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Abstract— In humans the tracking of a visual moving target
across occlusions is not made with continuous smooth pursuit.
The tracking stops when the object is occluded and one or two
saccades are made to the other side of the occluder to anticipate
when and where the object reappears. This paper describes a
methodology for the implementation of such a behavior in a
robotic platform — the iCub. We use the RLS algorithm for the
on-line estimation and prediction of the target trajectory and a
vision based object tracker capable of detecting the occlusion
and the reappearance of an object. This system demonstrates
predictive ability for tracking across an occlusion with a
biologically-plausible behavior.

I. INTRODUCTION

The primate visual system is characterized by binocular
visual fields and a space-variant resolution retina with a
high-resolution fovea that offers considerable advantages for
a detailed analysis of visual objects, together with effective
visuo-motor control [1]. The space-variant resolution of the
retina requires efficient eye movements for correct vision.
Two forms of eye movements — saccades and smooth
pursuit — enable us to fixate the object on the fovea.
Saccades are high-velocity gaze shifts that bring the image
of an object of interest onto the fovea. Smooth pursuit occurs
when the eyes track a moving target with a continuous
motion, in order to minimize the image slip in the retina and
make it perceptually stable. Smooth pursuit movements
cannot normally be generated without a moving stimulus
although they can start a short moment before the target is
expected to appear [2]. Smooth pursuit is complicated by the
fact that the initial visual processing in the human brain
delays the stimulus by approximately 100 ms before it
reaches the visual cortex[2][3]. In primates, with a constant
velocity or a sinusoidal target motion, the smooth pursuit
gain, i.e. the ratio of tracking velocity to target velocity, is
almost 1.0 [4]. This cannot be achieved by a simple visual
negative feedback controller due to the long delays (around
100 ms in the human brain), most of which are caused by
visual information processing.

In the monkey brain, the neural pathway that mediates
smooth-pursuit eye movements, described in [5], starts in the
primary visual cortex (V1) and extends to the middle
temporal area (MT) that serves as generic visual motion
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processor. It contributes to smooth pursuit measuring the
target motion in retinal coordinates[6][7][8]. By contrast, the
middle superior temporal area (MST) seems to contain the
explicit representation of object motion in world centred
coordinates [9]. Recent works [10] demonstrate that this area
is responsible for target dynamics prediction. Cortical eye
fields are also involved in smooth pursuit [11]; in particular
the frontal eye field (FEF) can modulate the gain control
[12][13][14] that determines how strongly pursuit will
respond to a given motion stimulus.

When the pursued object is occluded, the smooth eye
movements get effectively interrupted. Subjects switch gaze
across the occluder, with saccades, to continue tracking [15].
This is valid for visual tracking in adults [16][17] and in
infants[18]. Infants react differently from adults to
occlusions of the object. Adults always predict the
reappearance and their gaze arrives at the opposite side of
the occluder slightly before the object. Infants can simply
maintain a representation of the object motion while the
object is occluded and shift gaze to the other side of the
occluder when the conceived object is about to arrive there.
In support of this alternative are the findings that object
velocity is represented in the frontal eye field (FEF) of
rhesus monkeys during the occlusion of a moving object
[19].

An interesting paper about occlusions and eye movements is
proposed by Zhang and colleagues [20]. They describe a
real-time head tracking system, formulated as an active
visual servo problem based on the integration of a saccade
and a smooth pursuit process.

In this work a model of a predictive smooth pursuit is
integrated with saccades to follow a moving target. A
robotic implementation of this model is provided to track an
object (a sphere) that has a sinusoidal dynamics with a
centrally placed occluder. A method based on 3D particle
filter is used to track the target, determine when it is
occluded and detect its reappearance.

