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Abstract Although point-to-point reaching motions have
received a lot of attention, the way these movements are
controlled remains incompletely resolved. Different con-
trollers seem to be recruited depending on the task. Un-
constrained reaching movements in space are strongly
curved, in opposition to the widely accepted view of
quasi-straightness. We argue that the curvature of the
movement is due to environmental constraints that af-
fect directly the planning of the movement.

We propose a mathematical model whereby move-
ments are planned through the combination of two con-
current controllers for the wrist and elbow in space. Co-
herence constraints are enforced between the two sys-
tems to simulate biomechanical constraints at the wrist,
elbow and shoulder levels. External constraints, such as
the presence of obstacles, are encapsulated in a virtual
force which affects the planning of the movement.

The predictions of the model are validated against
kinematic data from human reaching motions. Four types
were contrasted: intransitive versus transitive reaching
motions and natural versus un-natural motions. In the
un-natural case, subjects were requested to exaggera-
tedly elevate the elbow during the movement. In all four
movements types, the movements are highly curved. The
model renders with high accuracy the kinematics of the
movements and accounts for the curvature as an effect
of the virtual force.
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mization with Lagrange, unconstrained and voluntary
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1 Introduction

Much attention has been devoted to the study of point-
to-point reaching movements, most of which focused on
movements restricted to a plane. These studies high-
lighted several invariant features (Gibet et al 2004), such
as quasi-straightness of the hand path from initial and
target positions and the so-called bell-shaped velocity
profile (Morasso 1981). Soon, such simple rules were ques-
tioned when considering unconstrained motions instead
of the usual paradigm of constrained motions, or so-
called compliant motions (Desmurget et al 1997). Indeed,
the majority of the studies of point-to-point movements
were highly constrained and required subjects to hold
a hand-held cursor. Unconstrained motions, in contrast,
refer to free motions of the hand. Results from uncon-
strained studies show that the spatio-temporal charac-
teristics of compliant and unconstrained movements are
fundamentally different. (Desmurget et al 1997) showed
that movement duration was higher in the compliant
condition than for unconstrained movements. Further-
more, path curvature was significantly higher for uncon-
strained motions. Hence, compliant and unconstrained
motions involve different control strategies. Evidence sup-
ports the hypothesis that unconstrained motions are not
following a straight line but are slightly curved. This hy-
pothesis is further supported by (Boessenkool et al 1998)
who states that trajectory curvature is an inherent prop-
erty of unconstrained arm movements.

Another largely unresolved issue of motor control re-
lates to the redundancy of the arm joints. A simple way
to illustrate this is to consider the various postures that
the arm can adopt to touch the same target. Several
mathematical models have tried to answer this delicate
question. Choosing between describing the kinematics
of the arm in Cartesian coordinates or in joint angle
space is a thorny problem and evidence comes in sup-
port of either of the two representations depending on
the task (Flash and Hogan 1985; Rosenbaum et al 1995;
Torres and Zipser 2002). To overcome this problem, the



2

movements are often described more abstractly in terms
of a global measure. This measure encodes the cost of
each movement and the optimal movement is the one
that minimizes this cost function. Cost functions may be
defined using either kinematics or dynamic information
on the movement.

Cost functions based on kinematic information deal
with geometrical and temporal information: position, ve-
locity, acceleration, etc. In (Flash and Hogan 1985), the
cost function is defined as the square of the magnitude of
the jerk (rate of change of acceleration) integrated over
the entire movement. The minimum jerk model generates
smooth hand trajectories which are straight and follow
a bell-shaped velocity profile.

Cost functions based on dynamic information depend
on the forces acting on the hand and arm. The mini-
mum torque change model (Uno et al 1989) proposes as
measure of performance the square of the first deriva-
tive of the torque integrated over the entire movement.
In (Uno et al 1989) the model was compared to the
minimum jerk model for unconstrained horizontal move-
ments between two targets located in the sagittal plane.
It was shown that the minimum torque change model
and minimum jerk model were both predicting straight
hand paths. However, for trajectories starting with the
arm stretched sideways, the two models gave very differ-
ent predictions. The minimum jerk model still predicted
a straight-line hand paths whereas the trajectories pre-
dicted by the minimum torque model were gently curved,
and thus more similar to observed human motion.

