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Abstract : Optimal trajectory planning of a humanoid arm is addressed. The
goal is to make the end effector reach a desired target or track it when it moves
in the arm’s workspace unpredictably. As a reference setup, we considered a 7
degrees of freedom humanoid robot arm. Physical constraints require the on-
line computations to be very quick. Following previous studies [1], a receding-
horizon method is proposed that consists in assigning the control function a
fixed structure (e.g., a feedforward neural network) where a fixed number of
parameters have to be tuned. More specifically, in the off-line phase, a set of
neural networks (corresponding to the control functions over a finite horizon) is
optimized using the Extended Ritz Method. The training set corresponds to a
sampling of the arm and target position and velocity configuration space. The
expected value of a suitable cost is minimized with respect to the free param-
eters in the neural networks. Therefore, a nonlinear programming problem is
addressed that can be solved by means of a stochastic gradient technique. The
resulting approximate control functions are sub-optimal solutions, but (thanks
to the well-established approximation properties of the neural networks) one can
achieve any desired degree of accuracy [5]. Once solved the off-line finite-horizon
problem, only the first control function is retained in the on line phase: at any
sample time t, given the system’s state and the target’s position and velocity,
the control action is generated with a very small computational effort.

1 Introduction

In robotics, the task of positioning the end effectors is fundamental: whenever
a robot has to move its arm in order to grasp an object, track a moving tar-
get, avoid collision with the environment or just explore it, reaching is involved.
Given the target position, estimated for example by a vision system, it is com-
mon practice to plan a suitable trajectory in the cartesian space and then find
the corresponding joint and torque commands. To this end, a Finite Horizon
(FH) optimal control problem can be addressed to improve the robot’s motion
performance, but it is scarcely useful as generally the duration of the move-
ments cannot be predicted a priori. Moreover, moving through a fixed horizon
strategy could lead to a lack of responsiveness, whenever the target dynamics is
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too fast and no previous information about it are available to make some pre-
diction. In the classical Receding Horizon (RH) approach, at each time instant
t, when the state of the system is xt a FH optimal control problem is solved and
a sequence of T optimal control actions is computed, uFH

t|t , uFH
t+1|t, . . . , u

FH
t+T−1|t,

which minimize a suitable cost function affecting the motion performances; then
only the first control vector is applied: uRH

t = uFH
t|t . This procedure is repeated

stage after stage, thus yielding a feedback control law. Stabilizing properties of
RH control have been shown for case of both linear and nonlinear, continuous
and discrete time systems, using the terminal equality constraints [8]. Hard
constraint xt+T = 0 was relaxed by requiring a regulator to drive the system to
a neighborhood of the origin [9] in combination with a switching regulator; in
[1] the attractiveness of the origin was imposed by means of a penalty function
in the cost function. Thereafter the RH control paradigm has been extended to
tracking, nonlinear control, and has been widely accepted for industrial applica-
tions. The RH classical technique assumes the control vectors to be generated
after the solution of a nonlinear programming problem at each time instant: this
assumption is unrealistic in the case of humanoid robotics, as the robot’s and
the target’s dynamics are very fast. In this paper we will design a feedback RH
regulator for reaching tasks, that must reveal itself to be quick and reactive to
changes, in particular able to track a target moving in the robot’s workspace in
an unpredictable way. We will also describe a technique which concentrates in a
off line phase the computation of a time-invariant feedback optimal control law,
for every possible system and target states belonging to the set of admissible
ones. The proposed algorithm consists of two steps. In the first one, a suitable
sequence of neural networks is trained off line, so that they can approximate
the optimal solutions of a stochastic FH control problem, which is generalized
for every possible state configuration. In the second (online phase), only the
first control law is applied, at each time instant. The Extended RItz Method
(ERIM) [6] is chosen as a functional approximation technique. The use of feed-
forward neural networks (thanks to their well known approximation capabilities
[7]) guarantees that the optimal solutions can be approximated at any desired
degree of accuracy. We remark that the computation is concentrated in the
off line phase, while in the on line phase only the computation of the current
control is performed, thus yielding a quick response to unpredictable changes in
the target’s state. The feasibility of this approach has already been tested on
the control of a nonholonomic robot [2].