II. SMOOTH PURSUIT MODEL

An important biologically plausible smooth pursuit
controller has been proposed by Shibata [21]. This controller
learns to predict the visual target velocity in head
coordinates, based on fast on-line statistical learning of the
target dynamics. In general, the model takes about five
seconds to converge and it is slower than the human smooth
pursuit system [21]. This model has been modified to
improve its convergence speed by using a memory based



internal model that stores the already seen target dynamics.
Figure 1 shows the smooth pursuit model block schema. The
Estimator State module generates the target velocity
estimation according to equation 1 and computes position
by integrating the velocity information. The state vector X is
used by the Predictor to compute the target velocity X in the
next time step. The Inverse Dynamics Controller generates
the necessary torque force that allows the Eye Plant to reach
the predicted velocity (equation 6).  This controller
corresponds to the low-level velocity controller of the robot.
The control model consists in three subsystems: a RLS
predictor mapped onto the MST, which receives the retinal
slip, i.e. target velocity projected onto the retina, with
delays, and predicts the current target motion; the inverse
dynamics controller (IDC) of the oculomotor system,
mapped onto the cerebellum and the brainstem; and the
internal model that recognizes the already seen target
dynamics and provides predictions that are used alternatively
to the RLS predictor.
Since the brain cannot observe the target state vector
x = [x x]7 directly, the first part predicts the current target
velocity x(t) from the delayed estimated target state X(t —
A). This is calculated from the retinal slip information é(t)
and the eye velocity E(t) as follows:

X(t—A) =E(t—A) +e(t—A) 1)
The estimated target position X(t —A) is obtained by
integrating X%(t — A). According to neurophysiological
studies (Kawawaki et al. 2006), the MST area predicts only
the velocity information about the target dynamics. To
predict the target velocity the model uses a second order
linear system to represent the target dynamics:

x(t) = wi'x(t — A) )
where w represents the vector of regression parameters and
x(t) is the predicted target velocity. A recursive least
squares algorithm (RLS) [22]is employed for learning,
because it is robust and it guarantees convergence.
Originally, RLS requires the presence of a target output in
the update rules, but the predictor can only utilize the retinal
signals as the prediction error. Thus, the algorithm is
modified as follows:

P(t-A)x(O)x()TP(t-4)

1
P(t) =5 [P(t ~ )~ OTPe-mx® ©
w(t) =w(t —A) + % e+ 1) @
y(®) = w(t)™x(t) )

where P is the inverted covariance matrix of the input data, x
is the input state and A is the forgetting factor which lies in
the [0, 1] interval. For A = 1, no forgetting takes place, while
for smaller values, the oldest values in the matrix P are
exponentially forgotten. Essentially, the forgetting factor
ensures that the prediction of RLS has an influence windows
of about 1/(1 — 1) data points. This forgetting strategy also
enables the predictor to be adaptive to the changes in the
target dynamics. Another important element of (4) is that it
explicitly shows the requirement for the time alignment of
the predictor output and the error since the learning module
cannot see at time ¢. Thus, all variables in (4) are delayed by
one time step, which requires the storage of some variables
for a short time in memory.
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The second part of the Schaal and Shibata’s model is based
on theory and experiments showing that the cerebellum and
brainstem together act as an inverse dynamics controller of
the oculomotor plant [23][24]. The model assumes that the
IDC has the capability to cancel the dynamics of the eye
plant, making it valid to write:

