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Abstract— This paper shows the utility of a forward model
for improving the visual servoing performance of a robotic
manipulator. Following a developmental robotics approach, the
manipulator undergoes a motor babbling phase which is used
to create a forward model using an ANFIS neural network. The
forward model maps the relationship between the joint
positions and the image of the end effector in two camera views.
Using the obtained forward model, an initial image Jacobian is
estimated and is used with a visual servoing controller.
Simulation results demonstrate that errors are significantly
lower when the estimated Jacobian is used.

1. INTRODUCTION

RECENT studies point to the possibility that human beings
could create internal models [1]. Kawato in [2] defined
internal models as neural mechanisms that can mimic the
input/output characteristics, or their inverses of the motor
apparatus. The internal models could be forward models or
inverse models. Forward models can predict sensory
consequences from efference copies of issued motor

commands. Inverse models calculate the necessary
feedforward motor commands from desired trajectory
information.

The process of creation of forward models starts in
infants when they born. The newborn through a self
exploratory phase of his kinematics and sensory feedback
(“body babbling”) creates an internal model of his own
kinematics and sensory system as described in [3].
Roboticians looking at biology, and specifically human
development, as a source of inspiration have began to use
forward models in robots. For instance, in [4] a forward
model that represents the forward kinematics of a
manipulator was created using Radial Basis function neural
networks. From the forward model they derived analytically
the robot Jacobian that is used in a control law that governs
the reaching. In [5] a mobile robot, after a babbling motor
phase, learns a forward model based on a Bayesian neural
network. The forward model was used by the robot in
imitating human movements.

Following a developmental robotics roadmap, this work
tries to shed some light in the use of forward models for
visual servoing that we intend to use for vision based
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reaching. The forward model created is used to estimate an
initial image Jacobian that becomes an important factor that
determines the maximum performance attainable in a
reaching task using a well known visual servo controller.

The remainder of the paper is as follows. In the second
section are described the algorithms used in this work; the
third section shows the general architecture for the reaching
task; in the fourth section the babbling motor phase is
described; in the fifth section the forward model creation
using an ANFIS is detailed; the sixth section presents the
results of the controller performance in a reaching task,
finally, conclusions and planned future works are described
in the sixth section.

II. THEORETICAL BACKGROUND

A. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS [6] is reviewed here briefly. Adaptive Neuro-
Fuzzy Inference Systems are Fuzzy Sugeno models put in
the framework of adaptive systems, a fuzzy Sugeno type is
composed by rules of the type:

Rule 1: if x1 is Al and x2 is B1, then
f1 =alx1+blx1+cl
Rule 2: if x1 is A2 and x2 is B2, then

f2 = a2x1+b2x2+c2

Figure 1 illustrates the architecture of the network. In the
first layer the degree of the membership of the input is
computed using a Gaussian membership function:

1

Where a;, b; and c; are the parameters of the Gaussian
function. The second layer calculates the firing strength (or
weight) w; of the iy, rule,

w; = pi ()i (x2) 2)

In the third layer the firing strengths are normalized with
the sum of all rule's firing strengths:
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In the fourth layer the output is calculated as the product
of the normalized firing rate and the parameters set:

wif; = wi(pix + qiy + 1) 4)

Finally in the fifth layer is calculated the overall output as
the addition of all incoming signals,
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Training the network consists of finding suitable
parameters for layer 1 and layer 4. Gradient descent methods
are typically used for the non-linear parameters of layer 1
while batch or recursive least squares are used for the linear
parameters of layer 4 or even a combination of both. See [6]
for details.
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Fig. 1. ANFIS architecture.

B. Visual Servoing

The reaching task has been implemented using visual
servoing. Visual serving is a technique that has been studied
and used in robotics. In [7] we can find a survey about the
methods and techniques used in visual servoing. The
controller implemented in this paper is classified according
to [7] as an Image Based Visual Servoing technique (IBVS)
and eye-to-hand scheme.

The algorithm used for the visual servoing is the one
based on Piepmeier [8]. Piepmeier used a dynamic Gauss-
Newton method to minimize the errors in the image plane.
The error for a static target is defined as the difference of the
position in the image plane of the target y* and the end-
effector y(6).

f(6) =y(®) -y (6)

The dynamic Gauss-Newton method computes the joint
angles iteratively. At each iteration k the angular position is
computed as

Oks1 = O —

0 (5t Den). )

The term h, is a time increment and is defined
Ofkhe
at

as h; = t;, — t;_q; the term predicts the change in

the error function for the next iteration and Jj, represents
an approximation to the Jacobian in the k instant.