2 The robotic platform

The object of our control scheme is the left arm of the humanoid robot James
[4], which is being developed by the University of Genoa and the Italian Insti-
tute of Technology. James is a 22 Degrees Of Freedom (DOF) torso, with the
overall size of a 10 years old boy and a total weight of about 8 kg. Torque is
transmitted to the joints by plastic toothed belts and stainless-steel tendons,
actuated by rotary motors. The head, equipped with two eyes, is mounted on
a 3 DOF neck. The arm has 7 DOF: 3 in the shoulder, one for the elbow and
3 in the wrist. In particular, the shoulder consists of 3 rotative joints, actuated
through tendons and pulleys by 3 motors located in the torso: 2 joints (the
ones yielding abduction) are mechanically coupled, so as to gather the shoul-
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der a wider range of motion. Low level motor control is distributed on twelve
Digital Signal Processing (DSP) cards, communicating with a PC cluster via
CAN bus. The robot’s motion can be controlled by sending position and veloc-
ity commands to the DSP. Most of the motors are then directly controlled by
standard PID controllers, except for the shoulder, neck and eyes motors which
require different control strategies to handle various mechanical constraints. In
the following we shall only focus on the arm motion planning and control, in
particular from the shoulder up to the wrist, which will be considered as the end
effector of the kinematic chain. We neglect the rotation of the hand. The ac-
curate description of the control architecture and the different low level control
strategies fall outside of the scope and the available space of this paper.

2.1 Kinematic model

James robot’s model is an open kinematic chain. Let us denote by xr
c the

cartesian coordinates of the end effector in the robot’s workspace, with respect
to a fixed reference frame, and by qr the vector whose components are the
joints’ coordinates of the arm. Then the forward kinematics xr

c = farm(qr)
can be easily found by Denavit-Hartenberg convention [3]; farm : R

nq → R
nc

where nq = nc = 2 if we consider the arm as a two-link rigid body moving
on a planar surface. In the following, we will assume the robot model to be
known and kinematic singularities be avoided such that the jacobian matrix
J(qr) = ∂farm(qr)/∂qr, being ẋr

c = J(qr)q̇r, is always non-singular. The reach-
ing control problem consists in finding the optimal controls u◦ in the cartesian
space, and the corresponding velocity controls in the joint space q̇r◦, so that the
end effector can reach or track a target, moving unpredictably in the robot’s
workspace while minimizing some suitable cost function. We shall denote be xr

the robot’s end effector state vector, and by xg the target’s one. A discrete-time
(first order Euler) model has been considered. We denote by xt, at time instant
t, the difference between the end effector and the target cartesian coordinates
and velocities (xt , xg

t − xr
t ). The goal of the control problem, at time instant

t, is to minimize a suitable cost function, which is chosen so as to characterize
the trajectories of the end effector. A common choice in humanoid robotics
[11] is represented by the minimum jerk principle, describing the criterion used
by human beings during movements, that is (in continuous form, for planar
movements of the end effector):

J =

∫ tf

0

[

(

d3xr

dt3

)2

+

(

d3yr

dt3

)2
]

dt . (1)

A more common function cost in automatic controls is instead:

J =

t+T−1
∑

i=t

c(ui) +
∥

∥xi+1

∥

∥

2

Vi+1
(2)

where the criterion for the task accomplishment is a tradeoff between the mini-
mization of the energy consumption (for physical limits, it is important not to
exceed in current absorption) and the “best” end-effector proximity to the tar-
get at the end of the manoeuvre (it could not be able to reach it perfectly, as a
consequence of the unpredictable behavior of the target or the robot’s intrinsic
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Figure 1: James’s arm control scheme. Velocity commands are sent through a
CAN bus, while direct motor control is performed by DSP cards. The retrieving
of the target’s cartesian coordinates is not modeled, as it would require to discuss
the robotic visual system.

physical limits). Weight matrices Vi are chosen such as to obtain reasonable
compromise between the attractiveness of the target and the energy consump-
tion, whereas c(uj

t ), j = x, y is a nonlinear but convex function (see, e.g., [2]).
We remark that once the optimal control u◦

t is found, then the velocity con-
trol in the joint space can be easily computed with standard formulations, i.e.,
q̇r

t
= J#(qr

t
)ẋr◦

t , where J# denotes the Moore-Penrose pseudo-inverse of the
jacobian matrix. The velocity commands in the joint space, computed by a
common PC, are sent through the CAN bus to the DSP cards, where a low level
control loop is performed. The control scheme is shown in Figure 1.

