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Abstract—Automatically detecting different styles of play in
human-robot interaction is a key challenge towards adaptive
robots, i.e. robots that are able to regulate the interactions and
adapt to different interaction styles of the robot users. In this
paper we present a novel algorithm for pattern recognition in
human-robot interaction, the Cascaded Information Bottleneck
Method. We apply it to real-time autonomous recognition of
human-robot interaction styles. This method uses an information
theoretic approach and enables to progressively extract relevant
information from time series. It relies on a cascade of bottlenecks,
the bottlenecks being trained one after the other according to
the existing Agglomerative Information Bottleneck Algorithm.
We show that a structure for the bottleneck states along the
cascade emerges and we introduce a measure to extrapolate
unseen data. We apply this method to real-time recognition of
Human-Robot Interaction Styles by a robot in a detailed case
study. The algorithm has been implemented for real interactions
between humans and a real robot. We demonstrate that the
algorithm, which is designed to operate real time, is capable
of classifying interaction styles, with a good accuracy and a very
acceptable delay. Our future work will evaluate this method in
scenarios on robot-assisted therapy for children with autism.

Index Terms—Socially interactive robots, socially adaptive
robots, pattern recognition, human-robot interaction, robot-
assisted play

I. INTRODUCTION

This study is part of the Aurora project [1], an ongoing
long-term project investigating the potential use of robots as a
therapeutic toy for children with autism. One main stream of
this project focuses on developing methods enabling the robot
to analyze in real time the interaction styles and adapt its own
behaviour appropriately with respect to a child’s specific needs
and abilities'.

This paper presents a novel method for time series analysis,
the Cascaded Information Bottleneck Method, which we apply
to the real-time recognition of human-robot interaction styles.
This method, which enables time-filtering, is based on the con-
cept of Information as introduced by Shannon [2] and builds
upon from the “Information Bottleneck Method” developed by

'We consider the child’s abilities as they are expressed through interaction
with the robot, resulting in different play styles.
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Tishby et al. in [3].

Importantly, this work goes beyond prior work that either
classified and characterized interactions off-line, i.e. after the
interactions had taken place, or relied on explicit criteria tuned
by hand (vs. automated training phase of the recognition algo-
rithm). It also goes beyond previous work of the authors which
enabled real-time recognition of interaction styles with respect
to one criterion, the gentleness, using a different method,
based on self-organizing maps [4]. The Cascaded Information
Bottleneck Method is entirely generic for applications with
socially interactive robots; in particular, it can be applied to
humanoid-human interaction.

The remainder of the paper is structured as follows. Sec-
tion II introduces related work. Section III summarizes some
background on the Information Bottleneck Method developed
by Tishby et al. in [3]. Section IV presents the Cascaded Infor-
mation Bottleneck Method. The application to the recognition
of Human-Robot Interaction Styles is explained in the two
following sections, with details on the implementation and
description of the trials in Section V and presentation of the
results in Section VI. Section VII discusses the results and
future work. Conclusion closes the paper (Section VIII).

II. RELATED WORK

The role of tactile human-robot interaction in educational
and therapeutic applications has been well highlighted by long-
term studies with the seal robot Paro which have proven that
specific everyday life situations exist in which human-robot
interaction can have a positive effect on the well-being of
human beings [5] and even play a role in a therapeutic context
of cognitive and physical rehabilitation [6]. The Huggable
robot, a teddy-bear like robot, equipped with a full body sense
of touch, has proven to be a promising support to investigate
the quantitative characterisation of the social affective content
of touch [7]. Offline characterisation of interaction styles in
general, moreover, has been investigated recently with diverse
approaches. In [8], Scassellati focused on providing quantita-
tive and objective measurements to assist in the diagnosis of
autism. Measurements refer to the position in the room, vocal
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prosody and gaze pattern — whose characterisation relies on
linear discriminant analysis which is a clustering technique
used for linearly separable data. Kanda et al. conducted a
study [9] that highlighted the feasibility to link quantitative
robot’s and human’s data characterizing body movements with
a subjective evaluation made by the participant. Later, in [10]
Salter et al. showed the possibility, in the context of child-robot
interaction, to reflect some traits of personality of the children
with an offline clustering technique based on the empirical
probability distribution of the activation of the sensors.

