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Abstract—For a complex autonomous robotic system such
as a humanoid robot, the learning-based sensory prediction is
considered effective to develop a perceptual environment model
by itself. We developed a learning system for an autonomous
robot to predict the next sensory information from the current
sensory information and the expected action. The system we
consider contains a learning procedure and a behavior generation
procedure. The learning procedure uses a multi layer perceptron
minimizing the error between a given sensory input and its
predicted value. The behavior generation procedure is based on a
uniform probablistic density function to sample the learning data
randomly, which is the effective strategy when the system does not
have any assumption or knowledge of the environment. We also
investigated sensory blind prediction which should allow action
plannning as well as offer a reliable forecast for a safe evolution
of the robot in the environment. The simulation and experimental
results show that the system learns interaction between the robot
and the environment in high fidelity.

Index Terms—Sensing, Prediction, Autonomous robot, Learn-
ing, Environment perception

I. I NTRODUCTION

Recently, the complexity of the autonomous robots as well
as the tasks for the robots have increased gradually. Conse-
quently, it becomes a hard work to develop autonomous robots
to recognize the environment appropriately. The difficulty to
implement artificial creatures is often discussed in the context
of the frame problem[1], which points out that the developed
creatures do not well deal with problems in the real world
because of the infinite complexity of the problem setting.

In conventional studies of environment recognition for au-
tonomous robots, the environment model and the reference
patterns for recognition are well designed depending on the
assumed tasks. However, when we assume general tasks in a
complex environment, it becomes difficult to design a suitable
environment model and reference patterns to perceive the real
environment.

Learning is one of the effective strategies for autonomous
robots to construct an environment model. Learning ap-
proaches are often applied to perceive the environment and to
generate behaviors with vision or tactile sensing information
[2]–[7].

Regarding learning with visual information, Bentivegna
et al. exploited learning to determine an optimal way of
assembling pre-defined primitives using visual feedback [2].
Nishide et al. realized the prediction of object dynamics from
visual images [3]. Natale et al. exploited learning to improve

accuracy in reaching objects [4]. Sun et al. proposed the real-
time learning system for reaching problem and discussed the
learning optimization to improve blind reaching [5].

In the field of learning with tactile information, Rucci et al.
developed the learning approach of tactile-motor coodination
and applied it to the active estimation of surface curvature [6].
Jamone et. al exploit learning for object classification with
tactile sensing information measured at grasping the objects
[7].

These conventional studies are effective in the case of
environment modeling and behavior generation, however the
learning sytems are specialized for some specific tasks and
types of sensing.

This paper proposes a general sensory prediction system for
autonomous robots based on learning. For autonomous robots,
sensory prediction is considered as a primitive perception of
the external world including its own existence, since it allows
the robot to expect the effect of its own action in the environ-
ment and correct its expectation with the sensory information
given later. We do not design any special environment model
or reference patterns for the robots. Moreover, the sensory
prediction is also useful to generate behaviors, since sensory
prediction helps the robot deciding the next action.

In this paper, section II describes the proposed framework
of sensory prediction. Section III describes the simulation
with a physical environment model. Section IV reports the
experimental results with observed data from a humanoid
robot. Section V discusses the properties of the system and
some ideas of improvements, and finnaly section VI concludes
with possible extensions and future tasks.

II. M ETHOD

A. Sensory prediction

An autonomous robot must acquire an environmental model
to act in the external world. Fig.1 illustrates the acquisition of
an environment model for a robot. In Fig.1(a), a robot interacts
with a real environment, while in Fig.1(b) the robot interacts
with the acquired environment.

The idea addressed in this paper is to deal with the environ-
ment modeling as a sensory prediction problem. If the robot
can predict a response of the environment for its action, this
ability can be regarded as a perceptual environment modeling.

The sensory prediction is also effective to detect changes
in the robot and the environment, since the sudden change
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Fig. 1. Interaction between a robot and an environment. (a) Interaction with
the real environment. (b) Interaction with the acquired environment model.
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Fig. 2. Sensory prediction.

of error indicates that the environment or its body has been
modified. Therefore, the sensory prediction is applicable to
dynamical environment perception and self-diagnosis.