3 Receding horizon regulator: a neural approach

Now let us represent the previous equations in the more general and compact
form

xt+1 = f (xt, ut) , t = 0, 1, . . . , T − 1 (3)

where at the time instant t, xt is the state vector, taking values from a finite set
X ⊆ R

n, and ut is the control vector, constrained to take values from a finite set
U ⊆ R

m. The desired target state, at instant t, is then x∗
t = 0, meaning that the

goal is to bring the difference between the end effector and the target to zero. We
remark that by setting the target state to zero, we implicitly apply a certainty
equivalence principle: at time instant t, it is supposed that the target vector xg

will remain constant for T time instants, that is: xg
t+i+1 = xg

t+i, i = 0, . . . , T −1.
We can now state a RH control problem.

Problem 1. At every time instant t ≥ 0, find the RH optimal controls u◦
t ∈

U , where u◦
t is the first vector of the control sequence u◦

t|t, . . . , u
◦
t+T−1|t that

minimize the FH cost functional

J(xt) =

{

t+T−1
∑

i=t

hi(xi, ui|t) + hT (xt+T )

}

. (4)
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The classical RH control assumes that at each time instant of control a FH
control problem is solved, and a sequence of T optimal controls is found. This
approach is not suitable in humanoid robotics, as there is no sufficient time to
compute the optimal control sequence at each sampling time. Therefore we will
change the problem’s formulation so as to be able to compute the control laws
in an off line phase.

Problem 2 (RH). For every time instant t ≥ 0, find the RH optimal control
law u◦

t = µ◦
t
(xt) ∈ U , where µ◦

t
is the first control function of the sequence

µ◦
t|t

, . . . , µ◦
t+T−1|t

that minimize the FH cost functional

J̄ = E
x

t
∈X

{

t+T−1
∑

i=t

hi(xi, µ
◦
i|t

(xi)) + hT (xt+T )

}

(5)

Thanks to the time invariance of the systems dynamics and of the cost
function, t = 0 can be considered as a generic time instant. Then, a single
(functional) FH optimization problem is addressed.

Problem 3 (FH). Find a sequence of optimal control functions µ◦
0
, . . . , µ◦

T−1
,

that minimize the cost functional

J̄ = E
x
0

{

T−1
∑

i=0

hi(xi, µ
◦
i
(xi)) + hT (xT )

}

(6)

subject to the constraints µ◦
i
∈ U ⊆ R

m and (3).

The RH control strategy will correspond to use µ◦
0

as a time invariant control
function, i.e., to apply ut = µ◦

0
(xt).

3.1 From a functional optimization problem to a nonlinear

programming one

In order to solve Problem FH we shall use the ERIM [6], which turns the func-
tional optimization problem into a nonlinear programming one. More specifi-
cally, we constrain the admissible control functions µ

0
, µ

1
, . . . , µ

T−1
to take on a

fixed parametrized structure, in the form of one-hidden-layer (OHL) networks:

µ̂(x, ων) = col

[

ν
∑

i=1

cijϕi(x, κi) + bj

]

(7)

where µ̂(·, ων) : R
n × R

N(ν) 7→ R
m, cij , bj ∈ R, κi ∈ R

k, j = 1, . . . , m. The
finite number of free parameters, N (called basis cardinality number of the OHL
network), grows linearly with ν, that is the number of neurons constituting
the network. By substituting (7) into (6), calling ωi the parameters of the i-th
OHL network µ̂

i
(xi, ωi) (for the sake of simplicity we write simply ωi instead

of ωνi
), the general functional cost J̄(µ

0
, µ

1
, . . . , µ

T−1
) is turned into a function

which is only dependent on a finite number of real variables, Ĵν(ω), where
ω = col(ωi, i = 0, 1, . . . , T − 1) is the vector in which all the parameters to be
optimized are collected. We can now restate Problem 3 as:
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Problem 4 (FHν). Find the optimal parameters ω◦
0, . . . , ω

◦
T−1 that minimize

the cost functional

Ĵν = E
x
0

{

T−1
∑

i=0

hi(xi, µ̂
◦

i
(xi, ωi)) + hT (xT )

}

(8)

subject to the constraints µ̂◦

i
(xi, ωi) ∈ U ⊆ R

m and (3).

Then, for every time instant t the time-invariant RH control law corresponds to
u◦

t = µ̂RH(xt, ω
◦
0) = µ̂◦

0
(xt, ω

◦
0) (see Problem FHν).

