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Summary. Perception in the visual cortex and dorsal stream of the primate brain
includes important visual competencies, such as: a consistent representation of visual
space despite eye movement; egocentric spatial perception; attentional gaze deploy-
ment; and, coordinated stereo fixation upon dynamic objects. These competencies
have emerged commensurate with observation of the real world, and constitute a
vision system that is optimised, in some sense, for perception and interaction. We
present a robotic vision system that incorporates these competencies. We hypothe-
sise that similarities between the underlying robotic system model and that of the
primate vision system will elicit accordingly similar gaze behaviours. Psychophys-
ical trials were conducted to record human gaze behaviour when free-viewing a
reproducible, dynamic, 3D scene. Identical trials were conducted with the robotic
system. A statistical comparison of robotic and human gaze behaviour has shown
that the two are remarkably similar. Enabling a humanoid to mimic the optimised
gaze strategies of humans may be a significant step towards facilitating human-like
perception.

1 Introduction

Biologically-inspired active vision mechanisms exhibiting primate-like agility
(e.g., CeDAR [20], and iCub [18]; Fig.1) permit the investigation of primate-
like visual competencies. Primates have evolved invaluable visual abilities
which provide a level of perception that enables intelligent cognition. These
abilities include foveal vision and gaze strategies that facilitate efficient per-
ception, such as the propensity to attend locations containing relevant visual
information. They constitute the basic visual abilities we wish to synthesise in
the development of artificial cognitive systems that operate in the real world.
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Though components of the robotic vision system take biological inspira-
tion, we focus on the development of a system that reproduces the visual
behaviours of its primate archetype by incorporating similar competencies,
rather than by developing an exacting reconstruction of the underlying pro-
cesses in the primate brain. We hypothesise that similarities between the un-
derlying robotic system model and that of the primate vision system will elicit
similar gaze behaviours. Accordingly, psychophysical trials were conducted to
record human gaze behaviour when free-viewing a reproducible, dynamic, 3D
scene. Identical trials were conducted with the robotic system. A statistical
comparison of the robotic and human gaze behaviour was then conducted.

Fig. 1. CeDAR (left); and iCub (right).

2 System Archetecture

Primate-inspired components of the robotic vision system 2 include spatiotem-
poral registration of camera images into a rectified egocentric reference frame
(Section 2.1), 3D space-variant spatiotemporal representation of visual sur-
faces (Section 2.2), coordinated foveal fixation upon, and tracking of, attended
surfaces (Section 2.3), and a novel attention system (Section 2.4). The process-
ing components are portable to active vision systems such as the iCub and
CeDAR mechanisms. Moreover, the core software is available under open-
source release in collaboration with the RobotCub6 project.

2.1 Egocentric Perception

Humans experience spatiotemporal continuity when integrating actively ac-
quired imagery into a unified perception. Mechanisms of spatial updating
maintain accurate representations of visual space across eye movements. Fur-
thermore, binocular imagery is combined into a singular egocentric repre-
sentation that accounts for gaze convergence. Monkeys too retain consistent
representations of visual space across eye movements by transferring activity
among spatially-tuned neurons within the intraparietal sulcus [12].

For a robotic active stereo system, camera pan and tilt motions introduce
image perspective distortions. Barrel distortions may additionally be intro-
duced by camera lenses. Synonymous with kinesthetic feedback from ocular
muscles in the primate eye, online evaluation of epipolar geometry from en-
coder data is used to account for the image-frame effect of gaze convergence,
6 www.robotcub.org
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Fig. 2. Block diagram showing major feedforward data flow between functional
nodes in the robotic vision system (top); and, a summary of major feedforward
interactions between functional regions in the primate visual brain (bottom).

facilitating the registration of imagery into an egocentrically static reference
frame across camera pan and tilt motion. We can project camera images into
this reference frame, and from this reference frame to one that spatiotem-
porally corresponds to the real world and other sensing modalities, such as
an egosphere or occupancy grid (Fig.3, Section 2.2). In [1], we described a
method to rectify camera barrel distortions and to register images in mosi-
acs exhibiting global parallel epipolar geometry [6]. Moreover, online epipolar
rectification of camera imagery, and the projection of such rectified images
into globally fronto-parallel rectified mosaics enables the use of static stereo
algorithms, such as those that depend on fronto-parallel geometry, on active
stereo platforms.

Fig. 3. Realtime egocentric 3D scene reconstruction (left, inset left camera view),
and projection of imagery into an egosphere (right).

