
1

Learning the Nonlinear Multivariate Dynamics of
Motion of Robotic Manipulators

E. Gribovskaya , S. M. Khansari Zadeh , Aude Billard

Abstract—Motion imitation requires reproduction of a dynam-
ical signature of a movement, i.e. a robot should be able to encode
and reproduce a particular path together with a specific velocity
and/or an acceleration profile. Furthermore, a human provides
only few demonstrations, that cannot cover all possible contexts in
which the robot will need to reproduce the motion autonomously.
Therefore, the encoding should be able to efficiently generalize
knowledge by generating similar motions in unseen context.

This work follows a recent trend in Programming by Demon-
stration in which the dynamics of the motion is learned. We
present an algorithm to estimate multivariate robot motions
through a Mixture of Gaussians.

The strengths of the proposed encoding are three-fold: i) it
allows to generalize a motion to unseen context; ii) it provides fast
on-line replanning of the motion in the face of spatio-temporal
perturbations; iii) it may embed different types of dynamics,
governed by different attractors.

The generality of the method to estimate arbitrary non-
linear motion dynamics is demonstrated by accurately estimating
a set of known non-linear dynamical systems. The platform-
independency and real-time performance of the method are
further validated to learn the non-linear dynamics of motion
in an industrial six degree of freedom robotic arm and in a four
degree of freedom humanoid arm.

Index Terms—Non-Linear Autonomous Dynamical Systems
Robot Programming by Demonstration Learning by Imitation
Gaussian Mixture Model and Regression

I. INTRODUCTION

The versatility of tasks that modern robots should accom-
plish has forced researchers to consider alternative methods for
control. Designing task- and robot-specific controllers seems
nowadays a time-consuming and ineffective solution, and
preference gradually changes in favor of flexible and generic
control methods that can adapt to various tasks and robots’
geometries. If, in addition, the robot is expected to operate in
the vicinity of or in collaboration with unskilled human users,
control must be both intuitive and flexible to ensure safe and
easy operability by the human.

Programming by Demonstration (PbD) has appeared as one
way to respond to this growing need for intuitive control meth-
ods [Billard et al., 2008]. PbD designs user-friendly methods
by which a human teaches a robot how to accomplish a
given task, simply by demonstrating this task. One of the
requirements for such a teaching method to be effective is
that the number of training examples should remain small
(one considers between five and ten examples to be a bearable
number for the trainer). Consequently, PbD either relies on
prior knowledge to speed up learning, or results in a partial
representation of the task which can be refined later.

PbD operates at different levels of the task
representation: from copying low-level features of the
motion [Sternad and Schaal, 1999, Ude et al., 2004,
Calinon and Billard, 2008, Nguyen-Tuong et al., 2008,
Schaal et al., 2003] to inferring the user’s intention using
a symbolic representation [Demiris and B.Khadhouri, 2006,
Zollner et al., 2004]. In this paper, we focus on a low-level
representation of motions, therefore we further review work
related to this direction of PbD. Low-level representations
should determine the encoding of the demonstrated trajectories
of motion so that they can be easily modulated to enable
re-use of the skill in novel contexts. An overview of
requirements for effective movement encoding has been
summarized in [Ijspeert et al., 2001].

Most relevant to the present paper are the notions of
compactness and reusability of the representation, i.e. the
encoding should be easily transferrable to related tasks, and
the notion of robustness to perturbations, i.e. an ability of an
encoding to ensure that a motion may be quickly adapted to
perturbation and changes in a dynamic environment.

Dynamical Systems (DS) provide an effective and elegant
means of encoding motions, that fulfills the above three
criteria. DS encode trajectories through a time-independent
function that defines the temporal evolution of the motion.
Generalization of the motion to an unobserved part of the
space results immediately from the application of the function
to the new set of input variables.

In this paper, we consider the problem of estimating a time-
independent model of motion through a set of first order non-
linear multivariate dynamical systems. We exploit the strength
of parametric statistical techniques to learn correlations across
the variables of the system and show that this technique
allows the determination of a coarse representation of the
dynamics. We demonstrate advantages of such an approach
as an alternative to the time-dependent methods, by ensuring
robustness to external spatio-temporal perturbations through
on-line adaptation of the motion.

This paper is divided as follows. Section II reviews related
work on motion learning and estimation of dynamical systems.
Section III-A starts with a formalization of the problem at hand
and the particular approach of this work. This is followed by a
technical description of the modeling approach: Section III-B
introduces the learning approach to estimate the dynamics,
while Section III-C presents an iterative algorithm to improve
stability of the learned dynamics. Finally, in Section IV, we
validate the method by estimating the motion dynamics from
trajectories generated with given dynamical laws; in this way
we may systematically verify approximation qualities of the

2

method. We, further, show how the same framework can be
used to learn the dynamics of motion of a 4 degree of freedom
humanoid robot arm and a 6 degree of freedom industrial arm.
The legend used in graphs throughout the paper is summarized
in Figure 1. The glossary is in Table I.

II. RELATED WORK

To better delineate this paper’s particular contribution to
both machine learning and robotics, we focus our review on
two major themes. First, to situate the dynamical systems
approach taken in our work, we make a brief historical tour
of the large volume of literature on modeling robot motion,
contrasting time-dependent and time-independent representa-
tions. We then turn to the problem of estimating arbitrary
dynamical systems and introduce the particular statistical
technique used here. We briefly summarize the broad division
across parametric and non-parametric statistical methods, and
situate our choice of parametric method in this context.

A. Motion Learning

A core issue within robot control is ensuring that, if
perturbed, the robot’s motion can be rapidly and on-the-fly
recomputed to ensure that the robot ultimately accomplishes
the task at hand. Perturbations may lead the robot to either
depart from its original trajectory (e.g. when slipping or hitting
an object) or be delayed (e.g. when slowed down because of
friction in the gears). In the rest of this paper, we will refer to
the former type of perturbations as spatial perturbations and
to the latter as temporal perturbations.

The vast majority of work on motion learning has addressed
essentially the problem of being robust to spatial perturbation.
Very little work has been yet done on handling temporal
perturbations, which is core to the model we develop here.
Next, we review these different approaches.

B. Time-dependent Modeling Approaches

Traditional means of encoding trajectories are based on
spline decomposition after averaging across training trajec-
tories [Hwang et al., 2003, Andersson, 1989, Yamane et al.,
2004, Aleotti et al., 2005]. Spline decomposition remains a
powerful tool for quick trajectory formation. It is, however,
heavily dependent on a heuristic for segmenting and aligning
the trajectories. Furthermore, spline representation, not being
statistically-based, may have difficulties in coping with noise
in data that is inherent in the robotic application.

Non-linear regression techniques were proposed as a statis-
tical alternative to spline-based representation [Calinon et al.,
2007, Schaal and Atkeson, 1998, 1994, D. et al., 2008]. These
methods allow the systematical treatment of uncertainty by
assuming the noise in data and, therefore, by estimating
actual trajectories as a set of random variables with learned
parameters.

However, similarly to spline-based approaches, regression
techniques depend on an explicit time-indexing and virtually
operate in ”open-loop”. The lack of any kind of feedback
makes regressions sensitive to both temporal and spatial per-
turbations. To compensate for this, one needs to introduce an

external mechanism to track potential deviations from the de-
sired trajectory during reproduction. Adaptation to deviations
then relies on a heuristic to re-index the new trajectory in
time or extrapolate in space. Such re-indexing or extrapolation
often comes at the cost of deviating importantly from the
desired velocity and acceleration profile, making the motion
look ”unnatural”. Furthermore, finding a good heuristic is
highly task-dependent and becomes particularly not-intuitive
in multidimensional spaces [Schaal et al., 2003].

a 2D projection of a Gaussian function

(a two-standard deviation radius is chosen)

Training set

Trajectories of learned dynamics

Trajectories of an actual dynamics

Attractor

Fig. 1. Legend for the Figures in the paper.

Time-independent models, such as autonomous dynamical
systems (to which we will further refer to as DS), were
recently advocated as an alternative to the above approaches1.
Models based on DS are advantageous in that they do not
depend on an explicit time-indexing and thus provide a closed-
loop controller, while being able to model arbitrary non-linear
dynamics. Removing the explicit time-dependency comes at a
cost, as it re-introduced an old problem, namely the need to
consider stability of the control policy.

Next, we review current approaches to DS modeling of robot
motion and point out the limitations of these methods. For a
detailed discussion on advantages and disadvantages of dy-
namical systems encoding of motion, see also [Ijspeert et al.,
2001, Schaal et al., 2003, 2001, Schoner and Santos, 2001].

C. Dynamical Systems Modeling of Motion

A number of recent approaches in PbD, including our
prior work, investigate the use of dynamical systems for
modeling robot motions [Ijspeert et al., 2001, Righetti et al.,
2006, Dixon and Khosla, 2004, Ijspeert and Crespi, 2007,
Hersch et al., 2008]. While [Dixon and Khosla, 2004] focuses
on fitting the parameters of a first-order linear dynamical
system into training data, the other above works tackle a
problem of modulating a predefined linear dynamics with a
non-linear estimate of a trajectory [Hersch et al., 2008] or
a velocity profile [Ijspeert et al., 2001, Righetti et al., 2006].
The authors choose an uni-variate spring and damper system
as an underlying linear dynamics. In such a way, they avoid
an issue of stability of approximation that may occur if one
learns an actual dynamics from data. However, this solution
comes with its drawbacks: (1) uni-variate encoding discards
information about correlation between degrees of freedom, that
may be crucial for faithful reproduction (see Figure 23 for

1DS formulation embeds the time-dependency of a system in the math-
ematical formulation of the problem by using time derivatives of the state
variables.

3

−20 −15 −10 −5 0 5
−4

−2

0

2

4

x 1

x
2

Fig. 2. A two-dimensional theoretical dynamical system is estimated from
five training samples (dotted lines). using Dynamical Motion Primitives
[Ijspeert et al., 2002](red solid line) and the method proposed in this paper
(blue solid line). As approximation with Dynamical Motion Primitives re-
quires combining statistical results with a predefined dynamics, it may deform
an actual path to follow, as it can be seen on the graph.

illustration of the uni-variate encoding problem). (2) Coupling
of the output of a predefined linear DS with a regression
estimate makes the overall system dependent on the temporal
synchronization between the two signals and thus in effect
time-dependent (see Table VI for a formal comparison between
the proposed approach and the work [Ijspeert et al., 2001]). To
handle temporal perturbations, one would need a heuristic to
maintain the synchronization. This would, however, no longer
guarantee that the overall system is globally asymptotically
stable. (3) By ensuring that the stable DS takes precedence
over the estimate when coming close to the attractor or
after a given time period, one can show global stability of
the complete estimate [Ijspeert et al., 2002]. In effect, the
global dynamics of motion is increasingly dominated by the
stable linear dynamical system, hence leading the motion to
progressively depart from the learned dynamics. This effect
is illustrated in Figure 2, where we see that the trajectory is
distorted as the system approaches the target. To ensure that
the modulation still influences the dynamics of the motion
when approaching the target, the method relies on using a
large number of Gaussians spread across the data points.

In this paper, we develop an iterative procedure to learn
a statistical estimate of an arbitrary multivariate autonomous
dynamical system. We discuss the problem of stability of a
learned estimate and propose an empirical procedure to verify
stability and the region of applicability of the estimate. This
relieves us from the need of using another a priori stable
dynamical system and ensures robustness against spatial and
temporal perturbations.

D. Estimating a Dynamical System

Data-driven methods for estimating dynamical systems con-
sider multivariate input-output data as instances of a dynamical
system and seek an estimate of the model that relates best
these pairs of datapoints. Building a local approximation of
the dynamics has been first reviewed within the time series
analysis [Priestley, 1980, Chamroukhi et al., 2009, Ljung,

2004]. These works consider solely uni-dimensional data with
a major motivation of predicting time series.