E(t) = x(t) 6)
In accordance with [25], the prediction in smooth pursuit
movements is about 200 ms. In order to obtain a prediction
of 200 ms, the model shown in figure 1 includes a delay
block before the eye plant, so that the predictor must adapt
its dynamics both to visual delay and eye plant dynamics.
The third part is based on the fact that there is a direct
relationship between the angular frequency of the target
dynamics and the final weights of the model, expressed in
(4). Such values depend only on the angular frequency of the
target dynamics and on the configuration of the system,
being independent from the amplitude and the phase of the
sinusoidal motion. A memory block (Internal Model)
recognizes the target dynamics and it provides the correct
weights values before the RLS algorithm. For this purpose,
such weight values are stored in a neural network (MLP) for
future presentation of learned target dynamics. This network
has 10 neurons in the input layer, 25 neurons in the hidden
layer and 2 neurons in output layer that correspond to the
two regression parameters of RLS algorithm. It uses the non
linear activation sigmoid function with backpropagation
learning rule.
The neural network inputs are a sample series of initial
velocity values of the target dynamics and the outputs are
the correct weight values of the corresponding target
dynamics. Such weights are set to the predictor module in
(4) to guide the RLS algorithm to final values improving the
converging speed. When the new values are ready from the
network, it is necessary to wait for another cycle to verify
the correctness of this prediction. If the retinal slip given by
RLS is greater than the neural network one, the neural
network output is used to predict the target velocity. In the
other case, the RLS goes on learning the target dynamics,
hence it is necessary to train the neural network on the new
data.
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Figure 1 The model of a predictive smooth pursuit with
prediction and learning of the target dynamics. The total time
delay is: A,= A; + Az. The point means the velocity value, the
bar means the estimate value and the hat means the predicted
value




III. OBJECT TRACKER WITH OCCLUSIONS DETECTION

To emulate the gazing behaviour of humans in an
experiment when the object of interest undergoes total
occlusions, we use a method for object detection and
tracking with built-in occlusion detection. Two properties of
the tracking system are important for this work: it must be
able to detect transitions between the states of full visibility
and occlusions of the tracked object and it must be able to
initialize autonomously the tracker when the object of
interest reappears after an occlusion. The detection of the
aforementioned transitions is important for our purposes
because it corresponds to the events when humans toggle
their eye movement behaviour from smooth pursuit to
saccadic. We use the tracking system described in [26],
exploiting the behaviour of the likelihood values it computes
when the object of interest is partially occluded.
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Figure 2: Performance of the particle filter tracker with
moderate occlusion (frame 1 — notice the finger of the human
user), severe occlusion (frame 2 — half the target is non visible

due to image boundary), motion blur (frames 3 and 4) and
large scale changes (frames 5 and 6)

Frame 4

Frame 5

The tracking system we use is based on Particle Filtering
methods and exploits knowledge on the shape, color and
dynamics of the tracked object. Each particle in the filter
represents a hypothetical state for the object, composed of
3D position and velocity. Particles are weighted according to
a likelihood function. To compute the likelihood of one
particle we first place the points of the shape model around
the 3D position encoded in the particle, with respect to the
camera. Then we project these points onto the image plane
obtaining two sets of 2D points. The sets of 2D points lie on
the image on the inner and outer boundary of the silhouette
that the tracked object would project if it were at the
hypothetical position. The idea is that the color and
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luminance differences between the sides of the hypothetical
silhouette are indicators of the likelihood of the
corresponding pose. Object-to-model similarity positively
influences the likelihood, while object-to-background
similarity contributes to likelihood in the opposite direction.
When the object of interest is fully visible, the likelihood
estimated by the filter as a whole is high. When the object
gradually becomes occluded, the tracker continues working,
but the estimated likelihood drops, only to rise again when
the object reappears. The observation model we use enables
us to detect occlusions and reappearance events just by
setting a threshold on the likelihood value and by
reinitializing the tracker, effectively running a detection
process, each time the likelihood is below that threshold.
The initialization is performed by generating a new particle
set, sampling a predefined Gaussian distribution.

Figure 2 illustrates the performance of the tracker under
moderate and severe occlusion, motion blur and drastic scale
changes.