The sensory prediction is defined as shown in Fig.2 using
the following equations.

x⃗∗(t) = ϕ(x⃗(t), y⃗(t)), (1)

y⃗(t) = ψ(e(t)), (2)

where x⃗(t) and y⃗(t) are vectors grouping sensor and motor
information at timet, respectively.⃗x∗ represents prediction of
the next sensory information at timet ande(t) is the prediction
error at timet. ϕ(·) andψ(·) are arbitrary mapping functions
for sensory prediction and motor actuation, respectively. The
operatorD in Fig.2 indicates time delay, and it aims at keeping
the value of prediction at timet until the next discrete time
(t + ∆t). The operatorE in Fig.2 calculates the prediction
error.

Here, the sensory information is assumed to include both the
internal and external sensing. In robotics, kinesthesis sensing
and somatosensing are regarded as internal sensing, while the
visual, auditorial or tactile sensing are regarded as external
sensing. In this framework, we do not differenciate these two
categories of sensing from the viewpoint of generality. We will
focus on the cognitive part of the problem, which consists in
establishing a model between sensory information and motor
control.

The prediction error at timet is defined as the squared
Euclidean distance using the following equation,

e(t) = ||x⃗∗(t − ∆t) − x⃗(t)||2. (3)

The error is based on the difference between the next sensory
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Fig. 3. Sensory blind prediction.

input predicted at time(t − ∆t) and the real sensory input
measured at timet.

The prediction functionϕ(·) is optimized based on this
error through learning. The function is evaluated inside the
system. Therefore, this learning is regarded as an unsupervised
learning from the outside.

The behavior of the robot is given by the actuation function
ψ(·). In general, the behavior should be designed for the tasks
given to the robots. In this framework, we define the robot’s
task as to interact with the environment in order to obtain
learning data for the sensory prediction.

Consequently, the processing procedure is summarized as
follows,

1) Acquire the sensory input⃗x(t).
2) Evaluate the last prediction errore(t).
3) Modify the prediction functionϕ(·).
4) Generate the next action⃗y(t).
5) Predict the next sensing⃗x(t).
6) Perform the motor output⃗y(t).

B. Sensory blind prediction

Sensory prediction system works as a short term prediction,
since the system predicts the next sensory information based
on the current sensory information and the expecting action.
The autonomous robot, however, needs to see the environment
in perspective, when it plans its own action. Sensory prediction
system allows this long term prediction, if the system succes-
sively feedbacks its own sensory predictionx⃗∗(t) as the next
sensory input, instead of the real sensory inputx⃗(t) from the
environment. We call this proceduresensory blind prediction.
It is illustrated in Fig.3 using the following definition,

x⃗(t + ∆t) = x⃗∗(t), (4)

= ϕ(x⃗(t), y⃗(t)). (5)

In the sensory blind prediction, the system can generate
an expected sequence of the sensory input in the near future.
However, the prediction error between the predicted variables
and the real variables accumulates through many iterations of
feedbacks. Consequently, the values of the predicted sensory
variables gradually lose reliability as sensory blind prediction
is iterated. The other reason of losing reliability is related
to the absence of learning during sensory blind prediction,
since the target signals are not given from the environment.
However, if the sensory prediction system is well trained,



Fig. 4. Multi Layer Perceptron (MLP).

sensory blind prediction is reliable during some iterations and
effective for the action planning.

C. Implementation by neural networks

The mapping functionϕ(·) for the sensory prediction was
implemented with Multi Layer Perceptron (MLP) as shown
in Fig.4. MLP is an universal function approximator, whose
parameters can be optimized by learning. We adopted the
MLP with three layers and the learning strategy based on
the gradient method [9]. The MLP with three layers can
approximate any function in any accuracy, depending on the
number of hidden units in the second layer.

Here, the prediction functionϕ(·) is defined as follows,

ϕk(x⃗) =
n∑

j=1

wjk · fa(
n∑

i=1

wijxj + w0j) + w0k (6)

whereϕk(·) represents thek-th component of the funtionϕ(·).
wjk are the weight coefficients connecting the first to second
layer, andwij connecting the second to third layer.w0k and
w0j are bias coefficients.n andn are the numbers of the units
in the first and second layer, respectively. As shown in Fig.4,
the activation functionfa of the units in the second layer
is a differentiable non-linear function, while the activation
functionsfa of the units in the first and the third layers are
identical functions. We adopted the hyperbolic tangent asfa

in the second layer as follows.

fa(u) = tanh(
u

T
), (7)

whereT is a constant value to control non-linearity andu is
a weighted sum of the inputs into the units.