Other methods have been proposed to model the arm
trajectories. Harris and Wolpert proposed the minimum
variance theory (Harris and Wolpert 1998). Their model
is based on the physiological assumption that the control
signal is corrupted by noise. In the presence of this noise,
the shape of the hand trajectory is selected so as to min-
imize the variance of the final arm position. In (Ogihara
and Yamazaki 1999), the authors take a very different
approach. They modeled the nervous system as a recur-
rent neural network. Given a goal position, the modeled
nervous system was able to generate muscular activa-
tion signals used to move the hand to the target posi-
tion. An interesting feature of this model is its ability to
model the position of the whole arm. Most of the models
presented previously were dealing mainly with the hand
trajectory. A method has been proposed in (Kang et al
2003) to model the arm with its 4 DOFs. The arm tra-
jectory is decomposed into intermediate positions. The
model solves the joint angles for these positions by mini-
mizing the sum of absolute value of all joints’ torque work
in each sub-path (trajectory between two via-positions).
Their model unfortunately showed poor results for the
adduction/abduction angle of the shoulder. Following
this same idea, Gu et al. proposed the equilibrium point
based model (Gu and Ballard 2006). The human arm
motion can be seen as a sequence of short motion seg-

ments. Movements are generated by gradually shifting
from one segment position to the next.

The models we have reviewed in the previous para-
graphs are mostly dealing with compliant gestures or are
modeling solely the hand path. Few of those have been
designed to predict the evolution of movement of the
entire arm, from start to target. In the present paper,
we propose a method for generating the position of the
entire arm for point-to-point motions. Further, since the
elbow and hand locations are known, the whole arm con-
figuration is determined, we model the control of the arm
trajectory with two concurrent dynamical systems driv-
ing the hand and elbow separately, but coupled through
kinematics constraints. We extend the biologically plau-
sible VITE model (Bullock and Grossberg 1988), that de-
scribes a dynamical system to generate straight point-to-
point trajectories in the Cartesian space. The extended
VITE model we propose accounts for the observed cur-
vature of the movement. Note that an extension of the
VITE model that generate curved writing movements
has already been proposed (Bullock et al 1993). The ex-
tension consisted in running three coupled VITE con-
trollers to control the x-, y- displacements and wrist
rotation of the hand, respectively. The curvature was
the result of initiating each model at different start-
ing times. An important disadvantage of this approach
to model point-to-point movement is that it required a
series of multiple arbitrary targets for each curvature
change, which is not the case with the EFF-VITE model.

In order to validate the model, we conduct motion
studies, in which unconstrained reaching motions are
generated. Most of the literature has focused on the study
of reaching movements directed at a target (Atkeson
and Hollerbach 1985; Desmurget et al 1997; Magescas
and Prablanc 2006). To determine if the curvature of
the movement results from generating transitive (i.e. di-
rected to a target) versus intransitive movements, we
contrast two conditions in which subjects either reach
for an object or do a reaching motion directed to no
particular location on a table. We hypothesized that in
both conditions the trajectories would be curved and ar-
gue that this curvature is necessary and fulfills two main
goals: to avoid uncomfortable arm postures (for exam-
ple, it is more natural to extend the elbow to the right
during the motion than keeping a purely straight trajec-
tory) and to encapsulate environmental constraints such
as the presence of the table.

Furthermore, in order to better understand how the
central nervous system manages to decouple the control
of the upper and lower arms, when forced to do so, we
investigated the kinematics of motion in which the elbow
was forced to follow a trajectory more elevated than that
found during natural reaching movements. (Koshland
et al 2000) showed that, reaching during movements,
the wrist exhibited similar characteristics as the prox-
imal joints, demonstrating a coupling among the joints.
We thus expected the curvature of the trajectories of
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the wrist also to increase as an effect of the exaggerated
elevation of the elbow.

In Section 2 we describe the dynamical systems driv-
ing the elbow and wrist motions and explain how co-
herence constraints between the wrist and elbow are en-
forced in the model. Section 2.2 describes the experi-
mental set-up and procedure followed during the motion
studies. A comparative analysis of the model’s predic-
tions and human data is done in Section 3, followed by
a discussion of the model’s biological plausibility.