2.2 Spatiotemporal Perception
Recent investigations into primate spatial perception suggest a separation of
the estimation of relative retinal disparity from the conversion to absolute
scene depths [15]. Other research provides evidence suggesting that process-
ing of retinotropic and absolute motion occurs in separate areas in the primate
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brain [17, 9]. The representation of visual space matures from retinotropic in
early life to egocentric, coinciding with the development of specific cortical
areas [8, 5]. Gaze convergence, focal length and prior familiarity with an ob-
ject’s size can provide information for conversion from relative to absolute
depth distances. Gaze convergence stretches extraocular muscles, from which
kinesthetic sensations project to the visual cortex where they facilitate abso-
lute depth perception [22].

Synonymous with primate occular kinesthetic feedback, images are reg-
istered within the epipolar rectified mosaics based upon encoder data. This
converts relative disparity estimation in the image frame to a (1D) search for
absolute disparities in the static mosaic reference frame. Absolute disparity
estimations are integrated into a space-variant Bayesian occupancy grid (left,
Fig.3) tailored for use with stereo vision sensing, in realtime. 2D optical flow
is also estimated in mosaic space, which removes the image-frame effect of de-
liberate camera motion. Re-projection of the camera images, or cues extracted
from camera images, onto the occupancy grid establishes cue-surface corre-
spondences. In this manner, a representation of the location of visual surfaces
in the scene, their coarse 3D structure and motion, and their appearance and
cue responses, is obtained.

2.3 Coordinated Fixation & Target Segmentation
Monkeys exhibit vigorous neuronal responses when viewing small laboratory
stimuli in isolation, compared to the sparse neuronal activity elicited when
viewing broad scenes [21]. Long range excitatory connections in V1 appear
to enhance responses of orientation selective neurons when stimuli extend to
form a contour [4]. During binocular fixation, the foveas align over an attended
target in a coordinated manner. An attended object appears at near identical
left and right retinal positions, whereas the rest of the scene usually does not;
that is, the attended object exhibits zero disparity.

Various synthetic targeting systems use correlation methods, or extract
‘blobs’ from images to track a target, and typically select a target location
for the left and right cameras independently. Perspective distortions and di-
rectional illumination effects, amongst other causes, may yield left and right
camera fixation points that do not accurately correspond to the same real
scene point. Rather, coordinated primate-like stereo fixation incorporating
rapid, model-free target tracking and accurate foveal target segmentation is
achieved using a robust Markov random field zero disparity filter (MRF ZDF)
[2]. The formulation uses stereo image data to enforce optimal retinal align-
ment of the centre of the left and right cameras with a selected scene location,
regardless of its appearance and foreground or background clutter, without
relying upon independent left and right target extraction.

2.4 Attention
Navalpakkham et al. [14], amongst others, suggest that because neurons in-
volved in attention are found in different parts of the brain that specialise in
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different functions, they may encode different types of visual salience: they
propose that the posterior parietal cortex encodes visual salience; the pre-
frontal cortex encodes top-down task relevance; and the final eye movements
are subsequently generated in the superior colliculus where attentional infor-
mation from both regions is integrated. In accordance with this proposal, we
compute an attention mosaic as the product of three intermediary maps: a
retinotopic saliency map, an active-dynamic inhibition of return (IOR) map,
and a task-dependent spatial bias (TSB) map. Finally, covert moderation of
peaks in the attention mosaic filters the selection of the next scene point that
will receive overt attentional fixation.

Visual Saliency: We adopt the widely accepted bottom-up model of atten-
tion [7] extended specifically for active cameras and dynamic scenes. Approxi-
mations of the retinal ganglion center-surround response is computed to deter-
mined uniqueness in various cue maps including intensity, intensity-normalised
colour chrominance, colour distance, depth and optical flow. From a log-
Gabor7 phase analysis, orientation saliency, symmetry, and phase-congruent
corner and edge cue maps are obtained [11]. For each cue map, a difference-
of-Gaussian (DOG) image pyramid approach provides multi-scale center-
surround responses. Saliency cues are combined into a single saliency map.

Inhibition of Return: Primates transiently inhibit the activity of neurons
associated with the saliency of an attended location [10]. Further, in the intra-
parietal sulcus of monkeys, the activity of spatially-tuned neurons correspond-
ing to the location of a salient stimulus was shown to be transferred to other
neurons commensurate with eye motion [12], a concept known as efference
copy that assists prediction of the position of the eyes (and other body parts).
A Gaussian inhibition kernel is added to the region around the current fixation
point in an IOR accumulation mosaic, and decayed, every frame. Expanding
upon this for dynamic scenes, accumulated IOR is propagated in egocentric
mosaic space according to optical flow. In this manner, IOR accumulates at
attended scene locations, but it remains attached to objects as they move.
Propagated IOR is spread and reduced according to positional uncertainty.
We decrement IOR over time so that previously inhibited locations eventually
become uninhibited.