Analysis of dynamics has gradually shifted to state-space
representation as it allows a representation of more sophis-
ticated phenomena [Aoki, 1990, Crutchfield J.P., 1987]. The
vast majority of these works focus on estimating linear
dynamics [Dixon and Khosla, 2004, Ryoung K. Lim, 1998],
a restrictive assumption for robotic applications. Recently,
with the growing interest in chaos theory, more developed
approaches have been proposed that allow approximation of
complex dynamics [Crutchfield J.P., 1987, Wang et al., 2008].
While, several optimistic results in simulations have been
presented [Carroll, 2007, Xie and Leung, 2005], their appli-
cability to practical tasks with a small number of observed
data containing noise remains to be verified.

The major body of numerical approaches of non-linear
dynamical systems perform function approximation using
different orthogonal polynomials (Chebyshev polynomials,
B-splines [Lee, 1986], Radial Basis Functions [Buhmann,
2003] (RBFs)). Recently, many works have addressed the
approximating properties of RBFs [Tomohisa et al., 2008,
Travis et al., 2009, Wei and Amari, 2008]. RBFs have been
proved to form universal approximators of any function on a
compact set [Park and Sandberg, 1991]: any level of precision
of the approximation may be achieved by considering an
exhaustive number of basis functions; however, the quality of
the approximation heavily depends on tuning a considerable
amount of parameters. Thus, the problem of determining a
tuning procedures optimum according to different criteria is
a recurrent subject in the domain [Buhmann, 2003]. Fur-
thermore, as the approximation with RBFs falls naturally
into the category of non-parametrical methods discussed next,
they suffer from the same types of limitations: RBFs better
suits for approximation of uni-variate signals and quality of
approximation rapidly deteriorates with an increase in the
number of dimensions.

E. Statistical Encoding

Classically, the whole body of statical methods can be
broadly divided into parametric and non-parametric ap-
proaches.

Non-parametric methods used in robot motion estimation
include k-nearest neighbors [Moore, 1990], Gaussian Pro-
cesses [Deisenroth et al., 2009, Nguyen-Tuong et al., 2008],
Locally Weighted Regression, [Hardle, 1991, Muller, 1988,
Schaal and Atkeson, 1998, 1994] and a combination of these
[Nguyen-Tuong et al., 2008]. Non-parametric methods are
advantageous over parametric methods as they make little
assumptions about the form of the underlying distribution
function to estimate. Moreover, due to the local nature of their
estimate, non-parametric methods are well suited for accurate
data fitting in low-dimensional spaces [Schaal and Atkeson,
1998, 1994]. Initially proposed for uni-dimensional problems,
the above non-parametrical methods suffer from the curse of
dimensionality [Bellman, 1957]: sparsity of training data in
high-dimensional spaces makes accurate estimation of param-
eters almost impossible. Parametric methods, in contrast, are

4

better suited to model a multivariate dataset. They, however,
rely on heuristics to choose the underlying parameters effi-
ciently.

The Gaussian Mixture Models (GMMs) and based on them
Gaussian Mixture Regression (GMR) are parametric methods.
They are thus better suited for regression on multi-dimensional
data [Sung, 2004]. Learning with GMM is classically done
using Expectation-Maximization (EM), the iterative algorithm
that optimizes the likelihood of the mixture of Gaussians over
the data. Optimal performance relies, however, on choosing
the number of Gaussians and on the stopping criterion of
EM (see [McLahlan and Peel, 2000] for a review). While
several methods have been proposed to automatically estimate
these two parameters, with the Bayesian Information Criterion
(BIC2) being the most generic, GMM estimation using EM
may lead to suboptimal results and remain very sensitive to
the initialization conditions. Here, we show that, for both our
problem at hand and in practice, these known limitations are
not an impediment and that an iterative method for choosing
the number of Gaussians leads to good performance. Most
importantly, we show that the method converges quickly and
relies on very few parameters in comparison to parametric
methods.

III. METHOD

A. Problem Statement

Consider that the state3 of our robotic system can be unam-
biguously described by a variable ξ and that the workspace of
the robot forms a sub-space X in RN .

Consider further that the state of our robotic system is
governed by an Autonomous Dynamical System 〈X , f, T 〉 (as
per Definition 1-2, Table I). Then, for all starting locations
ξ0 ∈ X , the temporal evolution of our robotic system is
uniquely determined by the state transition map (Definition
2, Table I) f(t, t0, ξ0) = ξ(t), ∀ξ0, ξ ∈ X .

Let us further assume that the state transition map f is a
non-linear continuous and continuously differentiable function
and that the system is driven by a first order differential
equation4 with a single equilibrium point ξ̄, such that:

∀t ∈ T = [t0;∞]; [ξ; ξ̇] ∈ X ⊂ RN (1)

ξ̇(t) = f(ξ(t)) (2)
˙̄ξ = f(ξ̄) = 0. (3)

Let the set of M N-dimensional demonstrated datapoints
{ξi, ξ̇i}M

i=1 be instances of the above motion model. The
problem consists then of building an estimate f̂ of f based on

2BIC introduces a penalty term for increasing the number of parameters in
the model over the resulting improvement in the modeling performance.

3The state of a dynamical system represents the minimum amount of
information required to describe the effect of past history on the future
development of this system [Hinrichsen D., 2000].

4Considering solely first order dynamical systems is not restrictive to
learning only first order relationships between trajectory and velocity, as one
can always convert dynamics of an arbitrary order into a canonical system of
first order ODEs.

TABLE I
GLOSSARY OF DEFINITIONS

Definition 1: The state-space X ⊂ RN includes all possible instantiations of ξ,
such that ξ(t) ∈ X at each time step t ∈ T = R+ = [0;∞].

Definition 2: A dynamical system is the tuple 〈X , f, T 〉, with f : t → ft a
continuous map of X onto itself.

Definition 3: A dynamical system is differentiable if ∃f : T ×X → X such that
for all t0 ∈ T, ξ0 ∈ X the problem:

ξ̇ = f(t, ξ(t)), t ≥ t0, t ∈ T

ξ(t0) = ξ0

has a unique solution.

A dynamical system governed by a time-independent transition map with
f(t, ξ(t)) , f(ξ(t)) is an Autonomous Dynamical System.

Definition 4. An equilibrium state ξ̄ ∈ X of a dynamical system is such that

f(t, t0, ξ̄) = ξ̄.

Definition 5. An equilibrium state ξ̄ ∈ X is stable if ∃ε > 0 and δ = δ(ε) such
that

∀ξ0 ∈ B(ξ̄, δ) ⇒ f(ξ0) ∈ B(ξ̄, ε),

B(ξ̄, δ) ⊂ X is a hypersphere centered at ξ̄ with radius δ. ξ̄ is an attractor of f .

Definition 5. An attractive state is an equilibrium state ξ̄ of a local flow, if there
exists ρ > 0 such that:

∀ξ0 ∈ B(ξ̄, ρ) ⇒ lim
t→∞

f(ξ0) = ξ̄.

B(ξ̄, δ) ⊂ X is a hypersphere centered at ξ̄ with radius δ. ξ̄ is an attractor of f .

Definition 6. An equilibrium point ξ̄ is asymptotically stable if it is both stable and
attractive.

Definition 7. A set ∆ ⊂ X is a Region of Attraction (or Basin of Attraction) of an
equilibrium ξ̄ if:

∆(ξ̄) = {ξ0 ∈ X; lim
t→∞

f(ξ0) = ξ̄}

See Figure 23-II for illustration.

Definition 8. A dynamical system is globally asymptotically stable at the equilibrium
ξ̄ if ξ̄ is an asymptotically stable attractor and ∆ ≡ X .

the set of demonstrations. To this end, we will approximate
the function in a subregion5 C ⊂ X , so that:

f̂ : C → C (4)

f̂(ξ(t)) u f(ξ(t)),∀ξ ∈ C.

C is further referred to as the region of applicability of a
learned dynamics.

Without loss of generality, we can transfer the attractor to
the origin6, so that ξ̄ = 0 ∈ C ⊂ X is now the equilibrium
point of f and by extension of its estimate f̂ , i.e. f̂(0) =
f(0) = 0. If C is contained within the region of attraction
∆ of ξ̄ (see Definition 7, Table I), then the estimate f̂ is
asymptotically stable at ξ̄ in C and any motion initiated from
ξ(t0) ∈ C will asymptotically converge to the target ξ̄.

5Estimating the dynamics in the whole state-space X would be practically
infeasible due to the excessive number of demonstrations that this would
require.

6To simplify the notation, we keep the same notation for the domains C
and X after translation at the origin.

5

B. Approximating the Dynamics with Gaussian Mixture Re-
gression

To construct f̂ from the set of demonstrated trajectories,
we follow a statistical approach and define f̂ as a non-linear
combination of a finite set of Gaussian kernels, using Gaussian
Mixture Models (GMM).

GMMs define a joint probability distribution function
P(ξi, ξ̇i) over training set of demonstrated trajectories
{ξi, ξ̇i}, i = 1..M , M is the number of demonstrations, as a
mixture of a finite set of K Gaussians G1..GK (with µk and
Σk being the mean value and covariance matrix of a Gaussian
Gk):

P(ξi, ξ̇i) =
1
K

K∑

k=1

Gk(ξi, ξ̇i; µk, Σk) (5)

and

µk = [µk
ξ ; µk

ξ̇
] and Σk =

(
Σk

ξ Σk
ξξ̇

Σk
ξ̇ξ

Σk
ξ̇

)
(6)

Where each Gaussian probability distribution Gk is given
by:

Gk(ξi
t, ξ̇

i
t;µ

k,Σk) = (7)
1√

(2π)2d|Σk|e
− 1

2 (([ξi
t,ξ̇i

t]−µk)T (Σk)−1([ξi
t,ξ̇i

t]−µk)).

The model is initialized using the k-means clustering al-
gorithm starting from a uniform mesh and refined iteratively
through Expectation-Maximization (EM) [Dempster et al.,
1977].

To generate a new trajectory from learned GMMs, one can
then sample from the probability distribution function given
by Eq.5. This process is called Gaussian Mixture Regression
(GMR).

Taking the posterior mean estimate of P(ξ̇|ξ), the estimate
of our function ˙̂

ξ = f̂(ξ) can then be expressed as a non-linear
sum of linear dynamical systems, given by:

˙̂
ξ =

K∑

k=1

hk(ξ)(Akξ + Bk), (9)

where Ak = Σk
ξ̇ξ

(Σk
ξ)−1, Bk = µk

ξ̇
− Akµk

ξ ,

hk(ξ) = P(ξ;µk
ξ ,Σk

ξ)∑K
k=1 P(ξ;µk

ξ ,Σk
ξ)

, hk(ξ) > 0, and
∑K

k=1 hk(ξ) = 1.

Such a rewriting will prove useful when studying the
stability of the estimate, as will be discussed in Section III-C.

A geometric illustration of the GMR inference in the case
of single Gaussian is presented in Figure 3 and the GMR pro-
cedure is summarized in Table II. Figure 4 further illustrates
the encoding process from GMM to GMR for a non-linear
dynamical system with a single attractor.

TABLE II
GAUSSIAN MIXTURE REGRESSION

Let us assume that we can for each input datapoint ξI match an output datapoint
ξO , the joint probability of input and output data is then modeled using Gaussian
Mixtures. The probability that a datapoint η = [ξO; ξI] belongs to the GMM is
defined by

P(η) =

K∑

k=1

πk N (η; µk, Σk) =

=

K∑

k=1

πk
1√

(2π)D|Σk|
e
− 1

2

(
(η−µk)>Σ−1

k
(η−µk)

)

where πk are prior probabilities and N (µk, Σk) are Gaussian distributions defined
by centers µk and covariance matrices Σk , where input and outputs components are
represented separately as

µk =

[
µIk
µOk

]
, Σk =

[
ΣIk ΣIOk

ΣOIk ΣOk

]
.