Ji = Jiea + (Af Ji—1he — a};k ht) 8
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Where 0 <A <1 is the forgetting factor, hg = 0 —
Or_1, Af = fr— fie1. Equations (8) and (9) define the
recursive update of Jj.

III. GENERAL ARCHITECTURE DESCRIPTION

Figure 2 shows the general architecture that is used to
accomplish the reaching task. For a reaching task the first
thing done was to develop a sensory-motor coordination
map of the robot (forward model). This sensory-motor map
coordination is constructed after a motor babbling phase. In
the babbling phase the robot moves its joints randomly along
the workspace and stores information that comes from its
proprioceptive system as the readings from the encoders and
information derived from the visual system.

The information obtained from the babbling phase is used
to create a forward model of the robot. This forward model
of the robot relates information of the angular joint
positions, and end effector coordinates in the image plane.
The forward model is constructed using an ANFIS neural
network. The forward model is then used to initialize the
image Jacobian of our visual servoing algorithm. As it has
been described in the previous section the visual servoing
algorithm is a closed loop algorithm based on the visual
servoing method of [8] that controls the robot to reach a
target.
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Fig. 2. General Architecture for a reaching task using a forward model.

IV. MOTOR BABBLING

In this exploratory phase, the angular positions of the
robot joints and the end-effector position in the visual
system is stored. The Robotics Toolbox of Peter Corke for
Matlab [9] was chosen as a simulation platform. The
simulated puma 560 manipulator is used in this work. For
the vision system the Epipolar Geometry Toolbox for
Matlab [10] is used to simulate two fixed cameras.

A total of 720 samples was collected and divided into 600
samples for the training phase and 120 samples for the
testing phase. There are two simulated cameras one for the
right eye and the other one for the left eye. The internal
parameters for the two cameras are the same, then the
images in the two cameras are of 640*480 pixels in size and
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Fig. 3. The left subplot shows the position of the robot after the second babbling stage (joint O is initialized to 20 degrees). The top and bottom subplots

show the imaged end-effector points at each babbling step.
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Fig. 4. The left subplot shows the position of the robot at the end of the babbling. The right top and right bottom subplots are the end effector

accumulated positions of the end effector in the right and left camera.

the orthogonality factor of the CCD image axes is 0. The
number of pixels per unit distance in image coordinates
times the focal length is 50 for both cameras. Both cameras
have a rotation of -90 degrees with respect to x axis and are
located at [0, -0.2, 0.8] and [0, 0.2, 0.8] in the world
coordinates.

To obtain a thorough sampling of the robot workspace the
babbling was done in 18 stages. At the beginning of each
stage the robot joint O is set to 20n degrees, where n is the
stage number. Each stage is made of 40 babbling steps. Each
joint is randomly perturbed with a maximum change of 3.82
degrees.

Figure 3 shows the robot and the resulting image points
after the first babbling stage. Figure 4 shows the end of the
18 babbling stages and the resulting images of the end-
effector points.

V. FORWARD MODEL CREATION

The data collected from the babbling phase is used to
create a forward model of the robot. Figure 5 shows how the
forward model is constructed using the ANFIS toolbox of
Matlab. The input data is a set that includes the end effector
position in the image and joint angles of the manipulator.
The input data is clusterized using the unsupervised
clustering algorithm of the toolbox that uses the
subclustering algorithm [11]. The unsupervised clustering
algorithm gives the initial structure of the network (number
of fuzzy rules and parameters for the initialization of the
membership functions).

A total of four ANFIS neural networks have been
constructed — one ANFIS for each image feature coordinate
(ur,vi,ug,vg). Each neural network has 9 inputs (qo, g1, 2, g3
44 qs Dv Py P;)- The first 6 inputs are the angular positions
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Fig. 5. Construction of the forward model using an ANFIS-based
methodology.

of the joints of the manipulator and the other 3 inputs are the
coordinates of an end-effector point (with respect to the end-
effector local frame). The output of the network is a image
coordinate (u or v) of the end-effector position (p,, p,, p,) in
one of the cameras (left or right). A total of five feature
points have been tracked because it has been seen in the
simulations that as the number of tracked points is increased
the robustness of the algorithm grows.