2 Materials and Methods

2.1 Description of the model

Our proposed approach is based on an extension of Bul-
lock and Grossberg’s Vector Integration To Endpoint
(VITE) model (Bullock and Grossberg 1988). The VITE
model is a biologically inspired model that can only gen-
erate straight point-to-point trajectories. Contrary to the
VITE model, the extended force-field version of the VITE
model (EFF-VITE) can account for curved reaching move-
ments, and can be used to model both the trajectories of
the hand and elbow. Compared to the VITE model, the
EFF-VITE model is time-independent and thus stable in
case of long lasting perturbations. Furthermore, it repre-
sents a proper force governed system. In the EFF-VITE
system, the trajectory of the hand or elbow is governed
by the following dynamical system:

ẍ(t) = α(−ẋ(t) + βg(t)δ(h(t) + γ)(
x∗(t)− x(t)
‖x∗(t)− x(t)‖

+ g(t)F(t))) (1)

and

F(t) = g(t)u + h(t)v (2)

where

g(t) =
‖x∗(t)− x(t)‖

‖x(t)− x(0)‖+ ‖x∗(t)− x(t)‖

h(t) =
‖x(t)− x(0)‖

‖x(t)− x(0)‖+ ‖x∗(t)− x(t)‖
are respectively the ratios between the distance separat-
ing the hand from the final target position x∗ and the dis-
tance separating the hand from the initial position x(0)
over their total. The force F helps to comply with envi-
ronmental constraints due to the volume and geometry
of the body. F is the weighted sum of two constant force
vectors that push the trajectory away from the straight
line. u is the modulated force that perturbs the begin-
ning of the movement, whereas v perturbs the end of
the movement (Figure 1). The parameter α ∈ R+ was
fixed to a constant value. Parameters β, γ and δ control
the general form of the velocity profile. β controls the

asymmetry and peak value of the velocity profile. γ en-
ables the initiation of the movement, and δ controls the
final approaching phase of the movement and parameter-
izes the trade-off between precision and execution time.
For example, lowering the value of δ shortens the move-
ment deceleration phase but also increases the risk of
overshooting the target position (Figure 2). The role of
the parameters will be further discussed in Sections 3.2.2
and 3.2.3.

An arm configuration corresponds to a particular po-
sition in space of both the wrist and elbow. In the duo-
EFF-VITE model, two concurrent EFF-VITE models
are modeling the hand and elbow paths. As the hand and
elbow are linked, these two systems are not independent.
Hence, coherence constraints must be enforced in order
to have a meaningful representation of the movement.
Figure 3 presents the overall structure of the duo-EFF-
VITE model. The outcome of the model is the position
of the hand and elbow in the Cartesian space at each
time step.

Let xw and xe be the position of the wrist and el-
bow in the 3D space where the origin is centered on the
shoulder. The position of the arm is such that:

||xe|| = L1 (3)

and

||xe − xw|| = L2 (4)

where L1 and L2 are respectively the length of the upper-
arm and forearm , and ||.|| defines the vector norm.

Let xw
d(t) and xe

d(t) be the desired position of the
wrist and elbow given by the EFF-VITE models at each
time step t. In general, the variables xw

d and xe
d will

not be consistent with kinematic constraints. In order to
have consistent values, we find the values xw

∗ and xe
∗

that minimize the similarity measure H:

H(xw
∗,xe

∗) = ||xw
∗ − xw

d||+ ||xe
∗ − xe

d|| (5)

under constraints given by equations (3) and (4).
The problem is solved analytically by using Lagrange

optimization. We define the Lagrangian as:

L(xw
∗,xe

∗, λ1, λ2) = H + λT
1 (||xe

∗|| − L1)

+ λT
2 (||xe

∗ − xw
∗|| − L2) (6)

To solve ∇L = 0, we derive respectively ∂L
∂xw

∗ , ∂L
∂xe

∗ :

2(xw
∗ − xw

d) + λ2||xe
∗ − xw

∗||−1(xw
∗ − xe

∗) = 0 (7)

2(xe
∗ − xe

d) + λ1||xe
∗||−1xe

∗

+λ2||xe
∗ − xw

∗||−1(xe
∗ − xw

∗) = 0 (8)
We thus need to solve the following system:

2(xw
∗ − xw

d) + λ2||xe
∗ − xw

∗||−1(xw
∗ − xe

∗) = 0
2(xe

∗ − xe
d) + λ1||xe

∗||−1xe
∗

+λ2||xe
∗ − xw

∗||−1(xe
∗ − xw

∗) = 0
||xe

∗|| − L1 = 0
||xe

∗ − xw
∗|| − L2 = 0
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Fig. 1 Dynamics of the movement as a function of the force parameters. A: Forces are modulated such that u affects mostly
the beginning of the movement and v mostly the end of the movement. The direction of the deviation from the straight
trajectory is determined by the sign of the force. B: By combining the two forces u and v, trajectories that change direction
can be obtained. Pararameter values: α = 50, β = 10, γ = 0.01 and δ = 1.