Concerning real-time classification of interaction styles, in
[11], Salter et al. have presented a real-time simple recognition
algorithm for four interaction styles (‘alone’, ‘interacting’,
‘carrying’ and ‘spinning’) using the robotic platform Roball.
The algorithm is based on a decision tree whose conditions are
set up manually, by visual inspection of sensor data. In [12],
Derakhshan et al. present an interesting real-time classification
algorithm of interaction styles for children playing on an adap-
tive playground that is made of tiles equipped with sensors.
The algorithm relies on a multi-agent system approach of
BDI (Belief—Desire—Intention) in combination with neural
networks using supervised learning. It shall be further noted
that in the slightly different context of gesture recognition,
Hidden Markov Models (HMMs) have been largely used for
real-time recognition [13]. An HMM is defined by its number
of hidden states and the two following probability matrices:
the transition matrix, describing the conditional probabilities,
given the state S at time step t, to be in the state S’ at
time ¢ + 1, and the emission matrix, defining the conditional
probability of emitting a signal O, given the state S. Those
matrices are static, i.e. for a given HMM, those values are
fixed in time. Classifying an observation with HMMs consists
in finding, among all the different HMMs? the one which has
the highest probability of emitting this observation [14].

III. BACKGROUND: THE INFORMATION BOTTLENECK
METHOD

The Information Bottleneck Method [3] is a clustering
method based on an information theoretic approach [2] whose
purpose is to extract the relevant information® in a signal
T € X that is, extract features of a random variable (r.v.)
X that are relevant to the prediction of Y. This problem
is modeled by the following Bayesian network with Markov
condition: X «— X «— Y where X is the variable that
extracts information about Y through X.

This method provides an alternative to ‘rate distortion the-
ory’ techniques which constitute a standard analysis of lossy
source compression. In the Information Bottleneck method,
the relevance is not addressed through distortion but directly
through a new variational principle. The rationale is that the
best trade-off between the compression of the signal and the
preservation of the relevant information is the one that keeps a
fixed amount of relevant information about the relevant signal

20ne HMM per class to distinguish.
31n this context, the relevant information is defined as the information that
the signal € X’ provides about another signal y € ).
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Y while minimizing the number of bits from the original signal
X, i.e. maximizing the compression. The optimal assignment
can be found by minimizing the functional

Lp(z|)] = I(X; X) - BI(X;Y) M

I(X;Y) stands for the mutual information* between X and
Y. For 3 and the cardinal of X fixed, an expression can be
given which specifies implicitly the solution and leads to a
fixed point iteration. 3 can be considered as the inverse of
the temperature. This method uses a stochastic clustering top-
down approach. The notion of stochastic refers to the fact that
the clustering is soft and that the input data are mapped to
the different elements of X with a particular probability. For
that information bottleneck setting, the Kullback-Leibler diver-
gence D [p(y|z)|p(y|Z)] replaces the distortion function.

The Agglomerative Information Bottleneck algorithm [17]
makes the assumption that 3 is oo in the Lagrangian equation
(1). It maximizes the mutual information between X and Y
and induces a hard partition of the data : for a fixed cardinal
of X (i.e. a fixed number of subsets - also called states - in the
bottleneck), each member of the input signal z € X’ belongs to
one and only one subset £ € X and Z is the subset (the state)
for which p(y|Z) has the smallest Dk [p(y|x)||p(y|Z)]. The
hard partition can be soften afterwards, with reverse annealing.
The pseudo-code of the algorithm can be found in [17].

IV. THE CASCADED INFORMATION BOTTLENECK
METHOD

A. The principle

Based on the Information Bottleneck Method, we have
developed a novel time-filtering method particularly adapted
for pattern recognition in time series. Let x € X be the
time series input signal of length I, z = [xo,..., ;1]
We take £k and S € N, with I = k % S, such
that x can be divided into S disjoined parts of cardi-
nality k, X,, s = 0,..,(S — 1) in the following way:
To - - Tok-1

Tk-1 Tk ThxS—1

e Xo i X1 o

The Cascaded Information Bottleneck method relies on
the principle that the relevant information can be progres-
sively extracted from the time series with a cascade of
successive bottlenecks sharing the same cardinality of bot-
tleneck states but trained independently. The agglomera-
tive information bottleneck algorithm is applied to each
bottleneck successively, the first one being trained in the
standard way while the next ones depend on the pre-
vious bottleneck states, as the following graph shows:

4for more details on the notion of mutual information, please refer to [15],
[16]
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B. Extrapolation