The parameters of the functionwij and wjk are modified
for each input⃗x(t) to minimize the errore(t) using gradient
descent:

∆wij = −η
∂e

∂wij

, ∆wjk = −η
∂e

∂wjk
, (8)

whereη is a constant learning rate.
The actuation functionψ(·) is implemented as a stochastic

function. The stochastic strategy is effective for sampling of
learning data, when the system does not have any assumption
or knowledge of the environment. We adopted the uniform
probablistic density functionpdf(u) for the random variable
of u.

pdf(u) =

{ 1
2r

for |u| ≤ r, (9)

0, for |u| > r, (10)

where the constantr represents the range of the variableu.
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Fig. 5. Environment for simulation.

III. S IMULATION

We performed a simulation to evaluate the two proposed
sensory prediction systems using the physical environment
model.

A. Simulation setting

Let us consider a one-joint arm set on a flat wall as the
environment as illustrated in Fig.5. The arm and wall are
constrained on a horizontal plane. The end effector of the arm
is equiped with a tactile sensor. The problem simulates elastic
collision between the arm and the wall, therefore the range
of the arm’s joint rotation is limited in [−π/2, +π/2] degree.
The variables of sensor and motor are defined as follows,

x⃗(t) = (θ(t), ω(t), τ(t)), (11)

y⃗(t) = (v(t)), (12)

where θ(t), ω(t), τ(t) refer to the joint angle, joint angular
velocity and tactile sensing, respectively.v(t) is the voltage
for the motor actuation.

The dynamics of the arm between the timet and (t + ∆t)
are defined with two sets of equations regarding collision. The
dynamics without collision is defined:

θ(t + ∆t) = θ(t) + ω∆t + ξ, (13)

ω(t + ∆t) = ω(t) + fr(v(t))∆t + ξ, (14)

fr(v) =


c(v − vinf), for v ≤ vinf , (15)

0 for uinf < v < vsup, (16)

c(v − vsup), for vsup ≤ v, (17)

wherefr(·) is a non-linear function which models the static
friction of the joint motor. The function includes a refractory
domain. ξ simulates small triangular noise to represent the
external disturbance.

The dynamics at collision is defined as,

θ(t + ∆t) = θ(t), (18)

ω(t + ∆t) = −el ω(t), (19)

where theel represents the elastic coefficient. The state of the
arm is regarded as collision, if the absolute value of the next
joint angle|θ(t + ∆t)| calculated by the Eq.(13) is overπ/2.
In this case, the next values of joint angle and joint angular
velocity are replaced by the values calculated by the Eq.(18)
and (19), respectively.
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Fig. 6. Error of the sensory prediction and sensory blind prediction averaged
on 100 trials.

The tactile sensing is represented as follows,

τ(t) =
{

τinf , at the collision, (20)

τsup, otherwise, (21)

where τinf and τsup are constant. This on-off response is
perceived as non-linear by the prediction system.

We performed sensory prediction of the above mentioned
problem. In the simulation,∆t andel were set to 50 ms and
0.8, respectively.vinf andvsup were−0.2 and+0.2 volt, while
τinf and τsup were −1.0 and +1.0. c was set to 0.1.r was
set to 1.0. The input values ofθ and ω for the prediction
sytem were normalized between[−1.0, +1.0] to stabilize the
learning. The number of the units in the second layer of
MLP was set to 30.T and η were set to 1.0 and 0.01. All
the weight coefficients of MLP were randomized between
[−1.0,+1.0]. The learning was iterated 5,000,000 times. Each
trial of the learning completed less than 20 seconds on a laptop
computer mounted with dual 2.0 GHz CPUs. The learning was
performed and followed by the sensory blind prediction. The
sensory blind prediction was iterated 50 times. In order to offer
a reliable analyze of the algorithms behavior, we will discuss
the results on an average of 100 simulations, also showing the
best and worst solutions.

B. Learning results

The error in the 150 iterations of the sensory prediction
is shown in Fig.6. The first 100 iterations correspond to the
sensory prediction with learning. Before the iterations, the
long learning was performed as mentioned above. The last
50 iterations correspond to the sensory blind prediction.

The trial is evaluated by the mean squared error (MSE) as
follows.