Fig. 2 Effect of the parameters γ, β and δ on the speed profile of the movements. The parameters γ (left) affects the
beginning of the movement. The lower its value, the more time it takes the subject to start a movement. β (middle) controls
the asymmetry and peak value of the velocity profile (α in our model is constant). δ (right) defined the approaching speed
and thus parameterizes the trade-off between precision and execution time. In the rectangle, one can see the arm reaching
the target too quickly and overshooting it at δ = 0.6. Parameter values: α = 50, β = 10, ν = 1.5, γ = 0.01 and δ = 1.

(9)

As the system has several solutions, we choose the solu-
tions xw

∗,xe
∗ ∈ R that minimize H. As the system is

non-linear due to the presence of the norm, solutions are
found numerically.

2.2 Experiments

Subjects Eight healthy subjects (4 females, 4 males, mean
age 26 ±4) volunteered to perform a one-handed task
consisting of point-to-point motions. All subjects were
right-handed (Edinburgh Handedness Test, Oldfield (1971)).
They were all naive regarding the purpose of the ex-
periment. They reported no history of neurological or

musculo-skeletal disorder. All had normal or corrected
to normal vision.

Procedure Subjects sat comfortably on a chair in front
of a table. They were asked to maintain a steady trunk
position all along the recording session. Each hand move-
ment started in the same rest position, with the forearm
lying on the table and perpendicular to the trunk (Fig-
ure 4, left). Subjects were shown the movements by a
demonstrator. There were two conditions. In the first
condition, movements were directed towards an object
placed 30 cm away from the subject in the sagittal plane
(Figure 4, right). In the second condition, subjects had
to reach in front of them and land their hand palm-down
on the table. No location on the table was specified in
this second condition. We refer to these two conditions
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Fig. 3 The wrist-and-elbow path controller: The first EFF-VITE model (on the left) models the trajectory of the wrist
in cartesian coordinates, whereas the second EFF-VITE model is used to model the elbow path in cartesian space. The
coherence constraints ensure the desired positions xd

w and xd
e given by the EFF-VITE models are consistent relative to

kinematic constraints. The modified values after coherence constraint for both the wrist and elbow positions, x∗w and x∗e , are
fed back to the EFF-VITE models.

Fig. 4 Left: Experimental set-up seen from the right side with the subject in the rest position. Right: upper view of the
set-up showing the position of the target when subjects performed transitive motions.

respectively as transitive (Trans) and intransitive (In-
trans) movements in the rest of the paper.

For each condition, the subjects were instructed to
perform two variants of the movements. In the first vari-
ant (so-called “Elb”), the subjects were asked to exagge-
ratedly elevate the elbow throughout the motion. In the
second variant (so-called “Norm”), subjects were asked
to perform motion in the way that seemed most natural
to them. Movements were thus of four types: intransi-
tive with normal kinematics (Intrans Norm), intransi-
tive with an exaggerated elevation of the elbow (Intrans
Elb), transitive with normal kinematics (Trans Norm)
and transitive with an exaggerated elevation of the el-
bow (Trans Elb). Figure 5 presents snapshots of the
four types of reaching movements.

Subjects were shown several times each movement
types. Additional explanation was given when necessary.
The subjects were instructed to replicate as precisely as

possible these movements. A series of five movements for
each condition and variant was recorded for each subject
(Table 1).