The Cascaded Information Bottleneck method progressively

extracts the relevant information from an input sample X =
[Xo; --s Xs-1] by a recall on the successive components (X
for the first step of the cascade, (X,_1,Xs) for the other
steps s). Each bottleneck is characterized by a hard mapping
between: i) Xo and Xy for the first step, and ii) (Xs-1,Xs)
and X, for the other steps of the cascade. At each step s of the
cascade, the algorithm looks for the equivalent Z, given the
input (Zs_1,xs) according to the hard mapping at step s (the
equivalent Z satisfies the equation p(Zs|(Zs—1,%s)) = 1).
It can happen that at a specific step s of the cascade, the
pair (Zs_1,xs) for which we need to find the equivalent X
has never been encountered during the training process of this
bottleneck. This pair is called an unseen pair. In the case of
an unseen pair (Z5_1,%) at step s, the cascade can a priori
make no inference on X, because there is no preexisting
default continuation of the cascade, due to the fact that the
bottlenecks have been trained independently. In other words,
for each pair (Z;_1, zs) which was not part of the training set
data, p(Zs|(Zs—1,xs)) is a priori undefined, whatever &, we
take. For such cases, it is necessary to introduce a ‘default’
way leading from X, 1 to Xs, i.e. we have to introduce an
artificial identification of the bottleneck states which consists
in matching out two bottleneck states (one at step s — 1
and one at step s). Therefore we apply a reorganisation of
the bottleneck states at each possible step s (i.e. a one-
to-one mapping of the bottleneck states at step s — 1 and
the ones at step s which we call a permutation). For this
purpose, we introduce the following measure d,_, ;) allowing
to directly compare the reorganised bottleneck states from
step s with those from step s — 1. Let Xs_1 (respectively
X,) be the set of bottleneck states &, ; (respectively )
and p(&s-_1) (respectively p(Z5)) the empirical probability; for
each permutation r of the bottleneck states X o

dia—1,0)(r) ==z, ex,_, P(&s-1) log p(Xo=r(Zs_1)|Xs-1=Fs_1)
@
Note that if the conditional probability p(X, =
7(%s-1)|Xs—1 = Z,_1) = O then, by convention, d¢,_1 4 (r)
is co. The logarithm measures the unpredictability of the next
case (i.e. the unpredictability of X, given Z,_1). We want
to choose 7 to minimize that unpredictability and weight for
the probability that the state Z,_; actually happens (because
there is no sense in penalizing a deviation if the state does not
happen.). We call this permutation R(s — 1, s).
The permutation of the bottleneck states that extracts the most
similarity between bottleneck states at step s — 1 and those at

step s is given by:

R(s —1,s) = argmin .d(s_y 4)(7) 3)

We consider R(s — 1,s) as the ‘default’ path between Xo_1
and X, i.e. as the criteria for extrapolating an unseen event
at step s.

V. APPLICATION TO THE RECOGNITION OF
HUMAN-ROBOT INTERACTION STYLES: EXPERIMENTS

In this section we present an application of the Cascaded
Information Bottleneck Method with real data: the automatic
recognition of tactile interaction styles in the context of
human-robot interaction. We conducted two series of trials,
the first one under laboratory conditions and the second one
in a school where several children could interact (one child
at a time) freely with the robot. In all experiments the robot
is the Sony Aibo and we focus on characterizing the tactile
interactions according to two criteria, namely the gentleness
and the frequency of the interaction. An interaction is classified
as ‘gentle’ (respectively ‘strong’) if the participant strokes the
robot gently, without signs of force (respectively with signs of
force). The frequency of interaction is categorized into four
classes S;, i = 0...3, defined by their typical periodicity of
interaction’® T (in seconds): i) So: ‘very low’ (T > 15 seconds),
ii) S1: ‘middle inferior’ (5 < T < 15), iii) S2: ‘middle superior’
(1 < T <5), and iv) S3: ‘very high’ (T < 1 second).

A. Implementation

1) Preprocessing: Each criterion (gentleness and frequency
of the interaction) is studied independently. In each case, the
time series studied is the quantitatively binned sum of the
normalized sensors values® involved in the type of interaction.

2) Extra-conditions for the training: a) for the criterion
‘gentleness’, the algorithm does not learn null samples (i.e.
samples made of null events only), b) for the frequency
of interaction, the system deals only with samples whose
first component is not null. In both cases, a sliding window
proceeds on the sensor data time series.

3) Postprocessing: The postprocessing relies on a ‘winner
takes all’ principle: The selected (winner state) is defined by
arg maxyey p(y|&s-1).