Gaussian Mixture Regression allows to compute for a given input variable ξI and a
given component k, the expected distribution of ξO as:

P(ξ
O|ξI , k) ∼ N (η̂k, Σ̂k), where

η̂k = µOk + ΣOIk (ΣIk)−1(ξI − µIk),

Σ̂k = ΣOk − ΣOIk (ΣIk)−1ΣIOk .

where hk = P(k|ξI) is the probability of the component k to be responsible for
ξI

hk =
P(k)P(ξI |k)∑K
i=1 P(i)P(ξI |i) =

πk N (ξI ; µIk , ΣIk)∑K
i=1 πi N (ξI ; µIi , ΣIi)

.

Alternatively, by using the linear transformation property of Gaussian distributions,
the conditional expectation of ξO given ξI can be defined approximately defined
by a single normal distribution with the parameters:

µ̂ =
K∑

k=1

hk µ̂k , Σ̂ =
K∑

k=1

h
2
k Σ̂k. (8)

Fig. 3. The geometric illustration of Gaussian Mixture Regression inference
(see also Table II). GMR approximates our dynamical systems through a
non-linear weighted sum of local linear models: each regression matrix
Ak = ΣOIk (ΣIk)−1 defines coefficients of the local linear fit. Here, we
display the effect of fitting with a single Gaussian a pair of input and output
signals ξO

i ∈ RM , ξI
i ∈ RP respectively. The projection of the regression

signal to the subspace spanned by {ξO,m
i , ξI,p

i } is a line with a slope given
by the elements Amp

k of the regression matrix (i.e., ξO,m
i = Amp

k ξI,p
i).

The mixture of covariance matrix in GMM defines a probabilistic envelope
around the regression signal. Thus, to each input ξI

i is associated a probability
distribution function for output P(ξO

i |ξI
i), with mean ξO

i . In the present
work, we exploit the envelope to determine the boundaries for our generalized
inverse kinematics solution when the solution is not exactly the regression
signal ξO

i .

6

mi i i1 2 3

ξ

ξ

ξ

1

2

3

ξ
1

ξ
2

C

C

I. Encoding of aritrary dynamics with GMM/GMR

II. Verification of spurious attractors and a considered region on a mesh

0 100 200 300
−100

−50

0

50

ξ1

ξ
2

0 100 200 300
−100

−50

0

50

ξ1

Fig. 4. I. Illustration of a GMM/GMR encoding of an arbitrary dynamics. Top
left: Two-dimensional projection of the data with superimposed the Gaussian
Mixture envelope. Top right: All trajectories regenerated using Gaussian
mixture regression when starting from 20 different locations in space converge
correctly to the the origin, the attractor of the system. Bottom left and right: in
blue, the region of applicability C that embeds all demonstrated trajectories.
To empirically determine if C is a region of attraction, C is sampled equally
and one measures if all trajectories originating from each of sampled point
converges correctly to the target.

C. Stability Analysis

Stability analysis of linear dynamical systems is well-
studied subject [Khalil, 1996]: one either constructs a Lya-
punov function for the system or analyzes the eigenvalues of
the control matrix.

In contrast, there is no unique method to analyze the stabil-
ity of non-linear dynamical systems and theoretical solutions
exist only for particular cases. Classically, stability analysis
of non-linear dynamical systems is performed in two steps:
first, the system is linearized in a neighborhood around the
points of interest (the attractors) and their asymptotic stability
is verified; second, analysis of the region around the attractors
is done to determine the extent of the region of attraction.

Methods to analytically estimate the regions of attraction
(see Definition 7, Table I) are often based on the construction
of a Lyapunov function gradually expanding its region of
validity [Bai et al., 2007, Giesl, 2008, Genesio et al., 1985].
Such a procedure however produces a rather coarse estimation
of the region of attraction and may fail to identify regions with
non-convex boundaries. Alternative approaches take a geomet-
rical perspective by reversing the flow of motion (by analyzing
a dynamical function with a opposite sign) starting from the at-
tractor and finding repellers and boundaries for a region of at-
traction from the reversed trajectories [Loccufier and Noldus,
2000]. These methods are more accurate but require consid-

−15 −10 −5 0 5
−3

−2

−1

0

1

2

x

x
2

Effect of increasing a number of Gaussians in Encoding a dynamics

1 Gaussian

−15 −10 −5 0 5
−5

0

5

10

15

20

x1

x
2

3 Gaussian

−15 −10 −5 0 5
−15

−10

−5

0

5

x1

x
2

−15 −10 −5 0 5
−3

−2

−1

0

1

2

3

4

x1

x
2

7 Gaussian

−15 −10 −5 0 5
−4

−2

0

2

4

x1

x
2

−15 −10 −5 0 5
−20

−15

−10

−5

0

5

x1

x
2

2 Gaussian

5 Gaussian 6 Gaussian

Fig. 5. Improvement in the stability of approximation with the increase the
number of Gaussian components

erable computation time, a known structure of an attractor’s
landscape (number of existing attractors and repellers).

Theoretical estimation of the region of attraction in the
general case of multivariate non-linear systems is thus still an
open problem. In practice, one relies on numerical procedures
for evaluating whether a given region of applicability is a
region of attraction. Here, we follow such an approach.

We start from the observation that GMR gives us a non-
linear weighted sum of linear dynamical systems; see Eq. 9.
Stability of the system is governed by the GMR parameters
(the matrices Ak, Bk and mixing coefficients hk), which
are learned during training. Since the stability of the learned
dynamics depends on the parameters of the training algorithm
(Expectation Maximization) in Section III-D) we will show
that a modification of the GMM procedure to build the mixture
results in an estimate locally stable around the target.

1) Local stability at the origin: Following from the hy-
pothesis that the origin is an attractor of the true control
law ξ̇ = f(ξ(t)), we must ensure that its estimate given
by (9) is also stable at the origin. Recall that for a point
to be an attractor of the system (see Definition 5, Table I),
there must exist a region around it where all trajectories are
asymptotically stable.

Let us assume that in the neighborhood of the origin the
system is governed solely by the last Kth gaussian 7. In other
words, let us assume there exists a neighborhood of the origin,
where for points ξ in this neighborhood all mixing coefficients
expect the Kth are zeros: ∃B(ε)such that ∀ξ ∈ B(ε) hk(ξ) '
0 k = 1..K − 1, where B(ε) is a hypersphere of radius ε. In
this region, the system governed by Eq.9 reduces then to:

ξ̇ = Aξ + B (10)

with A = ΣK,ξ̇ξΣ
−1
K,ξ and B = µK,ξ̇ −AµK,ξ.

The system above, driven by Eq. 10, will be asymptotically
stable if the eigenvalues of the matrix A are all strictly
negative. For a m × m-dimensional matrix to be negative
definite, all its i-th order leading principal minors should be

7In practice, as we seek to avoid the over-fitting, the Gaussians are
sufficiently set apart, therefore at the origin the influence of all other Gaussians
except for the last one becomes numerically zero.

7

negative if i is odd and positive if i is even; stability, therefore,
is guaranteed when the following set of constraints is satisfied:

‖Aξ̇ξ,[1:i,1:i]‖(−1)i < 0 ∀i = 1, ..., m that is satisfied if
(11)

(1) aii < 0 and (2) aij ¿ aii ∀ i, j = 1, ..., m and i 6= j,

(12)

where Aξ̇ξ = {aij}N
i,j=1.

Figure 6 illustrates geometrically the effect of the local
stability condition on the dynamics of motion and the form
of the Gaussian. When projected on the {ξi, ξ̇i} axes, the
Gaussian corresponds to an ellipse with the main axis forming
a negative slope. This results in a homogenous flow of motion
toward the attractor along all dimensions.

For EM to result in such an elongated Gaussian, training
data must homogeneously cover the space of motion around
the target. This means that one should show the robot how to
approach the target by uniformly starting all around the target.
In practice, because the training set is finite and gives only
a partial coverage of the state space, GMM estimate will be
imprecise, resulting in both a shift of the slope of the Gaussian
and a shift of the attractor’s location, see Figure 6. Additional
measures should, thus, be taken to guarantee the convergence
to the target, which we describe next.

D. Practical approach to ensuring and analyzing stability

1) Ensuring local stability empirically: To overcome the
lack of uniformly distributed training data around the origin
in the experiments presented here, we generate additional so-
called synthetic data by rotating a subset of training data,
selected within a small neighborhood, around the origin. In
addition, we set the center of the last Gaussian of the GMM
at the target, i.e. at the origin (µK,ξ = µK,ξ̇ = 0), and do not
update this center during training. This procedure is illustrated
in Figure 6.

Fig. 6. Influence of the accurate positioning of the last Gaussian at the
origin. Top: the last gaussian is positioned at the origin through addition of
synthetic datapoints, that guarantees asymptotic stability of the system in the
neighborhood of the origin, as can be seen from the vector field trajectories
(the very right graph). Bottom: however, the real data asymptotically converge
to the origin (the very left graph), the statistical EM does not automatically
position the last Gaussian at the origin, that leads to the convergence to the
spurious attractor (the very right graph).

The system driven by the truncated dynamics is given by
Eq.(10) and a system generated through this procedure is
ensured to be asymptotically stable within a neighborhood
around the origin. Next, we describe a procedure by which
we can empirically estimate boundaries of the region of
applicability C.

TABLE III
MODEL TRAINING

1 Collect a dataset of demonstrations and initialize C (see Section III-D2).

2 Add synthetic data around the target

3 Choose an initial number of GMM components K
(K = 2 in the experiments reported here)

4 LOOP until stable approximation is found

5 Train the joint probability P(ξ, ξ̇) with Expectation Maximization
[Dempster et al., 1977]:

6 Verify local stability at the origin Eq. (12)

6 IF (the origin is not asymptotically stable)
THEN increase the number of GMM components K = K + 1

ELSEIF (estimate of C does not include all training trajectories) OR
(∃ spurious attractors inside the region C)
THEN add training data AND retrain

END

8 END

2) Determining the region of stability empirically: As men-
tioned in Section III-A, estimating dynamics in the whole
state-space X is impractical. Instead, we will estimate stability
locally within a subset C ⊂ X . C includes training data points
and lies inside the robot’s workspace. Initialization of C is
data-driven: size of C along each dimension is defined by the
amplitude of the training dataset along this dimension.

After training, the initial guess regarding C should be
restimated, to empirically verify that C is a region of attraction
of the origin and that it does not include any other attractors
. We follow a numerical procedure in which we integrate
trajectories forward starting from a uniform mesh defined on
the boundaries, and verify that all the trajectories converge
toward the origin.

To do this, we construct a mesh M covering boundaries
of C: M(τ1..τN) = {(ξ1

i1
..ξN

iN
) = (i1τ1..iNτN), i1 =

1..n1, ..., iN = 1..nN}, where τ1 = c1/n1 ..τN = cN/nN ,
c1 .. cN – size of each of dimensions of C; n1.. nN – size of
the mesh along each of dimensions in RN (see Figure 4-II).

We integrate trajectories starting from each node (ξ1
i1

..ξN
iN

)
on the mesh M and verify that the velocity is zero only at the
origin, thus ensuring that only the origin of the system is an
attractor. If this condition is satisfied all trajectories starting
inside C will not leave the boundaries, due to the properties
of differential equations.

To improve stability, we increment the number of Gaussians
K and re-estimate the system using EM. Augmenting the
number Gaussians allows a more precise encoding of the
dynamics locally along the trajectory; see Figure 5. Since
instabilities result often in the motion exiting the desired
trajectory (e.g. if there are sharp turns in the trajectory that
have been poorly approximated by the mixture), increasing
the granularity of the encoding ensures that the system will be
better guided along the various non-linearities of the trajectory.