Data acquisition The trajectory in space of the shoul-
der, elbow and wrist were recorded by using a kinematics
recording system formed by three ProReflex MCU1000
cameras (QUALISYS AB, Sweden) detecting the 3D po-
sition of infrared reflecting markers (n=4) positioned on
the left and right shoulders, right elbow and right wrist.
The position of the markers was recorded at a frequency
of 200 Hz during the execution of the movements. Fig-
ure 6 presents one subject wearing the markers as well
as the shoulder-centered frame of reference used in the
following of the paper to calculate wrist and and elbow
trajectories.
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Intrans Norm Intrans Elb Trans Norm Trans Elb

Fig. 5 Snapshots of the four gesture types. From left to right: Intransitive action with normal kinematics and with an
exaggerated elevation of the elbow. Transitive movement with normal kinematics and with an exaggerated elevation of the
elbow. One can see that for the “Elb” variant the elbow position is always higher than for movements performed with normal
kinematics for both the “Intrans” and “Trans” conditions.

Subjects Repetitions Recording sessions

8 5 × 4 gesture types 1

Table 1 Statistics of the database.

Fig. 6 Left: subject wearing markers on the right arm (markers are surrounded by red squares). Right: shoulder-centered
frame of reference.

Data analysis All analyzes were performed using the
Qualisys Track Manager (QUALISYS AB, Sweden) soft-
ware, plus some custom programs written in Matlab (Math-
works, Natick, MA). Analysis was done solely on the rea-
ching phase of each movement (from the rest position to
the target location in the case of transitive movements,
and from the rest position to the hand placement on the
table in front of the subject for intransitive movements).
Data were first segmented manually to remove any irrele-
vant movement prior to the onset of the reaching motion.
We used only unfiltered raw values. The curvature index
is computed as the ratio between the total arc length
of the path and the Euclidian distance between the ini-
tial and final positions. A curvature index of 1 indicates a
perfectly straight trajectory whereas a semi-circular path
would have a curvature index of CI = π/2. The values
of the model’s parameters were optimized for each trial
using 53 factorial experimental designs coupled with a lo-
cal search procedure (Neter et al 1996; Hoos and Stützle
2004).

3 Results

3.1 Movement statistics

We first assessed the general characteristics of the recorded
movements. For each movement type (Intrans Norm, In-
trans Elb, Trans Norm, and Trans Elb), we computed
the duration of the movement, path length and curva-
ture index of the wrist and elbow on average across the
8 subjects and 20 trials (Table2).

Consistent with (Bernstein 1967)’s observations of
substantial trial-to-trial variations, a three-way ANOVA
analysis across subjects (eight levels), conditions (intran-
sitive, transitive) and variants (elbow normal, elbow el-
evated) revealed a high inter-subject variability for both
the duration of the movements, the length of the wrist
path and the curvature index (p < 0.001), with a sig-
nificant interaction effect for the subject/condition and
subject/variant factors (p < 0.01 in each case, see Ta-
ble 2). This high across subjects variability in perform-
ing the same motion is illustrated in Figures 7 and 8.
Subject 9 tended to be very consistent across trials and



7

Duration (s) Path length (cm) Curvature index Elbow elevation (cm)

Wrist Elbow Wrist Elbow

Intrans Norm 0.89 ± 0.28 25.3 ± 3.3 26.7 ± 3.5 1.16 ± 0.10 1.19 ± 0.06 -15.0 ± 2.3

Intrans Elb 1.11 ± 0.28 31.8 ± 5.7 37.2 ± 9.6 1.54 ± 0.28 1.52 ± 0.26 -7.0 ± 2.8

Trans Norm 0.84 ± 0.19 22.5 ± 3.0 23.0 ± 3.1 1.16 ± 0.09 1.16 ± 0.05 -15.9 ± 2.0

Trans Elb 1.14 ± 0.22 31.8 ± 6.2 34.9 ± 8.1 1.61 ± 0.45 1.47 ± 0.26 -6.4 ± 2.4

p-value (sub.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

p-value (cond.) n.s. < 0.003 < 0.001 n.s. < 0.02 n.s.

p-value (var.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

p-value (sub*cond) < 0.001 < 0.001 < 0.001 < 0.001 < 0.002 < 0.001

p-value (sub*var) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

p-value (cond*var) < 0.006 < 0.002 n.s. n.s. n.s. < 0.001

Table 2 Duration, path length, curvature index and elbow elevation across trials and subjects. Three-way ANOVA showed
that the movements performed with an exaggerated elevation of the elbow lasted longer, had a longer path for both the
wrist and elbow and were significantly more curved than movements with normal kinematics. Furthermore, the recorded
movements differed significantly accross subjects in their duration, path length, curvature index, and elbow elevation. The
maximal height of the elbow during the movement was also significantly different accross the two motion variants.