B. Features of the trained cascade

The mutual information is 0.8 bit for the criteria gen-
tle/strong and 1.9 bits for the frequency of the interaction.
The conditional entropy H(X,41|X,) (Fig. 1) is globally
decreasing over the cascade, pretty quickly, which suggests
that a structure is progressively and rapidly emerging over the
cascade. For the frequency of interaction, H(X,y;|X,) has
some small local peaks though, both at the very beginning

SThe typical periodicity represents the elapsed time between two successive
strokes of the robot.
The robot’s sensor data are updated every 32ms.
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Fig. 1. Conditional entropy H(X,41|Xs). There are four main param-
eters for the cascade: [ (length of the input vector), k (length of the
individual subsequences), S (length of the cascade ), m (number
of bottleneck states). For the frequency of interaction, | = 472
(equivalent to 15.1 seconds) , k = 2, S = 236, and m = 6. For
the criterion gentle/strong, the corresponding parameters are: [ = 50
(1.6 seconds), k = 2, S = 25 and m = 4.

of the cascade and at the very end’, which suggest that at
these steps s, the input data X, may influence a bit more
in the choice of next equivalent state X,;. This measure is
correlated with the reorganisation measure for extrapolating
ds—1,s(R(s — 1,s)) (equation (2) and equation (3)) which
presents, respectively to each criterion of interaction, profiles
similar to the conditional entropy with peaks positioned at the
same place in the cascade (the mean of ds_1,s(R(s — 1,s))
is equal to, respectively, for Gentle/Strong, 0.037 bits, and,
for the frequency of interaction 0.129 bits). In this study, the
algorithm will extrapolate between step 5 and 24 (respectively
5 and 216) of the cascade for the gentleness (respectively
frequency of interaction).

C. Experiments
The experiments aim at assessing statistically:

a) the soundness of the recognition of interaction styles by
our algorithm, i.e.:

i) for the criterion ‘gentleness’, whether a behaviour that
has been classified as gentle (respectively strong) by
a human is indeed going to be classified as gentle
(respectively strong) by our algorithm,

ii) for the frequency of interaction, whether a frequency
of interaction that has been tagged by a human is in-
deed going to be correctly recognised by the algorithm.

b) the delay for the recognition of local events (i.e. short-term
time scale events).

Importantly, the criterion ‘gentle/strong’ characterizes local

events, and the algorithm should be able to recognise each

specific event ‘gentle’ or ‘strong’ within a short delay. In

contrast, the criterion ‘frequency of the interaction’ requires

the algorithm to classify mid-term time scale events. This

"Note that the small local peaks at the end of the cascade may reflect the
importance of the last steps for distinguishing the classes So and Sy.
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study deliberately focuses on such different criteria in order
to show the flexibility of the algorithm.

1) Experimental setup under laboratory conditions: These
trials are used as a first step in the statistical assessment of
the soundness of the recognition of the interaction styles.
They involve one participant at a time who is asked to interact
with the robot for a few minutes in a predefined way which
is one of the following:

« for the ‘frequency of the interaction’: only ‘pure styles
of interaction’, i.e. one class® exclusively.

o for the criterion ‘Gentle/Strong’: In a first step, it is
pure styles exclusively®. In a second step, the participant
is asked to alternate gentle and strong behaviour and,
just before generating the first event of the new class,
he/she must name the style (i.e. “gentle” or “strong”). All
the sessions are video recorded and this tagging enables
to determine very precisely the transitions for a further
measure of the delay of the recognition process.

2) Experimental setup in school: A further step in the
validation of the algorithm is the testing with data obtained
under natural situations of Human-Robot interaction. These
experiments took place in a small classroom dedicated to the
study, one child at a time being present in the room. Each
child was invited to play freely for several minutes with the
robot (the duration of play depended on the child’s needs and
abilities) in an unconstrained environment.

D. Measures

The experiments were all video-recorded and sensor data
were stored. Note that the validation of the algorithm must be
assessed offline but the recognition algorithm is designed to
operate real time.

1) Samples excluding transitions from one class to another:
The profile of the classification by the algorithm can be anal-
ysed with a confusion matrix which displays the probability
distribution that events from class S; are recognised by the
algorithm as events of class S} (i = 0 or 1 for gentle/strong,
i =0...3 for the frequency of interaction).