Table III summarizes the steps of the complete procedure by
which we iteratively test and re-estimate the system to improve

8

and ensure local stability within the domain C.

IV. EXPERIMENTAL RESULTS
To validate the performance of the proposed method itself

without blurring it with noise inherent to human demonstra-
tions, we first tested its ability to reconstruct given theoretical
dynamical systems. With a known system we may generate a
clean training set, learn an approximation of the dynamics and
further compare how well the learned dynamics approximate
the real one.

Further, we verify the applicability of the method to robotics
by teaching two robots manipulation tasks. We report on each
of these next.

A. Learning Theoretical Dynamics

The method was validated to estimate four two-dimensional
dynamical systems (Systems 1-4) and one three-dimensional
dynamical system (System 5), each of them contains different
number of attractors and exhibits different stability properties.
In each case, we generated six trajectories using the theoretical
dynamics and used these for training the GMM. When the
dynamical system had more than one asymptotically stable
attractor, trajectories were generated only in the subpart of the
state space around one of them.

Note, the legend for Figures 7 - 10 is described in Figure 1.
Each of the figures encompasses, in the first row, plots giving
a general view of the original dynamics with vector fields (a)
and three-dimensional phase plots (b-c), in the second row, a
view of the GMM superimposed to the training data, and in
the 3rd row, vector field (a) and phase plots (b-g) of the the
estimated dynamics superimposed on the original dynamics.

System 1.

ẋ1 = −x1 + 2x2
1x2; (13)

ẋ2 = −x2.

The system has a single locally asymptotically stable equi-
librium point at the origin. We approximate the dynamics of
this system in a region [−4; 0] × [0; 2], where it is locally
asymptotically stable. Results are presented in the Figure 7.

System 2

ẋ1 = 700− 2x1 + 200x2e
25x1−104

x1 ; (14)

ẋ2 = 1− x2 − x2e
25x1−104

x1 ;

The system has two equilibrium points – one asymptot-
ically stable (x1 = 335; x2 = 0.089) and one unstable
(x1 = 489; x2 = 0.5). We approximate the dynamics in the
region [0; 400] × [−2; 2], where it is locally asymptotically
stable. Results are presented in Figure 8.

System 3

ẋ1 = −x2; (15)

ẋ2 = x1 − x3
1 − x2;

The system has three equilibrium points - two unstable
(x1 = −1; x2 = 0 and x1 = 1; x2 = 0) and one asymptotically

−5

0

5 −2

0

2
−100

−50

0

50

100

x 2x 1

ẋ
1

−5

0

5 −2

0

2

−2

−1

0

1

2

x 2x 1

ẋ
2

−5 0 5
−2

−1

0

1

2

x 1

x
2

−4 −3 −2 −1 0 1
−0.5

0

0.5

1

1.5

2

x 1

x
2

−4 −3 −2 −1 0 1
−2

−1.5

−1

−0.5

0

0.5

x 1

ẋ
2

−0.5 0 0.5 1 1.5 2
−10

0

10

20

30

40

50

60

x 2

ẋ
1

−4 −3 −2 −1 0 1
−10

0

10

20

30

40

50

60

x 1

ẋ
1

−0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

x 2

ẋ
2

II. Training Data and GMM Encoding

I. Actual Dynamics

−4 −3 −2 −1 0 1
−0.5

0

0.5

1

1.5

2

x 1

x
2

III. Reproduction

−5

0

5

−2

0

2

−3

−2

−1

0

x 2
x 1

ẋ
2

−5

0

5 −2

0

2
−50

0

50

100

x 2
x 1

ẋ
1

 (7 Gaussians)

−0.5 0 0.5 1 1.5 2
−20

0

20

40

60

80

x 2

ẋ
1

−6 −4 −2 0 2
−2.5

−2

−1.5

−1

−0.5

0

x 1

ẋ
2

−0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

x 2

ẋ
2

−6 −4 −2 0 2
−20

0

20

40

60

80

x 1

ẋ
1

(a) (b) (c)

(a)

(b) (c)

(d) (e)

(a) (b) (c)

(d) (e) (f) (g)

Fig. 7. System 1. The proposed method encodes this system with 7
Gaussians; the learned system exhibits good precision in the area covered by
demonstrations, outside this area the precision is also admissible except for a
region in the direct proximity to y-axis, where actual trajectories represent an
excess curvature as approaching to the equilibrium, e.g., a trajectory starting
at the bound x2 = 2. In this region, a flat part of trajectories is reproduced
well, though the steep parts that were not demonstrated are attracted towards
the region covered by the training set.

II. Training Data and GMM Encoding

I. Actual Dynamics

III. Reproduction

 (2 Gaussians)
(a) (b) (c)

(a)

(b) (c)

(d) (e)

(a) (b) (c)

(d) (e) (f) (g)

0 100 200 300 400 500
−2

−1

0

1

2

x 1

x
2

0
200

400
600 −2

0

2

−20

0

20

x 2

x 1

ẋ
2

0 100 200 300 400 500
−2

0

2

−5000

0

5000

10000

x 2

x 1

ẋ
1

100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5

x 1

x
2

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

x 2

ẋ
2

100 200 300 400 500
−0.5

0

0.5

1

1.5

2

2.5

x 1

ẋ
2

−2 −1 0 1 2
−200

−100

0

100

200

300

400

500

x 2

ẋ
1

100 200 300 400 500
−200

−100

0

100

200

300

400

500

x 1

ẋ
1

0
100 200 300

400 500
−2

−1

0

1

2

x 1

x
2

ẋ
1

0
100

200
300

400
500

−2

0
−5000

0

5000

10000

x 1

0

200

400

600 −2

−1

0

1

2

−20

0

20

x 2
x 1

ẋ
2

−2 −1 0 1 2
−2

−1

0

1

2

3

x 2

ẋ
2

−2 −1 0 1 2
−200

0

200

400

600

800

x 2

ẋ
1

0 100 200 300 400
−2

−1

0

1

2

3

x 1

2
ẋ

0 100 200 300 400
−200

0

200

400

600

800

x 1

ẋ
1

Fig. 8. System 2. As the behavior of the system in the considered area is
relatively simple, 2 Gaussians are sufficient to achieve the good performance,
even in areas unseen during demonstration. Interestingly, the learned dynamics
is extrapolated very well beyond the area covered by the training set.

9

II. Training Data and GMM Encoding

I. Actual Dynamics

III. Reproduction

 (6 Gaussians)
(a) (b) (c)

(a)

(b) (c)

(d) (e)

(a) (b) (c)

(d) (e) (f) (g)

−1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

x1

x
2

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

x2

ẋ
1

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

x1

ẋ
2

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

x2
ẋ

2

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

x1

ẋ
1

−1

0

1

−1.5
−1

−0.5
0

0.5

−0.5

0

0.5

1

1.5

x2x1

ẋ
1

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

x1

x
2

−1
0

1

−1.5
−1

−0.5
0

0.5

−1

0

1

2

3

x2x1

ẋ
2

−1.5−1−0.500.51

−1.5
−1

−0.5
0

0.5

−1

0

1

2

x2x1

ẋ
2

−1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

x1

x
2

−1

0

1

−1.5

−1

−0.5

0

0.5

−0.5

0

0.5

1

x2
x1

ẋ
1

−1.5 −1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

1.5

2

x1

ẋ
2

−1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

x2

ẋ
1

−1.5 −1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

x1

ẋ
1

−1.5 −1 −0.5 0 0.5
−1

−0.5

0

0.5

1

1.5

2

x2

ẋ
2

Fig. 9. System 3. Despite manifest non-linearity in the trajectories, the
dynamics is successfully approximated with 6 Gaussians. Note, even unseen,
circular shape trajectories (starting around x2 ≈ 0) are reproduced correctly
in both position and velocities spaces.

II. Training Data and GMM Encoding

I. Actual Dynamics

III. Reproduction

 (13 Gaussians)
(a) (b) (c)

(a)

(b) (c)

(d) (e)

(a) (b) (c)

(d) (e) (f) (g)

−1

0

1

−1.5

−1

−0.5

0

0.5

−0.5

0

0.5

1

x2
x1

ẋ
1

−20
−10

0 −4

−2

0

2

4

−10

0

10

20

x2x1

ẋ
1

−20 −15 −10 −5 0 5
−4

−2

0

2

4

−20

0

20

x2

x1

ẋ
2

−15 −10 −5 0 5
−4

−2

0

2

4

x1

x
2

−4 −2 0 2 4
−15

−10

−5

0

5

10

15

20

x2

ẋ
2

−15 −10 −5 0 5
−15

−10

−5

0

5

10

15

20

x1

ẋ
2

−4 −2 0 2 4
−5

0

5

10

15

x2

ẋ
1

−15 −10 −5 0 5
−5

0

5

10

15

x1

ẋ
1

−20 −15 −10 −5 0 5
−4

−2

0

2

4

x1

x
2

−20
−15

−10
−5

0
5

−4

−2

0

2

4

−40

−20

0

20

x2

x1

ẋ
2

−20 −15 −10 −5 0 5
−4

−2

0

2

4

x1

x
2

ẋ
2

−20 −15 −10 −5 0 5
−30

−20

−10

0

10

20

x1

−6 −4 −2 0 2 4
−5

0

5

10

15

20

x2

ẋ
1

−20 −15 −10 −5 0 5
−5

0

5

10

15

20

x1

ẋ
1

−6 −4 −2 0 2 4
−30

−20

−10

0

10

20

x2

ẋ
2

Fig. 10. System 4. The system is strongly non-linear, 13 Gaussians are
necessary to achieve a good precision in the considered region. Complex
dynamics and increased number of Gaussians lead to less strong generalization
abilities of the method. Indeed, trajectories started beyond the region covered
by the training set tend to depart from the real trajectories generated by the
dynamics, it is particularly noticeable in the velocity space, see section III-(g).
However, even in this non-trivial case the system generate admissibly good
results from few demonstrations.

stable x1 = 0; x2 = 0. We approximate the dynamics of this
system in a region [−1.5; 1]× [−1.5; 0.5], where it is locally
asymptotically stable. Results are presented in Figure 9.

System 4

ẋ1 = −x1; (16)
ẋ2 = −x1 cosx1 − x2;

The system exhibits strong nonlinearity due to the cosine term;
the system is globally asymptotically stable and converges
asymptotically to the origin. We approximate the dynamics of
this system in a region [−20; 0]×[−4; 4]. Results are presented
in Figure 10.