Task-Dependent Spatial Bias: The prefrontal cortex implements atten-
tional control by amplifying task-relevant information relative to distracting
stimuli [16]. We introduce a TSB mosaic that can be dynamically tailored
according to tasks. TSB can be preempted for regions not in the current view
frame but within the broader mosaic.

Attention & Saccade Moderation: An image-frame attention map is con-
structed as the product of the saliency, IOR and TSB maps. Attention map

7 log-Gabor responses have been observed in orientation sensitive neurons in cats
[19] and exhibit a broader spatial response than traditional Gabors.
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peaks are covertly moderated before the overt fixation point is selected. Sev-
eral types of moderation have been implemented: supersaliency - a view frame
coordinate immediately wins attention if it is significantly more salient than
the next highest peak in the attention map; clustered saliency - attention is
won by the view frame location about which numerous global peaks occur
within several consecutive frames. If neither of the above winners emerge suf-
ficiently rapidly, attention is given to the highest peak in the attention map
since the previous fixation location was selected.

3 Psychophysical Trials

Similarities between the underlying humanoid system model and that of the
primate vision system are hypothesised to elicit respectively similar basic gaze
behaviours. Accordingly, 20 human and 4 robotic trials were conducted where
3D visual stimuli were moved in a reproducible manner within a bounded
scene volume (Fig. 4). A non-intrusive gaze tracker recorded the path of the
human participants’ gaze (left, Fig.5). Identical trials were conducted with
the robotic system for statistical comparison to commonalities found in the
human trial data.

Fig. 4. Psychophysical trials: participant’s view (left); trial stimuli (centre); non-
intrusive gaze tracking (right).

3.1 Human Benchmark Trials

Two pilot trials were initially conducted to observe emergent human gaze
behaviours, and to determine how such behaviours could be characterised
statistically. Histograms of gaze velocity magnitude data (right, Fig.5) from
the human trials exhibited a distinctly bimodal appearance - much of the
gaze path was attended at either near zero (smooth pursuit, or tracking)
velocities, or high (saccade, or attentional shift) velocities, with few frames
exhibiting medial velocities. For each trial, a threshold was selected within
the medial velocity range above which the elicited inter-frame gaze velocity
magnitudes were labeled as saccades, and below which they were considered
smooth pursuit (centre, Fig.5). Each data point was also marked according to
whether it was recorded during a period when a scene object was translating
(T periods), or when no objects were translating (NT periods). Histograms
and spatial plots of gaze velocity and position data during only T, and during
only NT were also constructed.



Humanoid Vision Resembles Primate Archetype 7

Based upon empirical observations, 13 trial parameters (a non-limiting
set) were extracted from each human trial data log (left, Table 1). To reduce
the impact of participant mood/alertness, ratio parameters between T and
NT were extracted from each trial providing seven pseudo-normalised statis-
tics suitable for inter-individual comparison (right, Table 1). For the object
re-attention period parameter, the standard deviation of object re-attention
periods for each object in a trial was used as a pseudo-normalised metric to
estimate coherence to a constant object re-attention period over a trial: Psd =
STD(Po), (where o = 0...4, corresponding to separate re-attendance periods
Po for each of the four separate objects presented during each trial).

Fig. 5. Data for a single human trial (units ommited): 2D projection of complete
gaze path with location of scene window (left); gaze velocity magnitude time-line
(centre, above) with enlargement (centre, below) showing saccades (blue) and peri-
ods of object translation (green); and, histogram of velocity magnitudes (right).

The small sample size (20 trials) makes it difficult to confirm that the
underlying probability distribution functions (PDFs) associated with the ex-
tracted rate parameters conform to normal distributions. For example, both
JB and KS tests for PDF normality [13] fail for most rate parameters un-
less less restrictive thresholds are chosen than recommended. Consequently,
we bootstrap[3] the distribution of means and variances for each rate param-
eter. The red bars in Fig.6 summarise the bootstrapped 95% confidence in-
tervals (CIs) on the mean and standard deviations for each inter-individual
rate parameter, calculated over all data from all human trials. The plotted
bootstrapped intervals indicate whether the inter-individual rate parameter
is characteristically likely to increase or decrease when transitioning from T
to NT, according to its location above or below 1.0 (respectively). The last
parameter, the re-attention period coherence parameter (Psd), is an absolute
measure obtained during NT in each trial.

3.2 Robotic Trials

Robotic trials were then conducted using the same trial apparatus and stimuli
as for the human participants. After each trial, configuration settings were
iteratively adjusted such that the system was deemed likely to elicit behaviours
more similar to human performance. Ratio parameters, and the re-attention
consistency parameter, were extracted from each robotic trial for comparison
with the human rate parameter behavioural statistics.
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Table 1. Extracted average absolute trial parameters (left), and parameters used
for inter-individual behavioural statistics (right).