2) Samples with transitions for the criterion gentle/strong:
These samples enable us to test the ability of the algorithm to
recognise a transition and reach, after a short transition phase,
a new equilibrium phase. One can model this process by a
temporal curve that would indicate the state of the system for
a transition happening at time t,. Three typical domains can be
identified: for ¢t < t; the curve is constant, indicating a stable
state; from t = tg, the curve’s value alternates to indicate an
hesitation between the two possible states (thus identifying
a change in the behaviour observed); from ¢t = t; + 7 the
curve would keep the same value (the new state). ldeally,
the second phase should be very short (i.e. 7 is very small).
We will study three typical measures here: a) the number of
transitions recognised by the algorithm; b) the time elapsed to

8vcry low, middle inferior, middle superior, or very high.
9gentle or strong only.
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reach the new equilibrium state, c) the ratio of errors made
within this new equilibrium state. Note that a transition will
be considered broadly as either a transition from a gentle
(respectively strong) behaviour to a strong (respectively gentle)
one, or from a state where no classification occurred (i.e. no
interaction occurred during the past 1.6 seconds) to gentle or
strong.

3) Samples with hybrid behaviours for the frequency of
interaction: Because this criterion is based on a mid-term
time scale analysis, some samples generated in school can be
hybrid, i.e. contain a mix of features from different classes. In
order to encapsulate hybrid behaviours, the human classifies
the behaviours on a ‘two choices’ basis, i.e. he/she can select
the two styles characterising the hybridity. In this case, the
algorithm’s classification is successful if it agrees with one of
the two choices made by visual inspection.

Practically, the video and graphs of the temporal global
variable are first manually tagged. In a second step, the clas-
sifications S; resulting from the manual tagging are compared
with the classifications .S/ made by the algorithm.

VI. APPLICATION TO THE RECOGNITION OF
HUMAN-ROBOT INTERACTION STYLES: RESULTS

We present the results for each criterion (gentleness and fre-
quency of the interaction) successively. Note that here we will
refer to the samples of data that were classified without using
the extrapolation, i.e. the samples that contained no unseen
cases at any step of the cascade, as samples classified without
extrapolation. In contrast, the samples of data that required
an extrapolation at one or more steps of the cascade, i.e. the
samples for which there were unseen cases to extrapolate (i.e.
cases that had not been encountered during the training phase
of the algorithm), will be referred to as samples classified with
extrapolation.

A. Criterion: Gentle/Strong

1) Training set of data: The 20,018 samples used for
the training were classified by the algorithm with an overall
success of 97.82% and, respectively, for gentle and strong,
96.83% and 98.81%.

2) Samples excluding transitions (cross-validation): They
constitute 1 hour 2 minutes 49 seconds of interaction. 100,111
samples have been classified with a ratio of success for correct
classification of 0.948. 97.7% of samples were classified with-
out extrapolation with 95.22% of success while the samples
classified with extrapolation (3.3%) were well classified in
75.54% of cases which, considering that it results from an
extrapolation, is quite a good result. Note that the parameters
of the Cascaded Information Bottleneck Method were chosen
in such a way to have a good balance between the extrapolation
and the precision, which is reflected here in the low percentage
of cases extrapolated.

3) Samples with transitions under laboratory conditions

(cross-validation): The four runs constitute 19 minutes and
40 seconds of interaction to analyse. They contain 53,192

samples to classify and 0.01% of the samples were not classi-
fied because they could not be extrapolated by the algorithm!©,
212 transitions were to be recognised, 99.1% of which were
indeed well classified by the algorithm'! with an average delay
of 0.17 seconds. The cumulative probability distribution of the
delay is displayed in Fig. 2. The curve grows very rapidly, thus
showing that most of the delays are very small. Transitions
recognised without any delay occur particularly in the case of
a transition from no event to classify to any event to classify.
The longest delay is 2.05 seconds, which we consider very
acceptable for human-robot interaction kinesics. The average
error ratio in the equilibrium phase is 0.02 and the cumulative
probability distribution is displayed in Fig. 3. Here again, the
curve grows rapidly and shows that the probability of the
highest error ratio is very low and remains acceptable for real
human-robot interaction.

Cumulative probability distribution
of the delay to reach a new equilibrium phase

0.6 £

0

=3
o

e 9
[CRS

_a— laboratory condition: |
_e— trials in school

cumulative probability

0 010203040506070809 1 1.11.21.31415161.71.81.9 2 2.
delay in seconds

Fig. 2. Cumulative probability distribution of the delay for recognising the
transition. We display the probability that an event is recognised within (less or equal)
n seconds for a given n. The delay corresponds to the length of the transition phase when
a transition occurs.