System 5

ẋ1 = −x1 − x2 + x2
3; (17)

ẋ2 = x1 + 10 cos x2 ∗ x2 − x2
3;

ẋ3 = x1 + 2x2 − x3;

Locally asymptotically stable three-dimensional dynamics

II. Training Data and GMM Encoding

I. Actual Dynamics

III. Reproduction

 (12 Gaussians)

(a)
(b)

(a)
−12 −10 −8 −6 −4

−150

−100

−50

0

50

100

x2

ẋ
2

−10 −5 0 5
−20

0

20

40

60

80

x3

ẋ
1

−20 −10 0 10 20 30
−20

0

20

40

60

80

x1

ẋ
1

−12 −10 −8 −6 −4
−10

−8

−6

−4

−2

0

2

x2

x
3

−20 −10 0 10 20 30
−10

−8

−6

−4

−2

0

2

x1

x
3

−20 −10 0 10 20 30
−11

−10

−9

−8

−7

−6

−5

x1

x
2

−10 −5 0 5
−40

−30

−20

−10

0

10

20

x3

ẋ
3

−20 −10 0 10 20 30
−40

−30

−20

−10

0

10

20

x1

ẋ
3

−20 −10 0 10 20 30
−10

−8

−6

−4

−2

0

2

x1

x
3

−20 −10 0 10 20 30
−20

0

20

40

60

80

x1

ẋ
1

−12 −10 −8 −6 −4
−10

−8

−6

−4

−2

0

2

x2

x
3

−20
0

20
−10

−5
−10

−5

0

5

x1
x2

x
3

−20 −10 0 10 20 30
−11

−10

−9

−8

−7

−6

−5

x1

x
2

−10 −5 0 5
−20

0

20

40

60

80

x3

ẋ
1

−20 −10 0 10 20 30
−40

−30

−20

−10

0

10

20

x1

ẋ
3

−10 −5 0 5
−40

−30

−20

−10

0

10

20

x3
ẋ

3

−12 −10 −8 −6 −4
−150

−100

−50

0

50

100

x2

ẋ
2

(c) (d)

(e) (g) (h)

−20 −10 0 10 20 30
−10

−8

−6

−4

−2

0

2

x1

x
3

−20 −10 0 10 20 30
−20

0

20

40

60

80

x1

ẋ
1

−12 −10 −8 −6 −4
−10

−8

−6

−4

−2

0

2

x2

x
3

−20 −10 0 10 20 30
−11

−10

−9

−8

−7

−6

−5

x1

x
2

−10 −5 0 5
−20

0

20

40

60

80

x3

ẋ
1

−20 −10 0 10 20 30
−40

−30

−20

−10

0

10

20

x1

ẋ
3

−10 −8 −6 −4 −2 0 2
−40

−30

−20

−10

0

10

20

x3

ẋ
3

−12 −10 −8 −6 −4
−150

−100

−50

0

50

100

x2

ẋ
2

(a)
(b) (c) (d)

(e) (g) (h)

(a)
(b) (c) (d)

(e) (g) (h)

(j) (k)

(j) (k)

(j) (k)

−20

0

20

−11
−10

−9
−8

−7
−6

−5

−10

−8

−6

−4

−2

0

2

x1x2

x
3

Fig. 11. System 5. Strongly non-linear 3D dynamics. In this case, a slight
increase in a number of demonstrations allows for accurate approximation
and generalization.

with a single attractor at [12.98;−7.75;−2.5213]. We approx-
imate the dynamics of this system in a region [−20; 30] ×
[−11;−5] × [−10; 2]. Results of the learning process are
presented in the Figure 11.

10

1) Quantification and discussion of results: Quantification
of results achieved on both theoretical systems and actual
robotic motions are presented in Table IV. As it can be seen
all systems permit coarse representation with a relatively small
number of Gaussians, moreover such a sparse representation
achieves good precision in reproducing the actual dynamics.
Furthermore, as shown in Figures 7-11, the system can gener-
alize outside the training domain. This property is particularly
useful for practical applications as this allows to predict the
behavior of the system outside the region covered during
training, hence reducing the amount of training data required.
In the examples covered here, only 6 training trajectories were
required in each case.

−25 −20 −15 −10 −5 0 5
−35

−30

−25

−20

−15

−10

−5

0

5

10

15

x1

x
2

−600 −400 −200 0

Fig. 12. Extrapolation properties of the GMMs encoding. A color map
reflects changes in values of the the likelihood (18) of datapoints, the dark-red
area represents an area of the most reliable inference regarding the velocity.
For reconstructed trajectories starting outside this area, the deviation from the
actual dynamics may be considerable. Interestingly, in the region of attraction
of the origin, trajectories are strongly attracted towards a region covered by the
training set. It is a useful property for practical applications as this allows to
predict the behavior of the system outside the region covered during training,
hence reducing the amount of training data required.

Note that, since the dynamics is learned from data covering
only a subpart of the domain, it does not necessarily have the
same attractor landscape and the region of attraction across the
complete domain as the original system, even if it accurately
approximates the original system locally. For example, in
System 3, the original dynamical system has three equilibrium
points, while its approximation has a unique asymptotically
stable equilibrium. To overcome this, one may provide addi-
tional demonstrations covering dynamics in the neighborhood
of the other equilibriums: Figure 15 presents results of learning
the dynamics around the two different attractors of System
5. The demonstrations were provided in the neighborhood
of the two asymptotically stable attractors; during learning,
positions of two Gaussians were fixed on the attractors, and the
algorithm was running to verify local asymptotical stability of
both attractors. The regions of approximation C were analyzed
separately for each attractors. The learned system managed

to accurately grasp the complex dynamics, further, it allowed
to separate the two flows of trajectories leading to different
attractors based on the initial conditions of motion.

−20 −15 −10 −5 0 5
−4

−2

0

2

4

x1

x
2

1

2

3

4

Fig. 13. Robustness to perturbations. The target is shifted several times (to
positions 2, 3, 4) after the onset of motion.

−10 −5 0
−30

−20

−10

0

10

x1

x
2

Fig. 14. Numerically estimated region of stability for the System 6; updated
boundaries of the considered region taking into account boundaries of RA are
plotted in red. An actual and spurious attractors are red circles. We extended
a considered region from [−20; 0] × [−4; 4] to [−10; 0] × [−10; 4]. Note,
the numerical method estimated a lower bound that goes along a trajectory
with a good precision. Other bounds were left unchanged, i.e., in the other
directions the considered region does not cross boundaries of the region of
attraction.

In addition to stability of reproduction, one should keep in
mind that the considered region of applicability should not
exceed a region where the likelihood of observing new data
allows performing a confident inference regarding the velocity.
In Figure 12 we depict how the likelihood changes beyond the
region covered by the training set. Likelihood was computed
as follows:

L(ξ) = log [max
i

hi(ξ)]. (18)

L gives a measure of the maximum probability of a point
ξ to belong to any of the K Gaussians. The region where
L exceeds a given threshold8 represents the region where the
system can still make a confident probabilistic inference. Note

8We took an empirically chosen threshold of −10.

11

TABLE IV
QUANTIFICATION OF RESULTS

System Dimension Number
of
demon-
strations

Number
of GMMs
compo-
nents

Number
of
iterations
in model
training1

Precision
2

System 1 2 6 7 252 8 · 10−3

System 2 2 6 2 70 3 · 10−3

System 3 2 6 6 150 10−4

System 4 2 6 13 475 10−1

System 5 3 10 12 393 8 · 10−2

KATANA ex-
periment

3 4 4 132 -3

HOAP experi-
ment

3 4 5 160 -3

[1] The algorithm iterates until the change in the likelihood falls below 10−8

[2] Precision is computed as a mean square error, on both seen and unseen

trajectories, according to:
∑M

i=1 ‖ξ̂i−ξi‖2
M·∆ξ , where ξ̂i – learned trajectory

ξi – theoretical trajectory, ∆ξ is an average amplitude of motion.

[3] Estimation of precision is non-applicable due to the presence of
noise in the training data.

that all the trajectories that start in areas where L is too small
will significantly depart from the real dynamics. This is due to
the effect of the weights hi associated to each Gaussian and
how these influence the direction of the velocity vector: nearby
the demonstrations, the influence of the closest Gaussian dom-
inates that of all Gaussians, hence guiding closely the motion.
However, far away from the demonstrations, the influence of
all Gaussians becomes comparable and the resulting direction
of velocity may point away from the signal.

As mentioned in the introduction, an inherent property of
stable dynamical systems is their robustness to spatial and
temporal perturbations. Figure 13 illustrates this aspect for one
of the learned dynamical system, when the target is moved
after the onset of the motion. As we see, the trajectories
adapt smoothly to the change. Note, however, that the velocity
profile may change abruptly when the perturbation occurs. To
overcome this drawback it would be necessary to consider
second-order dynamics.

As discussed previously, the GMMs encoding may result
in spurious attractors outside the empirical stability domain C
and in regions with low likelihood, see, e.g., Figure 12.

There are several reasons for the emergence of spurious
attractors: first, the training set gives only a partial and noisy
representation of the dynamics. Providing additional data in
the regions around spurious attractors usually improves greatly
performance. Second, the shape of the signal influence greatly
stability. For instance, if the curvature of the trajectories
changes smoothly, the spurious attractors, if any, will usually
lie outside of the region of the confident inference, see
Figure 12. However, if the system trajectories experience sharp

II. Training Data and GMM Encoding

I. Actual Dynamics

III. Reproduction

 (13 Gaussians)

(a)

(b) (c)

(c)

(d)

(e)
(a) (b)

(c)

(d)

(e)

−20 0 20 40 60
−18

−16

−14

−12

−10

−8

−6

x1

x 2

−20 −15 −10 −5
−12

−10

−8

−6

−4

−2

0

2

x2

x 3

−20 0 20 40 60
−12

−10

−8

−6

−4

−2

0

2

x1

x 3

−20
0

20
40

−20
−15

−10
−5

−15

−10

−5

0

5

x1x2

x
3

−20 0 20 40
−20

−15

−10

−5

x

x 2

1

−20 0 20 40
−12

−10

−8

−6

−4

−2

0

x1

x 3

−20 −15 −10 −5
−12

−10

−8

−6

−4

−2

0

2

x2

x 3

−20 0 20 40

−10

−5

0

5

x1

x 3

−20 0 20 40
−20

−15

−10

−5

x1

x 2

−20
0

20
40

−20

−15

−10

−5

−10

−5

0

5

x1x2

x
3

−20 −15 −10 −5

−10

−5

0

5

x2

x 3

Fig. 15. Learning motion with two attractors. 3-dimensional trajectories
are generated by System 5 that displays a periodic behavior. Trajectories were
demonstrated in the neighborhood of two asymptotically stable attractors. Dur-
ing the reproduction, the system managed to accurately reproduce dynamics
around both attractors.

changes in the curvature, as e.g., System 1, see the Figure 7,
the likelihood of having spurious attractors in the considered
region increases. By adding more Gaussians around the point
with a sharp curvature one increases the guidance provided
by the GMM and thus decreases the chances. By considering
these practical shortcomings, one may improve a particular
encoding to achieve the admissible performance.

V. APPLICATION TO ROBOT CONTROL

Further, we validate the method to learn the dynamics of
motion of a robot endeffector when trained through human
guidance. Here, the dynamics of motion becomes the control
law that iteratively moves the robot’s arm along a trajectory.

A. Encoding motion in the operational space

Since the framework we defined above does not make any
assumption as to the type of variables to be used for training,
we are unconstrained in our choice of variables for controlling
a robot. Here, we choose to describe motions according to the
following variables: the translation component of motion of the
end-effector is described by a vector of Cartesian coordinates
x ∈ R3.

Each demonstrated trajectory is, thus, represented by the
following dataset: D = {xt, ẋt}M

t=1, where M is the number of
datapoints in a trajectory. To reproduce a task, we first learn an
estimate of the dynamical system using the method described

12

Fig. 16. (a) If a trajectory in the operation space passes through non-reachable
joint positions IK may return velocity in the operation space that sends a
robot too far from original trajectory, so linear assumptions of approximation
of kinematics does not satisfy and overall trajectory tracking will fail. (b)
In the case of motion encoding with a dynamical system, after perturbation
the robot will not try to return to the previous trajectory violating the linear
approximation of kinematics, instead the dynamical system will generate other
trajectory from the point where the robot occurs.

{xyz}

{x*y*z*}

{x’y’z’}

Fig. 17. We encode tasks in a referential located at the target and moving
with it{x∗y∗z∗}; this referential is expressed in the fixed global referential
{xyz}(usually we choose one attached to static parts of a robot). Actually,
the motion of the robot end-effector is expressed as moving a referential
associated with the end-effector {x′y′z′}.

in Section III-A and then use the Moore-Penrouse pseudo-
inverse to compute the corresponding joint angles. Table V
summarizes the steps of the reproduction algorithm.