Fig. 7 Mean wrist trajectory (in black) and standard deviation envelope (in grey) for a transitive movement with an
abnormal elevation of the elbow (Trans Norm) showing a small intra-variability for Subject 9.

displayed a low across trials variability of the wrist’s mo-
tion (Figure 7), whereas Subject 5 displayed an overall
much higher variability for the same motion (Figure 8).
Given that the subjects had different arm lengths, the
length of the wrist path varied importantly across sub-
jects, especially in the intransitive case (see table 2).

All movements were curved (CI > 1). Most impor-
tantly for the argument of this paper, both the trajectory
of the wrist and of the elbow were curved. The curvature
is even more important for movements performed with
an exaggerated elevation of the elbow (CI > 1.6). As a
result, movements performed with an abnormal elevation
of the elbow in both conditions (Intrans versus Trans)
take significantly more time and are longer than move-
ments performed with normal kinematics. Moreover, in-
transitive motions were significantly longer than transi-
tive motions. This is likely due to the rotation of the wrist
that occurs during intransitive motions (to place the
palm down on the table), particularly when the move-
ment is performed with an exaggerated elevation of the
elbow (first two images in Figure 5).

3.2 Accuracy of the model

We measured the accuracy of the model to reproduce
each instance of each motion type. We computed the

mean deviation (MD) of the predicted wrist and elbow
trajectories compared to the wrist/elbow trajectories at
each time step, as well as the mean squared error (MSE)
for each condition and variant of the movements. Table 3
provides these values for each gesture type. We also per-
formed a three-way ANOVA analysis on these results for
the subject, condition and variant factors. These results
show no significant influence of either factor on the MSE
for the wrist. For the elbow, the ANOVA analysis reveals
a significant difference between the two motion variants
(F=4.52, p < 0.04). However, the error is small and can
be explained by the high variability of movements per-
formed with an exaggerated elevation of the elbow (Elb
variant).

Thus, overall, the model reproduces motions with
high accuracy. It encapsulates the generic shape of both
the trajectory in space and the speed profile of the wrist
and elbow (Figure 9). 81% of the data for the wrist and
79% of the observed data for the elbow are reproduced
by the model with a MSE inferior to the mean MSE. 3 to
4% of the errors are due to outlier data whereas another
53% are due to a poor reproduction of the start and/or
end of the trajectory (Figure 10).

This is due to the fact that, like the original VITE
model, the duo-EFF-VITE model, pre-supposes a smooth
and gradually increasing and decreasing speed profile at
the start and end of the movement, respectively. Because
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Fig. 8 Mean wrist trajectory (in black) and standard deviation envelope (in grey) for a transitive movement with an
abnormal elevation of the elbow (Trans Norm) showing a high intra-variability for Subject 5.

MD (cm) MSE (cm2)

Movement Wrist Elbow Wrist Elbow

All motions 1.1 ± 0.7 1.1 ± 0.7 1.26 ± 5.16 1.09 ± 3.23

Intrans Norm 0.9 ± 0.5 0.9 ± 0.4 0.76 ± 1.32 0.65 ± 1.21

Intrans Elb 1.3 ± 0.4 1.3 ± 0.5 1.22 ± 0.86 1.15 ± 1.04

Trans Norm 0.8 ± 0.4 0.7 ± 0.4 0.48 ± 0.86 0.46 ± 1.05

Trans Elb 1.3 ± 1.1 1.4 ± 1.0 2.58 ± 10.10 2.09 ± 6.08

p-value (sub.) < 0.02 < 0.002 n.s. n.s.

p-value (cond.) n.s. n.s. n.s. n.s.

p-value (var.) < 0.001 < 0.001 n.s. < 0.04

p-value (sub*cond) n.s. n.s. n.s. n.s.

p-value (sub*var) n.s. n.s. n.s. n.s.

p-value (cond*var) n.s. n.s. n.s. n.s.

Table 3 Mean Deviation (MD) and Mean Squared Error (MSE) for the duo-EFF-VITE models on the trajectories of the
wrist and elbow for each gesture type. We also provide three-way ANOVA results across subjects, movement conditions,
variants, and interaction of these factors for each error type.