Cumulative probability distribution
of the error ratio in the equilibrium phase
g 1
£ 08 ///::Jw
£
£ 0.6
=04
b ’/ —e— trials in school
El 0.2 g —— laboratory conditions
£
8 0 T T — T T T 7 T |
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Fig. 3. Cumulative probability distribution of the crror ratio for the

cquilibrium phase. The ratio measures the number of errors of classification made
during a phase of equilibrium divided by the number of samples to classify during this
phase. The figures displayed give, for a given r, the probability that the error ratio is
inferior or equal to r.

4) Samples generated by the children in the school (cross-
validation): Videos from five different children were analysed,
which constitute 12 minutes and 52 seconds of interaction.
These runs contain 6,660 samples to classify: 97.49% of these
samples have been classified by the algorithm. These samples
contain 45 transitions. 91.1% of these transitions were indeed
well classified by the algorithm within an average delay of

10thesc samples had to be extrapolated outside the range of steps considered
for the extrapolation.

A transition is considered as wrongly classified if the transition phase is
very long compared to the new equilibrium phase.
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0.17 seconds. The cumulative probability distribution of the
delay is represented in Fig. 2. The curve grows very rapidly,
thus showing that most of the delays are very low. Transitions
recognised without any delay occur, and, at the far end, the
highest delay is 1.54 seconds, which is very acceptable for
human-robot interaction kinesics. The mean error ratio in
the equilibrium phase is 0.1 and the cumulative probability
distribution of this ratio is displayed in Fig. 3. Here again,
the curve grows rapidly. It is worthy of note that the highest
value obtained is 0.44 and the second one is much lower (0.26)
which indicates that the first highest value can be seen as an
extraordinary case. Looking at the sequential classification of
the results, it appears that this highest error ratio was obtained
while a child interacted in a very instable way that is, within
1.76 seconds three successive transitions were observed that
are 1) no event to gentle (gentle phase lasted 1.37 seconds),
2) gentle to strong (the phase with strong style lasted only
0.26 seconds), 3) strong to gentle. It is the strong phase,
after the transition from gentle to strong behaviour that was
recognised with the highest error ratio (0.44), but it lasted for
such a short time that it is not really a concern here (0.26
seconds is very low compared to the typical time for human-
robot interaction which usually lasts a few seconds). Therefore,
we can consider to omit this highest value in the probability
distribution and looking at the resulting values, the results are
good and comparable to the results obtained in the laboratory.

B. Criterion: Frequency of the interaction

1) Training set of data: 1t constitutes 36 minutes 34 sec-
onds of interaction and contains 4,865 samples to classify
(respectively, 450 for Sp, 1,208 for Sp, 1,484 for S; and
1,723 for S3). 99.98% of these samples are well classified;
the ratio of success specific to each class is displayed in Fig. 4.

S’ S’y S’, S’
So 1 0 0 0
S, 0.0008 | 0.9992 0 0
S, 0 0 1 0
S 0 0 0 1

Fig. 4. Confusion Matrix for the training set. The ratio is the one among events
from type S;. S; represents the real class and S, the recognised class, 0 < i < 4.

2) Samples generated under laboratory conditions (cross-
validation): They constitute 51 minutes 44 seconds of interac-
tion and contain 5, 395 samples to classify (respectively 1,017
for Sy, 855 for S1, 1,933 for S3 and 1,590 for S3) 91.16% of
which were classified with an overall ratio of success of 0.922.
99.4% of the samples not extrapolated were well classified,
and 76.41% of samples classified through extrapolation were
well classified. Fig. 5 displays the confusion matrices.

3) Samples generated by the children in the school (cross-
validation): Three runs of interaction were used for the vali-
dation of the frequency of interaction in a real situation, from
three different children. They constitute 14 minutes 41 seconds
of interaction and contain 5, 288 samples to classify. 91% were
classified (including 26.81% that had to be extrapolated) and

358

No Extrapolation

Extrapolation | S 0 s S’ 5% S s, S’y
S, 1 0 0 0 S, 1 0 0 0
S, of o972 o028 0 S, 0115 | o864 | 0022 0
S, 0 o| 0999 [ 0001 s, 0.083 | 0.146 | 0.768 | 0.003
s, 0 o 0.006| 0.994 S, 0 0| 0368 | 0.632
Fig. 5. Confusion Matrices for pure sets of data for, respectively, non

extrapolated and extrapolated data. Non extrapolated samples are samples which
were classified without the need to use the extrapolation, because none of the cases
were unseen cases (relatively to the ing set samples). The results for those samples
are provided in the table with mention No extrapolation. On the contrary, extrapolated
samples are samples that used the extrapolation at least once in the cascade (those samples
contained at least one unseen case in the cascade, i.e. a case that had not been encountered
during the training). The results for those samples are provided in the table with the
mention Extrapolation. See Fig. 4 for more details on the notion of confusion matrix.