B. Set-up

We validated the above method in two practical tasks, see
Figure 18 where a human teacher guides the robot through
the motion. We also implemented the learned 3-dimensional
System 5, as a control law for our robot. To demonstrate the
generic character of the approach we ran experiments with two
different robotic platforms: a 6 degrees of freedom industrial-
like KATANA arm from Neuronics and a 4 degrees of freedom
robot arm of the humanoid robot HOAP-3 from Fujitsu.

C. Experiments with KATANA

The first experiment consists in the KATANA putting an
object into a container. Here, the KATANA arm was taught to
put a rectangular wooden brick into a rectangular container;
see fig.18-left.

TABLE V
ON-LINE TASK REPRODUCTION

1 Assume that a controller f̂x has been learned,
the robot is thus ready to reproduce a task

2 Detect a target position in the global referential {xyz}; see Figure 17: x∗

3 Recompute the current position of an end-effector in
the target referential {x∗y∗z∗}: x0

4 LOOP until the target position is reached

6 infer the velocity for the next iteration t through GMR Eq.9: ˙̂xt
˙̂xt =

∑K
k=1 hk,x(µk,ẋ + Σk,ẋxΣ

−1
k,x(x− µk,x))

8 Solve the Inverse Kinematics problem to find: ẋt, θ̇t

9 compute a new position xt, θt

10 END

In the second experiment, the KATANA was controlled
with System 5 with the origin of the system positioned on
an arbitrary object. This experiment meant to test the ability
of the learned system to generalize to context unseen during
training and to quickly adapt to perturbations.

D. Experiments with HOAP-3

The clench of the HOAP-3 is rather small, therefore it can
grasp only thin objects. In this task the robot had to grasp a
box which is thin along one dimension, so the robot should
follow a specific path to properly position its hand; see fig.18-
right.

Fig. 18. Set-up of the experiments. Left: KATANA puts a wooden brick
into the container, to achieve the task the robot should lift the brick and move
it following an elevating trajectory. Right: HOAP-3 grasps a box, to achieve
the task HOAP should approach the box with a specific orientation and than
lower its arm, as the clench is small, see small figure in the corner.

During training, the robots were shown the tasks 5 times
by a human user guiding their arms. Values of the robots
joints were recorded during this passive motion and used for
reconstructing the position of the end-effector.

E. Results of Learning Dynamics from Motion Data

After training, we tested the system by requesting the robots
to reproduce the tasks in various conditions. The results of the
experiments are summarized in Figures 19-22.

To test the generalization abilities and the stability to per-
turbations we performed experiments in different conditions,
by changing the starting positions of the robots and shifting
the container (for the KATANA’s experiment) or the box (for
the HOAP-3’s experiment). Results are presented in Figure
22; in both experiments learning of position control was

13

successful and the robots all reached successfully the targets
and accomplished the tasks.

Results of generalization for the second experiment with
KATANA reproducing System 5 are presented in Figure 20 -
II. The area where demonstrations were provided is depicted in
Figure 20 - II (b) with red squares. The system further allowed
to reproduced the motion starting from any position of the sub-
space of the workspace, depicted in grey. Note, that even few
demonstrations provide good generalization properties.

The ability to generate a trajectory from arbitrary initial
position to the target with a relevant velocity profile is a
strong point of encoding motion with Dynamical Systems in
the state-space, furthermore it provides real-time adaptation
to perturbations in the position of the target. The Figure 20-I
presents results of tracking a marked object mapped into the
attractor of the dynamical system. After shifts of the target,
the robot finally reaches the object following the demonstrated
position and velocity profile.

VI. DISCUSSION AND FUTURE WORK

Below, we discuss the major hypotheses postulated in this
work together with possible alternative solutions.

A. Multi-dimensional systems, first order dynamics

The method proposed here allows learning of non-linear
multivariate dynamics where the correlation between the
variables is important. Other works on dynamical control
consider each degree of freedom separately, hence discarding
information pertaining to correlation across the joints. While
storing correlations across the joints is costly (in GMM, it
forces one to compute the complete covariance matrix, rather
than computing only the diagonal elements), it is advantageous
as correlations contain features characteristic of the motion.
For instance, in bimanual coordination tasks in which left and
right arms should follow different dynamics while doing so in
coordination [Gribovskaya and Billard, 2008], embedding the
correlations in the representation ensures the reproduction of
both the dynamics of each arm and the correlations across the
arms. Furthermore, learning correlation between a multivariate
signal and its derivatives allows to considerably decrease a
number of Gaussians required to accurately encode the training
dataset.

While we started with the hypothesis that the control law
followed a first order dynamics, the method proposed here
may be extended to learn higher-order dynamics (as higher-
order systems can always be expressed in the canonical form
as a set of first-order systems). That is particularly relevant for
applications where it is necessary to control the acceleration
profile. We intend to address this problem in future work.

Potential difficulties concerning shifting into higher-order
derivatives that can be envisioned, are associated with the
increased dimensionality of a resultant statistical problem.
With an increase in the number of dimensions, a stable
approximation would require more training data or need to
introduce certain heuristics to partially decouple the problem
into a set of systems with lower dimensions.

0 20 40 60 80 100
−500

−400

−300

−200

−100

0

100

t

x
1

0 20 40 60 80 100
−20

−10

0

10

20

30

t

ẋ
3

0 20 40 60 80 100
−10

0

10

20

30

40

50

t

ẋ
2

0 20 40 60 80 100
−10

0

10

20

30

40

50

60

t

ẋ
1

−150 −100 −50 0 50 100
−20

−10

0

10

20

30

40

50

x 3

ẋ
2

−400 −300 −200 −100 0 100
−150

−100

−50

0

50

100

x 2

x
3

−400 −300 −200 −100 0 100
−20

−10

0

10

20

30

40

50

x 2

ẋ
2

−400 −300 −200 −100 0 100
−20

0

20

40

60

80

x 2

ẋ
1

−600 −400 −200 0 200
−150

−100

−50

0

50

100

x 1

x
3

−600 −400 −200 0 200
−400

−300

−200

−100

0

100

x 1

x
2

−600 −400 −200 0 200
−20

0

20

40

60

80

x 1

ẋ
1

0 20 40 60 80 100
−150

−100

−50

0

50

100

t

x
3

0 20 40 60 80 100
−400

−300

−200

−100

0

100

t

x
2

−150 −100 −50 0 50 100
−30

−20

−10

0

10

20

30

x 3

ẋ
3

−600 −400 −200 0 200
−20

−10

0

10

20

30

40

50

x 1

ẋ
2

−150 −100 −50 0 50 100
−20

0

20

40

60

80

x 3

ẋ
1

−400 −300 −200 −100 0 100
−30

−20

−10

0

10

20

30

x 2

ẋ
3

−400 −300 −200 −100 0 100
−30

−20

−10

0

10

20

30

x 2

ẋ
3

I. KATANA: Original data (time domain)

II. KATANA: Training data in state-space. Encoding with GMM (4 Gaussians)

−500 −400 −300 −200 −100 0 100
−100

−50

0

50

100

x 1

x
3

−500 −400 −300 −200 −100 0 100
−400

−300

−200

−100

0

100

x 1

x
2

−400 −300 −200 −100 0 100
−100

−50

0

50

100

x 2

x
3

−400 −300 −200 −100 0 100
−20

0

20

40

60

x 2

ẋ
2

−150 −100 −50 0 50 100
−30

−20

−10

0

10

20

30

x 3

ẋ
3

−500 −400 −300 −200 −100 0 100
−20

0

20

40

60

80

x 1

ẋ
1

 III. KATANA: Reproduction

Fig. 19. KATANA experiment 1: Results of encoding and reproduction of
the experiment where KATANA had to put a brick into a container.

B. Time independency vs time dependency

In this paper, we advocate that time-independent encoding in
the state-space offers more robust representation in comparison
to traditional time-dependent encoding. Results confirmed that
for a certain range of motions, the state-space representation
is indeed highly robust to spatial and temporal perturbations.
Moreover, it allows to reproduce tasks even in unseen parts of
the workspace.

Yet, certain motions, such as those requiring the synchro-
nization with an external dynamics, should be encoded using
a time-dependent representation or, if the external dynamics is
known, using an explicit parametrical coupling of two time-
independent dynamics, such as that done in [Ijspeert et al.,
2001]. Another limitation of the time-independent representa-
tion relates to the possibility of encoding compound motions:
in this case, the whole motion may be segmented into a set

14

t

ẋ
1

t

ẋ
2

t

ẋ
3

−400 -300 -100 200
-500

−300

-100

100

300

500

x1

x
2

x1

x2

x
3

−400 -300 -100 200

0

100

x1

x
3

200

x2

x
3

0 100 200 300 400
−100

−50

0

50

100

150

0 100 200 300 400
−10

−5

0

5

10

15

0 100 200 300 400
−30

−20

−10

0

10

20

30

40

2001000-100-200-300-400 -500

0

500

-400

-200

 0

 200

 400

 600

0 100 200
−500

0

x1

x
2

-100

500

−250

250

-200-300-400

1

2

3

4

KATANA experiment 2: real-time adaptation to perturbation

KATANA experiment 2: generalization to the unseen context

500-500 -300 -100 100 200

0

100

200

Fig. 20. KATANA experiment 2: I. Real-time adaptation to perturbations.
The target was consequently shifted from the position 1 to the position 4.
First row: trajectory of the robot’s end-effector; second row: velocity profile.
II. Generalization to the unseen context. (a) The workspace of KATANA is
highlighted by the blue box, the reproduction was systematically tested starting
robot from positions on the yellow plane. (b) The starting plane from the robot
workspace is in yellow. The robot was required to reproduce the motion from
points monotonically covering the part of the starting plane (in grey). For
comparison, the part of space, where the demonstrations were provided is
in pink. Notice, that demonstrations are sparse, but the system manages to
generalize to other parts of the workspace.

of simpler ones governed by a single attractor. However, the
problem of how to transit across these systems remains an
open issue.

C. Kinematic controller

In the experiments reported here, control of the robot was
purely kinematical, encoding the desired kinematic trajecto-
ries, but not taking into consideration the dynamical properties
(actual torques) of the robot limbs. An additional control step
was then necessary to convert positions into motor commands
by means of the inverse dynamics (KATANA) or a PID
controller (HOAP-3). Learning the inverse dynamics, while a
highly value topic in itself, is beyond the scope of the present
paper. Further, considering that many of the current robotic
platforms are position-controlled, while providing position
feedback in real-time, the proposed approach is thus valid for
a large set of applications.