Fig. 9 Examples of movements well reproduced by the duo-EFF-VITE model.The trajectory of the subject’s wrist (dotted
line) and the modeled trajectory (black) are presented on top.

data were segmented manually, the speed profile was
sometimes truncated and hence did not follow the typi-
cal pattern. Furthermore, some data present an atypical
curvature at the start or end of the movement, due to
hesitations on the subjects’ parts. Because these impre-
cisions were minor and did not affect the generic charac-
teristics of each motion (curvature and overall 3D spatial
displacement), which we wanted the model to encapsu-
late, we did not eliminate the data.

3.2.1 Statistics of the model’s parameters

A three-way ANOVA across subjects, conditions and vari-
ants, on the values taken by the force parameters of the
model reveals that, while for the same subject the pa-
rameters for the wrist and elbow motions are consistent
across conditions and variants, they vary importantly
across subjects (see Tables 5 and 6). An effect of the
variant (Norm versus Elb) is observed for the parameters
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Fig. 10 Examples of movements poorly reproduced by the duo-EFF-VITE model. The trajectory of the subject’s wrist
(dotted line) and the modeled trajectory (black) are presented on top.

driving the elbow and this accounts for the variability
with which subjects produced the required exaggerated
elevation of the elbow (variability is expected given that
the arm moved in an unconstrained manner).

We also computed the intra-subject variability of the
wrist controller for movements with normal kinematics
(Tables 8 and 9). We see that some subjects are more
consistent in their movements than others, for both the
force applied on the wrist and the parameters modulat-
ing the speed profile. This is particularly true for Sub-
jects 6 and 8. This confirms the information contained
in Figures 7 and 8, and is consistent with the general
observation of a high inter-subject and inter-trial vari-
ability when performing the same motion, as discussed
above and revealed in Table 2.

3.2.2 Meaning of the model’s parameters

The parameters β, γ and δ in Equation 1 control the ve-
locity profile of the movement. A two-way ANOVA shows
that β and γ are similar across conditions and subjects
(Table 4 in Annex) for the wrist controller. β controls the
asymmetry and peak value of the velocity profile and γ
determines the onset of the movements (Figure 2). As
any irrelevant movement prior to the onset of the rea-
ching motion has been manually removed, it is expected
that γ takes a similar value across subjects and condi-
tions. β is not significantly different across subjects, con-
ditions and variants. Trajectories of the wrist thus follow
the same velocity profile for both conditions (Intrans ver-
sus Trans) and variants (Norm versus Elb). δ controls the
approaching speed of the movement. Together with β, δ
determines a trade-off between overshooting the target
and minimizing the execution time. Figure 11 presents
the distribution of the values for β and δ for all move-
ments. We see that the values are comprised within a
region that minimizes execution time while ensuring a
good precision of the movement.

3.2.3 Effect of the forces

We have already seen in Table 2 that the trajectories of
both the wrist and elbow are curved. This curvature is
accounted for by the values taken by the force parameters
of the model (Tables 5 and 7). For each condition and
variant of the movement, a non-null force is applied on
the wrist and elbow. While one could have performed a
straight-line motion in the normal condition, it is obvious
that a straight path controller could not be envisioned
for movements performed with an exaggerated elevation
of the elbow. And, as expected, we observed larger val-
ues for the force parameters in the Elb variant of the
movement.

The force applied along the x and y axes can also be
related to the environmental and geometric constraints
implied by the task. In our experiments, subjects sat on
a chair with the body close to the table, the forearm rest-
ing on the table (Figure 6). To perform the movement,
subjects needed to avoid the table (“table avoidance”
constraint). To satisfy this constraint, the arm had to be
placed above the table. Since the elbow is linked to the
trunk by the upper-arm, all the possible positions of the
elbow are located on a sphere centered on the shoulder
and of radius the length of the upper-arm. Thus when
the elbow tries to avoid the table, the elbow is also pulled
away from the body along the x- and y-directions. Forces
applied on the x- and y-axes are thus explained by the
geometry of the body as well as the environmental con-
straints (“table avoidance”).