93% were classified correctly. Among samples classified with
no extrapolation, the ratio of success for a sound classification
was 0.96. while for samples classified with extrapolation, it
was 0.84.

VII. DISCUSSION AND FUTURE WORK

The algorithm has proven sound for the recognition of

the two criteria of interaction. Concerning the criterion gen-
tle/strong, results show that the two classes are well recognised
and the delays very acceptable for human-robot interaction.
The extrapolation works well, which shows the capability of
the system to make a sound decision in case of unseen events.
These results can be compared with a previous study of ours
where we used Self-Organizing Maps to classify this criterion
of interaction [4], whereby the average delay to recognize
transitions was much higher and the postprocessing required
more effort.
Importantly, one might wish to define the styles slightly
differently to the definition given here, such as, for instance,
focusing on more details (in order to describe substyles for
instance). This can be easily done by adjusting relevant pa-
rameters, mainly the number of bottleneck states, the binning
and the training sets which condition the learning.

The algorithm has also proved very capable of classifying
real data over a mid-term time scale (cf. the criterion frequency
of the interaction) which illustrates the ability of the method to
make a powerful exploitation of an existing temporal structure
not only of short-term time scales but also mid-term ones. This
ability is empowered by the use of different bottlenecks (thus
different mappings) over the cascade. In contrast, as explained
in the section on Related Work, with HMMs the mapping
would be the same all over the time series, and, by trying
to squeeze all temporal information into one flat transition
structure, it might actually prevent HMMs from an efficient
making use of an existing temporal structure of the data. This
hypothesis should be investigated in future work which will
include a comparison of our method with HMMs in these
scenarios. The problem with a cascade of bottlenecks trained
independently could be here that the system has too many
degrees of freedom and could overlearn. The extrapolation
with the measure that we have introduced is a first step in the
control of the degrees of freedom of the system. In addition,
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the overlearning can be tightly controlled by penalizing the
intake of novel information. For this, we would have to move
from the agglomerative model where 8 = oo to a model with a
finite 3 that would control the information intake per step. This
shows how the Cascaded Information Bottleneck method is
transparent and gives fine-grained control over how much and
what new information is taken at which step in the cascade.
This method is designed for real-time use during natural
human-robot interaction and little research had been done so
far on real-time recognition of tactile interaction styles. Salter
et al. ’s adaptation algorithm [11] was a first important step
towards real adaptation. Yet, this system did not learn its own
categorisation, which was completely described by a hand-
tuned decision tree. In the present study, the recognition and
the decision are made algorithmically, after a real learning
phase and a capacity to extrapolate unseen events, with very
small delays. Furthermore, our method is very easy to use and
can be tuned easily to adapt to other criteria of interaction.

VIII. CONCLUSION

In this paper, we have presented a novel method for time
series analysis for detecting interaction styles in the context
of Human-Robot Interaction. This method, namely the Cas-
caded Information Bottleneck Method relies on a cascade of
bottlenecks trained independently, the first one being trained
in a standard way [3] while the next ones depend on the
previous bottleneck states. This notably facilitates a powerful
exploitation of the temporal structure of the data. Besides, a
structure progressively emerges through the cascade and we
introduced a measure to extrapolate unseen cases.

We have applied our method to real-time recognition of
human-robot interaction styles, in a detailed case study, by
implementing the algorithm for real interactions with a real
robot. The testing of the method had to be done offline, i.e.
after the interactions had taken place, but the algorithm is
designed to operate real time in order to enable real-time
adaptation of robots to the interaction styles.

We have shown the soundness of the method through
extensive experiments, using successively samples of data gen-
erated under laboratory conditions and samples from natural
situations of child-robot interaction in a school for children
with autism. The algorithm was able to recognize short term
events very well within and average delay of 0.17 seconds (the
highest delay being 2.07 seconds). It was also able to recognise
mid-term time scale events very well (the percentage of events
correctly classified was 92% under laboratory conditions and
93% with data from the child-robot interactions).

This study has shown the soundness of the method for pat-
tern recognition and illustrated its capability of time-filtering
on real data. Besides, the method is transparent and enables a
fine-grained control over how much and what new information
is taken at which step of the cascade. Finally, this method
is entirely generic for applications with socially interactive
(humanoid and non-humanoid) robots.