IV. 1CUB HEAD PLATFORM

The RobotCub project has the twin goals of creating an open
and freely-available humanoid platform, iCub, for research
in embodied cognition, and advancing our understanding of
cognitive systems by exploiting this platform in the study of
cognitive development. To achieve this goal it has been
planned to construct an embodied system able to learn: i)
how to interact with the environment by complex
manipulation and through gesture production &
interpretation; and ii) how to develop its perceptual, motor
and communication capabilities for the purpose of
performing goal-directed manipulation tasks. The iCub robot
has a physical size and shape similar to that of an about three
year-old child, and will achieve its cognitive capabilities
through artificial ontogenic co-development with its
environment. The iCub has a total of 53 degrees of freedom
organized as follows: 7 for each arm, 8 for each hand, 6 for
the head, 3 for the torso/spine and 7 for each leg. In order to
guarantee a good representation of the human movements,
the iCub head contains a total of 6 DOFs: neck pan, tilt and
swing and eye pan (independent) and tilt (common). The
eyes cyclotorsion was ignored because it is not useful for
control, and similar image rotations are easily produced by
software. The elevation/depression from both eyes is always
the same in humans, in spite of the existence of independent
muscles. Similarly, a single actuator is used for the robot
eyes elevation (tilt). Eye vergence is ensured by independent
motors. Data regarding accelerations, velocities and joint
range of the oculomotor system of human babies are not
available, and very few studies exist in the literature of
psychology or physiology. Overall, the iCub dimensions are
those of about three-year old human child, and it is supposed
to perform tasks similar to those performed by human
children. First, it has been used the smallest range of
saccadic speeds

as a reference and it has been used the ratio between
neck/eye velocity (14% — 41%) and acceleration (2% — 4%)
as an important design parameter. The eyes mechanism has



three degrees of freedom. Both eyes can pan (independently)
and tilt (simultaneously). The pan movement is driven by a
belt system, with the motor behind the eye ball. The eyes
(common) tilt movement is actuated by a belt system placed
in the middle of the two eyes. Each belt system has a tension
adjustment mechanism. For the necessary acceleration and
speed, the iCub has Faulhaber DC micromotors, equipped
with optical encoders and planetary gearheads. In order to
guarantee easy assembly and maintenance procedures, the
mechanical system architecture is also completely modular,
in such a way that it is possible to remove and replace a
certain module, without having to disassemble the entire
structure. For vision, the main sensory modality, two
DragonFly cameras with VGA resolution and 30 fps are
integrated in the head. These cameras are very easy to
integrate because the CCD sensor is mounted on a remote
head, connected to the electronics with a flexible cable. In
this way, the sensor head is mounted in the ocular globe,
while the electronics are fixed to a non-moving part of the
eye-system. All motor control boards are specially designed
to fit in the size constraints of the robot. They are all
integrated in the head and connect to the remote computer
with a CAN bus. To measure the head position (kinesthetic
information), the motors have magnetic encoders, for
calibration purposes and noting that the protection system
drift in case of overload condition, absolute position sensors
were applied to each neck joint.

V. MODEL OF SMOOTH PURSUIT WITH OCCLUSIONS

This work proposes the integration of different systems in
order to obtain a human like behavior of a predictive smooth
pursuit of a dynamic target, with saccadic shift of gaze in
case of occlusions.. The purpose of this work is to
investigate the applicability of the smooth pursuit model on
humanoid robots in order to achieve a human-like predictive
behavior that can adapt itself to changing of environment
and to learn from the experience. This model is able to
predict target trajectories that present a second order
dynamics also in presence of temporary occlusion. It is
possible to extend this model to cope with more complex
target motions with nonlinear dynamics as suggested in [27].
Figure 3 shows the entire system model. The first module is
the visual tracker that allows rapid recognition of the object
and provides its position in eye coordinates to the next
modules. If the object is visible the information about target
is processed and the smooth pursuit is executed. The smooth
pursuit system requires only measurements of the retinal slip
(the target velocity on the retina) to estimate the next target
velocity. This information is obtained from the difference of
the target position in eye coordinates sent by the tracking
module, with respect to the sampling time of the cameras.
When the system learns to predict the target dynamics the
regression vector values reach convergence and the internal
model stores these values. If the object disappears behind the
occluder the tracking module stops sending data and another
module starts to detect the edges in the image to find where
the object will reappear. At this point the saccade generator
module repeats the prediction of the target dynamic by a
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reiteration of (4) with the complete regression matrix, as
follows:
1 At
Y(t+1) = [W L o] YO %)
Where At is the sampling time of the cameras and Y(t)
represents the velocity and the position of the target. In order
to obtain a long term prediction, the current state Y(t) has to
be set equal to the previous iteration of (7). The (7) is
repeated until the predicted position is equal to the edge
detected from the previous module.
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Figure 3 Model description of the tracking of an occluded
object with prediction of the target dynamic