D. Choice of statistical framework

GMMs being a global statistical techniques (by opposition
to local non-parametric methods such as LWPR, GPR) was
shown to be suitable for estimating dynamics from sparse
demonstrations, that are typical of programming by demon-
stration applications. However, neither GMMs nor LWPR and
GPR ensure stability of a learned approximation. Here, we
proposed an algorithm that leads to local asymptotical stability
and gradually improves the quality of the approximation while

I. HOAP-3: Original data (time domain)

II. HOAP-3: Training data in state-space. Encoding with GMM (5 Gaussians)

0 20 40 60 80
−60

−40

−20

0

t

x
2

0 20 40 60 80
−40

−20

0

20

40

60

t

ẋ
3

0 20 40 60 80
−10

0

10

20

30

40

t

ẋ
2

−50 0 50 100
−20

0

20

40

60

80

x 3

ẋ
1

−100 −50 0 50
−40

−20

0

20

40

60

80

x 2

x
3

−100 −50 0 50
−20

−10

0

10

20

30

40

x 2

ẋ
2

−200 −150 −100 −50 0 50
−40

−20

0

20

40

60

80

x 1

x
3

−200 −150 −100 −50 0 50
−80

−60

−40

−20

0

20

40

x 1

x
2

0 20 40 60 80
−40

−20

0

20

40

60

80

t

x
3

0 20 40 60 80
−20

20

40

60

80

t

ẋ
1

0 20 40 60 80
−200

−150

−100

−50

0

50

t

x
1

−200 −150 −100 −50 0 50
−20

0

20

40

60

80

x 1

ẋ
1

−100 −50 0 50
−20

0

20

40

60

80

x 2

ẋ
1

−200 −150 −100 −50 0 50
−20

−10

0

10

20

30

40

x 1

ẋ
2

−50 0 50 100
−20

−10

0

10

20

30

40

x 3

ẋ
2

−50 0 50 100
−40

−20

0

20

40

60

x 3

ẋ
3

−100 −50 0 50
−40

−20

0

20

40

60

x 2

ẋ
3

−200 −150 −100 −50 0 50
−40

−20

0

20

40

60

x 1

ẋ
3

−250 −200 −150 −100 −50 0 50
−40

−20

0

20

40

60

80

x 1

x
3

 III. HOAP-3: Reproduction

−200 −150 −100 −50 0 50
−80

−60

−40

−20

0

20

40

x 1

x
2

−100 −50 0 50
−20

0

20

40

60

x 2

ẋ
2

−200 −150 −100 −50 0 50
−20

0

20

40

60

80

100

x 1

ẋ
1

−50 0 50 100
−40

−20

0

20

40

60

80

x 3

ẋ
3

−100 −50 0 50
−40

−20

0

20

40

60

80

x 2

x
3

Fig. 21. HOAP-3 experiment: Results of encoding and reproduction of the
experiment where HOAP-3 had to grasp a box.

Fig. 22. The results of reproduction of dynamically generated trajectories
on the robots. To check the generalization abilities of the learned dynamics
the trajectories were reproduced from different initial positions.

15

widening the region of applicability C. Potentially, the same
procedure may be adopted for other statistical frameworks.
However, the accuracy of the approximation may significantly
vary depending on a particular choice.

One should note that EM is more computationally expensive
than LWPR with a number of iteration steps during training
of O(K · M · N) in comparison to O(N). Both of these
however remain small in comparison to GPR. Similarly to
LWPR and in contrast to the GPR-based methods, GMR’s
computational costs for the retrieval procedure are low and
increase linearly with the number of parameters. Additionally,
GMM-based models result in much less parameters due to the
coarse representation.

E. Real-time adaptation to perturbation vs traditional plan-
ners

One of the strengths of the proposed approach is its
ability to cope with perturbations in real-time. By pertur-
bation we referred to unexpected changes in the positions
of the attractor or of the robot’s joints during motion. We
demonstrated how the learned dynamics with a position of
an object mapped into an attractor can successfully track
the object. Such a flexibility combined with the guarantee
of ultimately reaching the object is one of the major ad-
vantages of the proposed method in comparison with tra-
ditional planners [Yokoi et al., 2009, Yoshida et al., 2008,
Diankov and James Kuffner, 2007, Kuffner et al., 2002]. One
should emphasize that planners, in turn, are advantageous
when the environment is known and for providing mecha-
nisms for obstacle avoidance. The latter is, however, achieved
by introducing a heuristic-based cost function that penalizes
certain directions. Potentially, our approach may be combined
with such a cost function that perturb an output of a learned
dynamical system pushing it away from obstacles.

Note, that our system though introduces certain hypotheses,
still remains rather generic regarding tasks it may reproduce,
furthermore, it may work with limited and inaccurate informa-
tion about the environment, as it does not require any costly
replanning. At the same time, to benefit from optimal planning
and capacity for obstacle avoidance, one should provide an
algorithm with precise information regarding objects in the
workspace and introduce certain task-related heuristics to
improve convergence.

F. Single vs several attractors
A further hypothesis pertaining to the work presented here

was the idea that the dynamical system to be discovered had
a single or several known fixed point attractors. This can be
considered as a limitation, as a dynamics may be governed by
the existence of more complex orbits than merely fixed points.
For example, an arbitrary free motion may have a particular
curve in space as attractor. The applicability of the proposed
method in this case will mostly depend on the quality of train-
ing data; further no stability can be guarantee. Procedures for
ensuring stability of complex orbits may substantially widen
the class of motion under consideration, covering dancing or
sport motions that are usually characterized by the existence
of certain curves to which all trajectories converge.

G. Training data

The generalization properties of dynamical controllers di-
rectly depend on the quality of training data; the aspect
common to all statistical learning methods. It might be com-
pensated in different ways: 1) by providing an exhaustive
set of accurate demonstrations; 2) by allowing a robot to
explore on its own (considered in Reinforcement Learning
[Guenter et al., 2007]); 3) by providing more variability in a
limited set of demonstrations (the problem has been discussed
in [Calinon and Billard, 2007]). The first option does not agree
with a requirement of user-friendliness of teaching interfaces,
as a number of demonstrations should be kept bearable for
a user; the second approach may require additional time;
therefore, we concentrate on improving quality of demon-
strations by introducing more variability into a small set of
demonstrations.

H. Kinesthetic teaching

For demonstrating tasks we used the kinesthetical teaching
approach that consists of directly demonstrating the task using
a robot’s own body. One of advantages of this approach is
that the human can feel limitations of the robot’s architecture
and adapt his/her intuition about an optimal or efficient mo-
tion accordingly. Although we actively exploit this learning
paradigm, other approaches such as vision-based learning are
also widely used and can be more intuitive for humans. Our
system may be applied to the motion data obtained through
different modalities.

I. Practical consideration

From a practical point of view, mapping position of ma-
nipulated objects into attractors of Dynamical Systems con-
siderably improves the precision of motion at a target and
therefore allows considering prehensile tasks in the framework
of Programming by Demonstration; where so far generation of
large-scale motions has been addressed.

The approach was shown to be generic in that it did
not depend on the particular geometry of the robot’s arm,
nor on the particular variables to be learned. Indeed, it
could be successfully implemented to control robot arms
with different geometries and for learning the dynamics of
different variables inherent to position and orientation control.
Source code and supplementary material is available at
http://lasa.epfl.ch/elena/learning-dynamics.htm

VII. SUMMARY

In this paper, we proposed a method for learning a non-
linear multi-dimensional dynamics of motion through statis-
tically encoding demonstrated data with Gaussian Mixtures.
Further, we addressed the problem of ensuring stability of
a resultant control law: first, we formulated conditions that
parameters of GMMs should satisfy to guarantee local asymp-
totical stability of an attractor, then we proposed a numerical
procedure to verify boundaries of the region of applicability
where the control law can be securely applied.

16

To test the method, we conducted two types of experiments:
1) learning theoretical dynamics with known mathematical
forms to estimate the accuracy of approximation and 2)
learning dynamics of manipulation tasks recorded with two
different robotic platforms to assess the applicability of the
approach to the noisy data. In all experiments the system
demonstrated good results in terms of high accuracy during
reproduction, ability to generalize motions to unseen contexts,
and ability to adapt on-the-fly to spatio-temporal perturbations.
We also showed how the system can encode more than one
attractor, successfully reproducing each separate dynamics
locally around each attractor and separating the flows leading
to the different attractors.

δ

ξ
1

ξ2
δ

λT
eδ

ξ1

ξ
2 λ = 0λ > 0

1

ξ
2

ξ
1

ξ

ξ

1

.

1

ξ

ξ

1

.

ξ
2

I. Instability, stability and asymptotic stability

IV. Motivation for encoding motion as multi-dimensional dynamics

(c)(a)

(a) (b) (c)

δ

λT
eδ

ξ1

ξ
2 λ < 0

(b)

δ

ξ1

ξ
2

ξ

II. Region of attraction

(a)

III. Considered region of approximation vs

Region of attraction

Α

ξ1

ξ
2

(a)

∆
C

Fig. 23. Appendix II. Geometrical illustration of stability and multi-
dimensional correlation in the state-space. I. Stability problem: stability of
a dynamical system is defined by a maximum value of its Lyapunov exponent
λ (in the linear case, it coincides with eigenvalues of a control matrix). (a)
In systems with negative Lyapunov exponents volume between trajectories
contracts; (b) In systems with positive Lyapunov exponents two arbitrary near
trajectories diverge from each other exponentially fast. In the linear case,
one may easily find Lyapunov exponents and estimate the global behavior of
the overall system. In the non-linear case, the system may have different
Lyapunov exponents in different parts of the state-space, moreover, non-
linearities make analytical investigation of properties particularly tedious. IV.
Multi-dimensional dynamics Analyzing dynamics of vector-valued timeseries
requires their encoding in multi-dimensional state-spaces. Generally, one
cannot unambiguously decouple dynamics of each dimension. Consider a
simple 2D motion in Figure II-(a), the phase-space of this motion in {ẋ1, x1}
is in Figure II-(b): for each value x1 there exist two different values of
velocity, therefore, it is not possible to unambiguously encode dynamics of
motion as two decoupled system ẋ1 = f1(x1), ẋ2 = f2(x2). However, if
one look at the dependence ẋ1 = f(x1, x2) depicted at Figure II-(c) this
ambiguity can be easily eliminated. This problem is know in the literature
on Dynamical Systems as a problem of searching for a minimum embedding
dimension. In this particular example, the minimum embedding dimension is 4
(x1, ẋ1, x2, ẋ2). Alternatively, one may argue that in this case we may avoid
an ambiguity and separate dimensions encoding ẍ1 = f1(x1, ẋ1), though it
is possible in this particular case, it will lead to the necessity to analyze 5 state
variables (x1, ẋ1, ẍ1, x2, ẋ2). Furthermore, to preserve a spatial correlation
pattern between x1 and x2 the decoupled systems should be synchronized by
an external mechanism.

TABLE VI
APPENDIX I. COMPARISON OF THE PROPOSED METHOD WITH

[IJSPEERT ET AL., 2001]

GMR-based method proposed in this paper:

a single multidimensional system is running to control several DOFs

ẋ = f̂(x)
f̂(x) , ∑K

k=1 hk(x)(µk,ẋ + Σk,ẋxΣ
−1
k,x(x− µk,x))

where x ∈ RN ; Σk,ẋx, Σk,x ∈ RN×N are estimated matrices
µk,ẋ, µk,x ∈ RN are estimated vectors

LWPR-based method proposed in [Ijspeert et al., 2001] (see also Figure 2):

the velocity along each DOF ẋ is defined by a linear combination of
two velocities ż and ν̇, according to:

ẋ = ż + f̂∗(ν)ν̇

f̂∗(ν) ,
∑K

k=1 Ψk(ν)ωk∑K
k=1 Ψk(ν)

where x, z, ν ∈ R
Ψk(ν) = exp (ν−ck)2

2σ2
k

, ωk ∈ R.

The variables z and ν are governed by two dynamical system:

(S1) (S2)
ν̈ = αv(βv(g − ν)− ν̇) z̈ = αz(βz(g − y)− ż)

ẏ = ż + f̂∗(ν)ν̇

where g, v ∈ R, αv, βv ∈ R are
known constants

where y, z ∈ R; αz, βz ∈ R are known
constants

Comparison between GMR-based f(x) and LWPR-based f∗(ν):

Function f∗(ν) represents a uni-dimensional simplified version of a function f(x),
indeed, weights hk(x) have the same form of Gaussians as Ψk(ν), further instead of
introducing a variable components (µk,ẋ + Σk,ẋxΣ

−1
k,x(x− µk,x)), LWPR considers

merely constants ωk , which is equivalent to using solely µk,ẋ.

Weights ωk are tuned so to minimize a mean-square error between the velocity ẏ
and a demonstrated velocity profile.

Note, that according to the LWPR-based method [Ijspeert et al., 2001]
the function f̂∗(ν) modulating
the velocity ẋ does not depend on the actual position x, but instead depends on
the internal state ν and, therefore, does not introduce a feedback loop. Practically
it means that the only term adapting during perturbations is ż, while f̂∗(ν)ν̇
remains the same and may deform a trajectory.