Our own future work will focus on the application of the
method in autism therapy where we find a strong need for

socially adaptive robots. The ability of a robot to classify
in real time human-robot interaction styles is a first step
towards the challenging goal of enabling an autonomous
robot to influence positively children’s interaction styles to
guide him/her progressively towards different therapeutically
relevant levels of interaction.

ACKNOWLEDGMENTS

Dorothée Frangois is supported by a research scholarship of
the University of Hertfordshire. The work described in this paper
was partially conducted within the EU Integrated Project RobotCub
(Robotic Open-architecture Technology for Cognition, Understanding
and Behaviours) and was partially funded by the European Commis-
sion through the ES Unit (Cognition) of FP6-IST under Contract FP6-
004370. The authors would like to thank the children who participated
in these trials, their parents and their teachers.

REFERENCES

[1] “Aurora project,” 2008, http://www.aurora-project.com/.

[2] C. E. Shannon, The mathematical theory of communication.
University of Illinois Press, Urbana, 1949.

[3] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck

method,” in Proc. of the 37-th annual Allerton Conference on Commu-

nication, Control and Computing, 1999, pp. 368-377.

D. Frangois, D. Polani, and K. Dautenhahn, “On-line behaviour clas-

sification and adaptation to human-robot interaction styles,” in Proc.

2nd ACM/IEEE International Conference on Human-robot Interaction

(HRI07), 2007, pp. 295-302.

T. Shibata, K. Wada, T. Saito, and K. Tanie, “Human interactive robot

for psychological enrichment and therapy,” in Proc. AISB'05 Symposium

on Robot Companion Hard Problem and Open Challenges in Human-

Robot Interaction, 2005, pp. 98-109.

P. Marti, F. Fano, V. Palma, A. Pollini, A. Rullo, and T. Shibata, “My

gym robot,” in Proc. AISB’05 Symposium on Robot Companion Hard

Problem and Open Challenges in Human-Robot Interaction, 2005, pp.

64-73.

[7] W. D. Stiehl, J. Lieberman, C. Breazeal, L. Basel, L. Lalla, and
M. Wolf, “The design of the huggable: A therapeutic robotic companion
for relational, affective touch,” in A4AI Fall Symposium on Caring
Machines: Al in Eldercare, 2006.

[8] B. Scassellati, “Quantitative metrics of social response for autism
diagnosis,” in Proc. 14th IEEE Int. Workshop on Robot and Human
Interactive Communication (RO-MAN), 2005, pp. 585-590.

[9] T. Kanda, H. Ishiguro, T. Ono, M. Imai, and R. Nakatsu, “Development
and evaluation of an interactive humanoid robot ¢ ’” in Proc.

The

[4

=

[S

[y

[6

=

robovie™’;
IEEE Int. Conf. on Robotics and Automation (ICRA2002), 2002, pp.
1848-1855.

T. Salter, K. Dautenhahn, and R. te Boekhorst, “Learning about natural
human-robot interaction,” Robotics and Autonomous Systems, vol. 54(2),
pp. 127-134, 2006.

T. Salter, F. Michaud, D. Lee, and 1. P. Werry, “Using proprioceptive
sensors for categorizing human-robot interactions,” in Proc. of the 2nd
Int. Conference on Human-Robot Interaction HRI07, 2007, pp. 105-112.
A. Derakhshan, F. Hammer, Y. Demazeau, and H. H. Lund, “Mapping
children and playgrounds into multi-agent systems,” in Proc. 11th Int.
Symposium on Artificial Life and Robotics (ISAROB), 2006.

D. Kim, J. Song, and D. Kim, “Simultaneous gesture segmentation
and recognition based on forward spotting accumulative hmms,” Pattern
Recognition, vol. 40(11), pp. 3012-3026, 2007.

C. Lee and Y. Xu, “Online, interactive learning of gestures for hu-
man/robot interfaces,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation, 1996, pp. 2982-2987.

J. P. Crutchfield, Information and its Metric. Nonlinear structures in
physical systems- Pattern Formation, Chaos and Waves, L.Lam and H.
C. Morris Eds. Springer Verlag, pp 119-130, 1990.

T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-
Interscience, New York, 1991.

N. Slonim and N. Tishby, “Agglomerative information bottleneck,” in
Proc. of Neural Information Processing Systems (NIPS 99), 1999, pp.
617-623.

[10]

(1

[12]

[13]

[14]

[15]

[16]
(171

359

Authorized licensed use limited to: UNIVERSITY OF HERTFORDSHIRE. Downloaded on March 13, 2009 at 07:58 from IEEE Xplore. Restrictions apply.