In this way it is possible to obtain the position and the
velocity of the target reappearance. The robot switches gaze
saccadicly across the occluder to continue tracking and
arrives at the opposite side of the occluder slightly before the
object.

In figure 4 are shown the results obtained from a simulation
of this model on MATLAB Simulink for a sinusoidal
dynamics with angular frequency of 1 rad/sec and amplitude
of 20 rad. The occlusion range was chosen between -10 rad
and 10 rad. In figure 4 are shown the eye position and the
target position. When the target goes behind the occluder,
the eye rapidly reaches the exact reappearance point
predicted. In figure 5 the eye velocity has a peak on
correspondence with the saccadic movement, then it goes to
zero until target reappearance. The velocity of the saccadic
movement reaches 300 rad/sec.
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Figure 4 shows the simulation results of the eye position and the
target position for a smooth pursuit tracking with occlusion of
a sinusoidal target dynamics with angular frequency of 1
rad/sec and amplitude of 20 rad
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Figure 5 shows the simulation results for the eye velocity and
target velocity

VI. RESULTS

Beyond the simulations we have performed results on the
real robotic platform iCub (see Fig. 6).

Figure 6 — The iCub robot detecting, tracking and reaching for
a known object.

The results are illustrated in Fig. 7 and on accompanying
video (http://www-arts.sssup.it/tiki/tiki-
download_file.php?fileId=42). A known target
(a blue ball) is suspended from the ceiling with a string
(snapshot 1). Once it is put into periodic oscillation, the
robot starts estimating and tracking the ball trajectory
(snapshots 2 and 3). It uses the predicted velocity to
command the eye motions. Suddenly (snapshot 4),an
occluder is put close to the ball. At moderate amounts of
occlusions (snapshots 5 and 6), the robot still detects the ball
and keeps tracking it. When the occlusion is almost
complete (snapshots 7 and 8), the smooth pursuit tracking
stops and the robot estimates when and where the ball will
reappear, preparing a saccade. The saccade happens at the
onset of reappearance (snapshots 9, 10, 11 — notice the large
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motion blur) and, at snapshot 12, the eyes are already
centered at the target and ready to keep tracking it.

11 12

Figure 7 — Twelve frames of a tracking sequence illustrating the
robot tracking across occlusions behavior. See explanation in
the main text

During the robotic test phase, due to jitter and irregular
behavior in the network communications between the track




module and the smooth pursuit/saccade module, the RLS
algorithm did not converge as well as expected. In the
accompanying video one can observe that the tracking
across occlusion behavior is functional but has some
irregularities. The internal model is not very accurate due to
noisy training data. This practical problem will be solved in
a short term.

CONCLUSIONS

This work presents a model and a robotic implementation to
address the problem of tracking targets across occlusions
with predictive behavior, like in humans. The tracking is
based on an integration model of smooth pursuit and
saccades. Smooth pursuit is able to predict velocity of target
dynamics. When the target is occluded the smooth pursuit
movement is stopped and a saccade movement is
commanded to the predicted reappearance of the target so
that the gaze arrives at the opposite side of the occluder
slightly before the target. Smooth pursuit is restarted when
the target reappears. The model has been tested on
MATLAB Simulink for sinusoidal dynamics with central
occlusion and it has been implemented on iCub robot with
the same settings and using a methodology based on 3D
particle filter to track the target. This methodology is used to
detect transitions between the states of full visibility and
occlusions and it minimizes the noise during tracking of
moving objects. In the long term we aim at extending the
types of motions the robot is able to estimate and predict.
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