MSE =
1

ke − ks

∑
ks≤k<ke

e(t + k∆t), (22)

whereks and ke correspond to the 0-th and 150-th iteration
in the Fig.6, respectively.

As shown in the figure, the sensory prediction was on
average well performed. The prediction error remains under

10−4 until the 100-th iteration except for two peaks caused
by collision. At the 100-th iteration, the sensory blind pre-
diction started. As we are observing average resutls, we can
insure with this algorithm an acceptable prediction, during
10 iterations. The error after the period, however, gradually
increased in the higer order. The error was amplified through
many times of blind feedbacks which included the temporal
error. The error in the best trial was still small until the 140-
th iteration, approximately, while the error in the worst trial
exponentially increased. The trials showing greater error may
be caused by the failure in finding a global minimum when
optimizing the value of the weights, either for the learning or
for the blind prediction. In such case, the values are trapped
in a local minimum and this effects the performance of the
algorithm. However, the error value during learning sticks to
zero for all this simulations, which indicates that the value of
the weights were correctly optimized.

Fig.7 compares the time variations of the predicted sensory
variables, θ(t) ω(t) and τ(t) and their real values. The
predicted variables of the best trial are close to the real sensory
variables, however the ones of the worst trial diverged after the
blind prediction started. Through these figures, we can easily
notice the non-linear dynamics in this problem. Around the
30-th and 90-th, the supposed arm and wall make the elastic
collision. However, the system well predicted this non-linear
dynamics and tactile reaction at these collisions as shown in
Fig.7(c) of τ(t). The influence of the elastic collision also
appears in the Fig.6 at the peaks of the error.

IV. EXPERIMENT

We applied the proposed system to predict sensory infor-
mation of a humanoid robot.

A. Experiment setting

The experiment was performed using the joint data sampled
from the shoulder motor of the humanoid robot James [7].
The Fig.8 shows the appearance of James. James consists of
22 degrees of freedom, actuated by 23 motors. The torques of
the motors are transmitted to the joints by belts and stainless-
steel tendons. The design of the tendon driven shoulder
was developed to allow wide-range movements. Actuation is
achieved by the tendons and pulleys.

The variables of sensor and motor are defined as follows,

x⃗(t) = (θ(t), ω(t)), (23)

y⃗(t) = (v(t)), (24)

whereθ(t) andω(t) indicate the angle and angular velocity of
the shoulder joint.v(t) is the voltage for the motor actuation.
It is worthy of remark that tactile sensing is not included in
this experiment because of the current hardware setting of the
humanoid robot.θ(t) and ω(t) are both sensory information
detected in the internal environment by the encoders, namely
the robot’s body. Here, we do not differentiate the source of
sensory information as mentioned before.
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Fig. 8. Humanoid robot James [7].
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Fig. 9. The sampled trajectory on the phase plane.
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Fig. 10. Motor characteristics

Firstly, we observed the angleθ(t) with controling the value
of v(t). Then,ω(t) was calculated from the observedθ(t) by
the following time derivation,

ω(t) =
1
∆t

{θ(t) − θ(t − ∆t)}. (25)

The temporal pattern ofv(t) is designed experimentally to
make the trajectory of(θ(t), ω(t)) cover the larger area on
the phase plane. The sampled trajectory is shown in Fig.9,
leading to the motor characteristics shown in Fig.10, which
suggests that the static friction is loaded at the motor driving.
The motor response for the control is piecewise linear.

B. Experimental results

We performed sensory prediction of the joint data. Prior to
the experiments, the joint data were sampled. The sampling
interval of the data∆t was set to 2 ms. The number of the
sampling points is about 65,000. Therefore, the total sampling
time corresponds to 130 seconds approximately. According to
the hardware design, the range of the joint angleθ(t) was
limited in [−200,−20] degree, and the range of the voltage
v(t) was limited in[−12, +12] volt.

After the data sampling, we extracted a sequence of 15,000
points to remove the apparent noise. Each point of the se-
quence corresponds to{x⃗(t), y⃗(t)}. The randomly selected
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Fig. 11. The error of the sensory prediction.

1,000-length sequences were used as the interaction data
between the robot and the environment. Therefore, the voltage
output y⃗(t) was fixed for the encoder input⃗x(t), however,
the short sequence of these coupled data{x⃗(t), y⃗(t)} were
randomly selected and given to the sensory prediction system.