Table 1 shows the number of rules that result with a
subclustering radius of 0.55. This subclustering parameter
tunes the number of fuzzy rules constructed. There is a
tradeoff for chosing the value of this parameter because if
there are more rules the computational burden increases. The
training was done using a hybrid method that is a
combination of back-propagation and recursive least square
algorithms. The four ANFIS neural networks were trained
just for 100 epochs. Table II shows the training error for the
four neural networks, at the beginning of the training and
after 100 epochs.

VI. REACHING TASK

A. Initial Image Jacobian Estimation

The forward model encoded in the ANFIS networks is
used in obtaining an estimate of the initial image Jacobian of
the manipulator for a given joint position. To obtain the
initial estimation of the Jacobian a virtual perturbation of the
manipulator joints at the current position is done using the
ANFIS networks. Each joint is individually perturbed and
the resulting changes of the feature points are used to
initialize the corresponding column of the image Jacobian.
The changes in the image feature points are computed using
the forward model instead of the cameras. That is, the joint
angles and the coordinates of each of the five tracked points

TABLEI
ANFIS INITIALIZATION

Neural Network Subclustering radius Number of rules

ANFIS 1 (uz) 0.55 30

ANFIS 2 (v;) 0.55 37

ANFIS 3 (i) 0.55 30

ANFIS 4 (vp) 0.55 33
TABLEII

ANFIS NEURAL NETWORK TRAINING ERRORS

Final training error

Neural Network Initial Training Error

(100 epochs)
ANFIS 1 (ur) 8.19338 3.81745
ANFIS 2 (vr) 6.00207 1.93243
ANFIS 3 (ug) 8.19338 3.81745
ANFIS 4 (vg) 5.54171 2.01348

are inserted as inputs to our forward model. The output of
the forward model gives the position each of the end-effector
points in the image planes of the “robot eyes”.

B. Visual Servoing with a Forward Model

The final objective of the robot is that it could reach a
target in a specific position of its workspace. The initial
estimate of the image Jacobian is used at the beginning of
the visual servoing controller.

The manipulator starts practically in a position opposed to
the target. The variation of the joint velocities of the
manipulator has been clamped between -0.9 and 0.9 rad/sec.
Uniform image noise between #5 pixels is added to the
image features. The sampling period for this simulation is
fixed at 1/30 sec. The number of iterations for the control
loop is equal to 600 iterations.

The robot has as initial coordinates in joint space [-3.0252
0.07757 -1.5126 0 0 0] radians and the desired position of
the target in joint space coordinates is [0.93 0 0 0 0 O]
radians. Figure 6 shows the initial position of the robot and
the target. The other subplots of this figure display the
representation of these points in the two cameras at the
beginning of the reaching. Figure 7 shows the position of the
robot when it has reached the target.

In order to test the validity of the use of the forward
model to calculate an initial image Jacobian a comparison
with random image Jacobians is made. The servo-controller
is tested with 10 different random initial image Jacobians.
Each element of random image Jacobian (a 20 x 6 matrix) is
initialized with values from the range [-1 1]. Figure 8 shows
the results obtained with these random image Jacobians
(blue curves) and the one estimated using the forward model
(red one). This simulation shows that the error obtained with
the initial Jacobian derived from the ANFIS forward models
has a better performance and is matched only by two random
Jacobians. It possible to consider this estimation as an
optimal estimation or a one that is close to the optimal
estimation when compared with random estimations, which
by virtue of being a random process, is no guarantee that a
good image Jacobian can be found.
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Fig. 6. The left subplot has the position of the robot at the beginning of the reaching. The target position is represented by the blue points in the left
subplot (feature points of the end effector at the end of reaching). The right top and right bottom subplots show the end-effector position (green circles)

and the target image coordinates (blue crosses).
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Fig. 7. The left subplot has the position of the robot at the end of the reaching. The target is represented by the blue points in the left subplot (partially
obscured by the end effector). The right top and right bottom subplots show the end-effector position (green circles) and the target (blue crosses). Since
the robot end-effector has reached the target the blue crosses are overlapping with green circles.

VII. CONCLUSION

This paper describes how through a babbling motor phase
similar to a self exploratory “babbling body” process
developed by infants a forward model is constructed. The
forward model is constructed using ANFIS neural networks.
The forward model created serves to initialize optimally the
image Jacobian that is used in the image-based visual
servoing controller. The results obtained in a reaching task
using an estimated image Jacobian shows how an already
robust visual servoing routine can be improved by a forward
model.

This paper has demonstrated a new way in which a
forward model can be used. We are currently in developing
locally and globally better controllers using forward models.
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