The system (S1) is a spring and damper system, which attracts a trajectory ν
towards the target g following a straight line path.

The system (S2) is a perturbed spring and damper system: initially it starts to go
exactly as the system (S1), but due to the perturbed velocity ẏ, it departs
from the straight line trajectory ν; the source of perturbation is
a component f̂∗(ν)ν̇.

VIII. ACKNOWLEDGMENTS

This work was supported by the European Commis-
sion through the EU Projects FEELIX-GROWING (FP6-IST-
045169) and ROBOT@CWE (FP6-034002).

The authors warmly thank Prof. Auke Jan Ijspeert for
advices and support toward the research work developed here.

REFERENCES

J. Aleotti, S. Caselli, and M. Reggiani. Evaluation of virtual
fixtures for a robot programming by demonstration inter-

17

face. Transactions on Systems, Man, and Cybernetics, 35(4):
536–545, 2005.

R. Andersson. Aggressive trajectory generator for a robot
ping-pong player. volume 9, pages 15–21, Feb 1989. doi:
10.1109/37.16766.

M. Aoki. State Space Modeling of Time Series. Springer-
Verlag, 1990.

X. Bai, X.-S. Yang, and H. Li. Estimates of the region
of attraction of continuous-time cascade systems. Journal
of Mathematical Control and Information, 24(4)::483–491,
2007.

R. Bellman. Dynamic Programming. NJ:Princeton Univ. Press,
1957.

A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot
Programming by Demonstration. In Handbook of Robotics,
volume chapter 59. MIT Press, 2008.

M. D. Buhmann. Radial Basis Functions: Theory and Imple-
mentations. Cambridge University Press, 2003.

S. Calinon and A. Billard. What is the Teacher’s Role in Robot
Programming by Demonstration? - toward Benchmarks for
Improved Learning. Interaction Studies. Special Issue on
Psychological Benchmarks in Human-Robot Interaction, 8
(3), 2007. doi: NA.

S. Calinon and A. Billard. A Probabilistic Programming by
Demonstration Framework Handling Constraints in Joint
Space and Task Space. In In the Proceedings of the
International Conference of Intelligent Robots and Systems,
2008. URL http://iros2008.inria.fr/.

S. Calinon, F. Guenter, and A. Billard. On Learning, Rep-
resenting and Generalizing a Task in a Humanoid Robot.
IEEE transactions on systems, man and cybernetics, Part
B. Special issue on robot learning by observation, demon-
stration and imitation, 37(2):286–298, 2007. doi: NA.

T. L. Carroll. A nonlinear dynamics method for signal
identification. Chaos, 17, 2007.

F. Chamroukhi, A. Same, G. Govaert, and P. Aknin. Time
series modelling by a regression approach based on a latent
process. Neural Networks., 22:593–602, 2009.

M. B. Crutchfield J.P. Equation of motion from a data series.
Complex Systems, 1:417–452, 1987.

K. D., W. Takano, and Y. Nakamura. Incremental learning,
clustering and hierarchy formation of whole body motion
patterns using adaptive hidden markov chains. The Interna-
tional Journal of Robotics Research, 27(7):761–784, 2008.

M. Deisenroth, C. Rasmussen, and J. Peters. Gaussian process
dynamic programming. Neurocomputing, 72:1508–1524,
2009.

Y. Demiris and B.Khadhouri. Hierarchical attentive multiple
models for execution and recognition of actions. Robotics
and Autonomous Systems, 54:361–369, 2006.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of Royal
Statistic Society, 39:1–38, 1977. doi: http://dx.doi.org/10.
2307/2984875. URL http://dx.doi.org/10.2307/2984875.

R. Diankov and J. James Kuffner. Randomized statistical
path planning. In Proceedings of IEEE/RSJ International
Conference on Robots and Systems (IROS), 2007.

K. Dixon and P. Khosla. Trajectory representation using

sequenced linear dynamical systems. Robotics and Automa-
tion, 2004. Proceedings. ICRA ’04. 2004 IEEE International
Conference on, 4:3925–3930, 26-May 1, 2004. ISSN 1050-
4729.

R. Genesio, M. Tartaglia, and A. Vicino. On the estimation
of asympototic stability regions: state of the art and new
proposals. IEEE Transaction on Automatic Control, 30(8):
1985, 1985.

P. Giesl. Construction of a local and global lyapunov function
using radial basis functions. Journal of Applied Mathemat-
ics, 73(5)::782–802, 2008.

E. Gribovskaya and A. Billard. Combining Dynamical
Systems Control and Programming by Demonstration for
Teaching Discrete Bimanual Coordination Tasks to a Hu-
manoid Robot. In IEEE/ASM International Conference on
Human-Robot Interaction, 2008.

F. Guenter, M. Hersch, S. Calinon, and A. Billard. Re-
inforcement Learning for Imitating Constrained Reaching
Movements. volume 21, pages 1521–1544, 2007. doi: NA.

W. Hardle. Smoothing Techniques with Implementation in
Statistics. NY:Springer, 1991.

M. Hersch, F. Guenter, S. Calinon, and A. Billard. Dynamical
System Modulation for Robot Learning via Kinesthetic
Demonstrations. IEEE Transactions on Robotics, 1, 2008.
Accepted.

P. A. Hinrichsen D. Mathematical Systems Theory. Springer
Berlin, 2000.

J. Hwang, R. Arkin, and D.-S. Kwon. Mobile robots at
your fingertip: Bezier curve on-line trajectory generation for
supervisory control. Intelligent Robots and Systems, 2003.
(IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on, 2:1444–1449, Oct. 2003.

A. Ijspeert and A. Crespi. Online trajectory generation in an
amphibious snake robot using a lamprey-like central pattern
generator model. Robotics and Automation, 2007 IEEE
International Conference on, 1:262–268, April 2007. ISSN
1050-4729. doi: 10.1109/ROBOT.2007.363797.

A. Ijspeert, J. Nakanishi, and S. Schaal. Trajectory formation
for imitation with nonlinear dynamical systems. Intelligent
Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, 2:752–757 vol.2, 2001.

A. Ijspeert, J. Nakanishi, and S. Schaal. Learning rhythmic
movements by demonstration using nonlinear oscillators.
In In Proceedings of the IEEE/RSJ Int. Conference on
Intelligent Robots and Systems (IROS2002, pages 958–963,
2002.

H. Khalil. Nonlinear systems. Prentice Hall Upper Saddle
River, NJ, 1996.

J. Kuffner, S. Kagami, and I. M. I. H. Nishiwaki, K.
Dynamically-stable motion planning for humanoid robots.
Autonomous Robots, 12(1):105–118, 2002.

E. T. Y. Lee. Comments on some b-spline algorithms.
Computing (Springer-Verlag), 36:229–238, 1986.

L. Ljung. State of the art in linear system identification: Time
and frequency domain methods. Proceeding of the 2004
American Control Conference, 1:650–661, 2004.

M. Loccufier and E. Noldus. A new trajectory reversing
method for estimating stability regions of autonomous non-

18

linear systems. Nonlinear Dynamics, 21(3):265–288, 2000.
G. McLahlan and D. Peel. Finite Mixture Models. NY:Wiley,

2000.
A. Moore. Efficient memory-based learning for robot control.

PhD thesis, University of Cambridge, 1990.
H.-G. Muller. Nonparametric Regression Analysis of Longitu-

dinal Data. Berlin:Springer, 1988.
D. Nguyen-Tuong, M. Seeger, and J. Peters. Local gaussian

process regression for real time online model learning and
control. In Proceedings of the Conference on Advances in
Neural Information Processing Systems, 2008.

J. Park and I. Sandberg. Universal approximation using radial-
basis-function networks. Neural Computation, 3(2):246 –
257, 1991.

M. Priestley. State-dependent models: A general approach
to non-linear time series analysis. Journal of Time Series
Analysis, 1, 1980.

L. Righetti, J. Buchli, and A. Ijspeert. Dynamic
hebbian learning in adaptive frequency oscillators.
Physica D, 216(2):269–281, 2006. URL
http://dx.doi.org/10.1016/j.physd.2006.02.009.

R. W. L. Ryoung K. Lim, Minh Q. Phan. State-space system
identification with identified hankel matrix. Technical re-
port, Department of Mechanical and Aerospace Engineering
Technical Report No.3045, Princeton University, Princeton,
NJ., 1998.

S. Schaal and C. Atkeson. Robot juggling: implementation of
memory-based learning. Control Systems Magazine, IEEE,
14(1):57–71, Feb 1994. ISSN 0272-1708. doi: 10.1109/37.
257895.

S. Schaal and C. G. Atkeson. Constructive incremental
learning from only local information. Neural
Computation, 10(8):2047–2084, 1998. URL
citeseer.ist.psu.edu/schaal97constructive.html.

S. Schaal, S. Kotosaka, and D. Sternard. Nonlinear dynamical
systems as movement primitives. In Proceedings of the
International Conference on Humanoid Robotics, 2001.

S. Schaal, A. Ijspeert, and A. Billard. Computational Ap-
proaches to Motor Learning by Imitation. Philosophi-
cal transactions: biological sciences, 358(1431):537–547,
2003. doi: NA.

G. Schoner and C. Santos. Control of movement time and
sequential action through attractor dynamics: A simulation
study demonstration object perception and coordination. In
Symposium on Intelligent Robotic Systems, 2001.

D. Sternad and D. Schaal. Segmentation of endpoint trajecto-
ries does not imply segmented control. Experimental Brain
Research, 124:118–136, 1999.

H. G. Sung. Gaussian Mixture Regression. PhD thesis, Rice
Univercity, Huston, Texas, 2004.

H. Tomohisa, W. M. Haddad, and H. Naira. Neural network
adaptive control for a class of nonlinear uncertain dynamical
systems with asymptotic stability guarantees. IEEE Trans-
actions on Neural Networks, 19:80–90, 2008.

D. Travis, B. T. Thumati, and S. Jagannathan. Optimal control
of unknown affine nonlinear discrete-time systems using
offline-trained neural networks with proof of convergence.
Neural Networks, 22:851–860, 2009.

A. Ude, C. Atkeson, and M. Riley. Programming full-body
movements for humanoid robots by observation. Robotics
and Autonomous Systems, 47:93–108, 2004.

S. Wang, H. Luo, C. Yue, and X. Liao. Parameter identification
of chaos system based on unknown parameter observer.
Physics letters. A, 372:2603–2607, 2008.

H. Wei and S. Amari. Dynamics of learning near singularities
in radial basis function networks. Neural Networks, 21:
981–1005, 2008.

N. Xie and H. Leung. Blind identification of autoregressive
system using chaos. IEEE Transactions on Circuits and
Systems, 52:1953–1965, 2005.

K. Yamane, J. J. Kuffner, and J. K. Hodgins. Synthesizing
animations of human manipulation tasks. ACM Trans.
Graph., 23(3):532–539, 2004. ISSN 0730-0301. doi:
http://doi.acm.org/10.1145/1015706.1015756.

K. Yokoi, E. Yoshida, and H. Sanada. Unified motion planning
of passing under obstacles with humanoid robots. In
Robotics and Automation, 2009. ICRA ’09. IEEE Interna-
tional Conference on, pages 1185–1190, May 2009. doi:
10.1109/ROBOT.2009.5152797.

E. Yoshida, M. Poirier, J. Laumond, O. Kanoun, F. Lamiraux,
R. Alami, and K. Yokoi. Whole-body motion planning for
pivoting based manipulation by humanoids. In Proceedings
of IEEE International Conference on Robotics and Automa-
tion, 2008.

R. Zollner, T. Afour, and D. R. Programming by demonstra-
tion: Dual-arm manipulation tasks for humanoid robots. In
Proceedings of the International Conference on Intelligent
Robots and Systems, 2004.