The computation of the time invariant feedback control law is concentrated
in the off line phase. Hence, at any time instant t only the first computed
neural network is used. This approach is particularly efficient in real time,
because the computation of the new control action is quick, consisting only in
few mathematical operations; moreover, it can be performed by memory-limited
electronic boards, as it only requires the memorization of the parameters of one
single network. Of course, the constraints on the admissible values of xt and ut

are taken into account. To be more precise, the classical OHL networks were
slightly modified, specifically by adding two sigmoidal functions σ(z) = tanh(z),
bounded by the values [−U, U ], to the final output layer: with this choice, the
constraints on the control values can be removed from the problem formulation
since the neural networks already embed them.

3.2 Solution of the nonlinear programming problem by

stochastic gradient

The optimal parameters in the OHL control functions can be found by a usual
gradient algorithm, i.e.

ωi(k + 1) = ωi(k) − α(k)∇ωi
E

{x
0}

{

Ĵν [ωi(k), x0(k)]
}

, k = 0, 1, . . . (9)

where at step k the stochastic variable x0 is generated randomly on the basis of
the known probability density functions. Within this context, it is impossible to
calculate exactly all the gradient components, because of the stochastic nature

of x0; then, instead of the gradient ∇ω E
[

Ĵν(ω, x0)
]

a “realization” ∇ωĴν(ω, x0)

is computed, where the stochastic variable x0 is generated according to its prob-
ability distribution. Then a simple gradient steepest descent algorithm can be
applied:

ωi(k + 1) = ωi(k) − α(k)∇ω
i
Ĵν [ω(k), x0(k)] + η(ω(k) − ω(k − 1)) (10)

for k = 0, 1, . . ., where we added a regularization term, weighted by η ∈ [0, 1],
as it is usually done when training neural networks. The convergence of the
method, which is known as stochastic gradient, is assured by a particular choice
of the step size α(k), that must fulfill a set of conditions [10]. Of course, one has
to compute the partial derivatives of the cost Ĵν with respect to the parameters
to be optimized, ωi:

∂Ĵν

∂ωi

=
∂Ĵν

∂ui

∂µ̂
i
(xi, ωi)

∂ωi

. (11)
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Figure 2: A minimum jerk movement of James’arm: cartesian and joints posi-
tion and velocity are shown, as well as samples of the plaanr trajectory.

The proposed algorithm for the computation of the optimal parameters con-
sists in two phases, a forward and a backward one, and in a backpropagation
technique. In the forward phase we “unroll” the system and the neural con-
trollers in time, making the feedback explicit. At iteration step k, given the
initial state x0, we compute all the state and controls generated by the sequence
of OHL networks that is ut = µ̂

t
(xt, ωt(k)), given x0, xt = f(xt−1, ut−1) , t =

1, . . . , T . Then we can compute all the partial costs ht(xt), hT (xT ). In the
backward phase, we compute all the gradient components and “back-propagate”
them through the networks’ chain. The recursive propagation is described by
the following equations, for t = T − 1, T − 2, . . . , 0:

∂Ĵν

∂ut

=
∂ht(xt, ut)

∂ut

+
∂Ĵν

∂xt+1

∂f(xt, ut)

∂ut

(12)

∂Ĵν

∂xt

=
∂ht(xt, ut)

∂xt

+
∂Ĵν

∂xt+1

∂f(xt, ut)

∂xt

+
∂Ĵν

∂ut

∂µ̂
t
(xt, ωt)

∂xt

(13)

initialized by ∂Ĵν/∂xT = ∂hT (xT )/∂xT .

4 Results

Numerical results have been found for both aforementioned cost functions: (1)
and (2). Some FH results are shown in Figure 2, while RH trajectories during a
tracking/reaching task are shown in Figure 3. In particular, “neural” trajecto-
ries minimizing (1) were compared with the analytical solution of the minimum
jerk trajectories (that is one of the main reasons we have firstly addressed the
control problem for a two-link planar arm), proving the effectiveness of the pro-
posed approach. We point out that the property of computing controls in real
time as fast as possible is a strict requirement, because in the future the inte-
gration with a visual feedback will be addressed. In the proposed framework,
singularities and redundancies of the kinematic chain have been neglected. In
the future they will be taken into account; moreover, direct control in joint space
will be addressed and delays will be modeled.
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Figure 3: James’ left end effector (black) tracking a target (green) moving in
an unpredictable way, according to cost function (2).
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