this
problem directly presenting a method to learn precise association fields from
natural images. An unsupervised bio-inspired procedure to get rid of the non-
uniform distribution of orientations is used, without the need of the use of motion
[45]. The learned fields were used in a computer model and the results were
compared using a database of human tagged images which helps in providing
clear numerical results.

Moreover the framework introduced is general enough to work with other
additional feature maps, extending the watershed transform to additional di-
mensions in feature space (e.g. local orientation) thus providing new ways of
both segmenting and recognizing objects. As future work we want to integrate
the associative fields learnt from natural images with the proposed visual atten-
tion model. We are also looking to an extension of the associative fields to a
hierarchical organization to develop even more complex image features.
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