In the experiment, the learning was iterated 1,000,000 times.
The other conditions were same as the ones in the simulation
before. Each trial of the learning completed less than 25
seconds on a laptop computer mounted with dual 2.0 GHz
CPUs.

The value with time error in the 150 iterations of the sensory
prediction is shown in Fig.11. The first 100 iterations and the
last 50 iterations correspond to the usual and blind prediction,
respectively. As shown in the figure, the sensory prediction
was on average well performed. The experimental result is
very similar to the simulation with physical environment
model. During the usual sensory prediction, the error was
approximately zero, while during the sensory blind prediction,
the error was amplified. The large error at the begining of the
iteration was caused by the switching of the given sequence
data. It is not important in this discussion.

The Fig.12 shows the time variations of the predicted
sensory variables. The predicted variables follow the real
sensory variables well. As mentioned above, the motor has
the non-linear characteristics in driving. However, the sensory
prediction system functioned as expected.

V. D ISCUSSION

The experimental results suggests that the learning-based
sensory prediction system is effective for autonomous robots
to develop a perceptual environment model. Here, we discuss
some ideas of improvements to allow this sytem to work on a
more complex platform such as a full-bodied humanoid robot.

A. Sensory information coding

Spatio-temporal coding of sensory information seems ef-
fective to improve the quality of prediction. The current
system predicts physical sensory information such as position,
velocity and contact. The physical sensory prediction makes
sense, since dynamics of these variables can be physically

+π/2

−π/2

 0  20  40  60  80  100  120  140

θ

Iterations

Best θ
Worst θ
Real θ

-1

-0.5

 0

 0.5

 1

 0  20  40  60  80  100  120  140
ω

Iterations

Best ω
Worst ω
Real ω

Fig. 12. Time variations of the predicted sensory variables. (a) Joint angle
θ(t), (b) Joint angular velocityω(t).

described as spatio-temporal differential equations. In order to
generate actions of an autonomous robot, however, it is too
enough to predict all of the physical variables. The prediction
of summarized or coded sensory information seems more
suitable. The perceptual sensory prediction is effective rather
than physical sensory prediction. The coding benefits the robot
to reduce computational costs toward real time learning. The
coding is also effective for long term prediction. It would make
higher reliability in sensory blind prediction.

B. Behavior generation for active learning

The advantage of the embodied learning system is that the
learning system can exploit its mobility to collect learning
data actively. In the conventional framework of learning, the
learning system was passive for data collection. The proposed
sensory prediction system, however, can generate its action to
collect data for learning improvement. The sensory prediction
system can recognize weak parts of learning by prediction
error and generate actions to compensate these weak parts. As
shown in the experimental results, the level of difficulties in
learning depends on situations. In the simulation of physical
environment model, dynamics of variables at collision was
difficult to predict. The active learning strategy allows the
system to learn this part specially by generating collision many
times.



VI. CONCLUSION

We proposed a sensory prediction system for autonomous
robots based on a learning procedure and an activation
procedure. The sensory prediction system predicts the next
sensory information from the current sensory information and
the expected action. In this paper, we implemented classical
prediction and blind prediction. The first one uses external
real values as an input, and the second one uses its own
knowledge. The simulated results show that the system learns
the interaction between the robot and the environment in
high fidelity, when using external source of information. This
enables the system to predict sensory information correctly
and blindly in a limited number of iterations.

The sensory blind prediction is an effective tool for interpo-
lating sensory information, when learning data is not available
during a short time. We pointed out that whatever the situation,
blind prediction allows to predict safelly for the 10 time steps
following an absence of learning data.

Even though the sensory information is temporally un-
available, the blind prediction suggests the next situation of
the robot and the environment. The blind prediction is also
effective to anticipate the results of action sequences, which
enables the robot to compare several scenarios of the behavior
and to select the best. These abilities contribute to the safety
of both the robot and the environment to avoid an accident by
predicting it.

Now that the effectiveness of our approach was shown, we
have to focus on several tasks aimed at improving the results
of this study: we mentioned that blind prediction would be
an asset to interpolate sensory information. Going through the
interpolation procedure using both usual and blind prediction
shall be the first task to perform, as well as improving the
performance of the blind prediction.

We are assuming to mount the proposed sensory prediction
system on a humanoid robot. The expected tasks are tapping
behavior to percept the environment spatially for real-time
action.
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