Sptt, Sptnt smooth pursuit durations Sptr = Sptnt/Sptt

Splt, Splnt smooth pursuit distances Splr = Splnt/Splt
Spvt, Spvnt smooth pursuit velocities Spvr = Spvnt/Spvt

Sclt, Sclnt saccade distances Sclr = Sclnt/Sclt
Scvt, Scvnt saccade velocities Scvr = Scvnt/Scvt

Scft, Scfnt saccade frequency Scfr = Scfnt/Scft

P object re-attention period during NT Psd = STD(Po)
Subscripts denote measurement period - t: translation, nt: no translation.

Fig. 6. Bootstrapped human (red) and robotic (black) inter-individual rate pa-
rameters. Distributions represent the rate change from periods where an object is
translating (T) to periods where no objects are translating (NT). Each solid central
bar region represents the bootstrapped 95% CI for the distribution of means, cal-
culated from all average rate parameters extracted from all trials. Upper and lower
fading bars represent the 95% CI lower and upper bounds (respectively) of two boot-
strapped standard deviations. Significant correlation exists between the human and
robotic rate parameter distributions.

4 Statistical Comparison

It is often possible to compare the performance of a system to a theoretical
model by monitoring output and performing model-based residual analyses.
However, primate gaze behaviours are the product of a complex biological
system. There is no general theory of human gaze behaviour that would per-
mit such a systematic comparison. It is nevertheless possible to conduct a
‘black-box’ comparison of the gaze behaviours of humans and machines by
comparing the statistics and PDFs associated with specific parameters de-
rived from output gaze behaviours elicited by common input stimuli. In this
regard, cluster overlap and KL divergence methods [13] to compare gaze pa-
rameters may not be appropriate due to small sample sizes in the human
(20 samples) and robotic (four non-independent samples) trials. Therefore,
the bootstrapped human statistics are used as a set of benchmarks to which
the same parameters extracted individually from each robotic trial are com-
pared. Accordingly, each rate parameter in each robotic trial was examined
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to determine if it fell within one, and then two bootstrapped standard devi-
ations of the corresponding bootstrapped human inter-individual parameter
means. The majority of extracted robotic parameters fell within one 95% CI
bootstrapped upper-bound standard deviation of the corresponding human
benchmark. All but parameter Spvr fell within two bootstrapped 95% CI
standard deviations of the upper bound of the bootstrapped 95% CI mean.
This single discrepancy is likely due to the low accuracy (low signal to noise
ratio) involved in detecting small, low velocity eye motions with FaceLAB.

As methodologically expected, robotic trial 4 performed the best in terms
of extracted parameters best conforming to human benchmark statistics.
Nevertheless, all trials exhibited good conformity to the bootstrapped hu-
man statistics. Moreover, the system was observed to produce human-like
behaviours in all trials, regardless of the wide variance in configuration set-
tings. This suggests the behaviours elicited are largely dependent on the im-
plemented system model, not just the configuration settings selected for a
particular trial. As a case in point, if considered as a set of four independent
samples, the robotic group statistics may be bootstrapped for comparison to
the bootstrapped human group statistics. The black bars in Fig.6 show that
when considering all robotic trials as independent samples of a single under-
lying PDF, the bootstrapped robotic mean rates consistently change in the
same direction as the bootstrapped human rates: where human rates tended
to increase in going from T to NT, so did the robotic rates. Of course, the
robotic trials were not conducted completely independently, so this is not a
strong claim. It is however noted that there is considerable overlap between
the bootstrapped human and robotic group parameter statistics in Fig.6.

5 Conclusion

Even though system components take biological inspiration, the trials do not
provide information about the structural similarity of the system, or its com-
ponents, to the primate visual brain. They may only be used to compare
benchmarks obtained from human trials with the emergent gaze behaviours
of a robotic system which incorporates primate-inspired competencies. The
fact that all robotic trials, all with different configuration settings, exhib-
ited a majority of behavioural parameters that fell within the bootstrapped
standard deviations of human benchmark behavioural parameters, suggests
that the behaviour of the robotic system is largely a product of the under-
lying biologically-inspired model. Though the assumption that all trials may
be treated as individual sample points is weak, when treated as such, the
group statistics thus formed also conform well to the human benchmarks.
Nevertheless, the strong conformity of individual robotic trial behavioural pa-
rameters to the corresponding human benchmarks indicates that, in terms of
these trials, the primate-inspired humanoid system achieves primate-like gaze
behaviours, for this task.
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