The force along the z-axis (uz and vz) is close to zero
in the ”Norm” variant.However, in the ”Elb” variant, the
force along the z-axis at the end of the movement (vz)
(Table 7) is significantly higher (F=254.3, p < 0.001),
with a mean value close to 1, so as to pull the elbow up
during the motion. This effect is illustrated in Figures 13
and 12.
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Fig. 11 Distribution of the parameters β and δ of the wrist controller, with respect to the overshoot distance (left) and
execution time (right) for a 0.2 m movement. α = 50, γ = 0.02

Fig. 12 Example of the force Fe applied on the elbow for an intransitive movement with normal kinematics. From left to
right: projection in the xy-, xz- and yz-planes

Fig. 13 Example of the force Fe applied on the elbow for an intransitive movement with an abnormal elevation of the elbow.
From left to right: projection in the xy-, xz- and yz-planes

3.2.4 Separate controllers for wrist and elbow

As the elbow and wrist are linked by the forearm, the
curvature of the hand path for movements performed
with normal or exaggerated elevation of the elbow can
be seen as a side effect of the elbow itself. Such correla-
tion is revealed by looking at the Pearson coefficient be-
tween the forces 1 Fw and Fe (Equation (2)) applied on
the wrist and elbow. These coefficients are respectively:

1 The Pearson coefficient is the sum of the products of the
normalized values of the two measures divided by the degree
of freedom. The Pearson coefficient ranges from +1 to -1. If
ρ = 0, then there is no linear relationship between the two
variables. On the contrary, if |ρ| = 1, then there is a perfect
linear relationship between the two variables.

ρ(x) = 0.70, ρ(y) = 0.74, and ρ(z) = 0.18, where ρ(x),
ρ(y), and ρ(z) are the Pearson coefficients along the x-, y-
and z-axis, respectively. These results show that there ex-
ists a strong correlation between the force applied on the
wrist and elbow along the x- and y-axis. The curvature
of the wrist trajectories along the x- and y-axis is thus a
side-effect of the elbow motion, and would contribute to
confirm a view in which elbow and wrist are controlled
by a single controller. In contrast, the wrist and elbow
seem to be quasi-independent along the z-axis. This in-
dicates that for the Elb variant of the movements, an
exaggerated elevation of the elbow results in an increase
in the amplitude of the virtual force Fe along the z-axis
of the elbow controller only, and thus speaks in favor of
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having two separate controllers for the wrist and elbow,
albeit correlated by geometrical constraints.

4 Discussion

4.1 Accuracy of the model

In this paper, we presented a model of reaching move-
ments, which we validated against kinematic data of known
motions in two conditions (intransitive versus transitive
motions) and for two variants (movements performed
with “naturally” versus movements performed with an
exaggerated elevation of the elbow). We proposed an
extension of the VITE model to account for both the
curvature of naturally reaching movements and for the
dual control of the wrist and elbow during unnatural rea-
ching movements. The model gave an accurate account
of the kinematics of the data for all the four movement
types (Intrans Norm, Intrans Elb, Trans Norm and Trans
Elb). Discrepancies between the model’s prediction and
the data for the velocity profiles at the start and end of
the movement were observed in about 10% of the data.
Closer analysis revealed that these errors were due to the
fact that manual segmentation led to abrupt speed pro-
files, but also to the fact that in some cases, especially
in transitive motions, the speed at the end of the rea-
ching motion was not null (as subjects were transiting
directly to a motion in which they grasped and lifted up
the object). By construction, the duo-EFF-VITE model,
like the VITE model, predicts a zero velocity at target.
In effect, when transiting across two motions, subjects
tend to displace the target of the reaching motion. One
way to simulate this would be to introduce a new target
position (corresponding to the final location of the sub-
ject’s arm one the object had been lifted) slightly before
the hand reached the original target point.

As expected, we observed significant inter-subjects
and inter-trials variability across motions. To avoid these,
we considered computing and modeling the mean trajec-
tories of the wrist and elbow to capture the nature in-
trinsic to each movement independently from the subject
and trial. This was ruled out as the mean movements of
the wrist and elbow could no longer be correlated (since
the correlations are not linear). Given that one of the
hypotheses of the duo-EFF-VITE model is that the po-
sition of the wrist and elbow are controlled via two sep-
arate controllers acting in parallel but linked through
biomechanical constraints, the effect of these biomechan-
ical constraints would have been lost if we had worked
with the mean trajectories. Besides, modeling each mo-
tion’s instance allowed us to demonstrate that the cur-
vature at the wrist level cannot be explained without
taking into account the movement of the elbow.

4.2 Interpretation of the Model’s Parameters

Parameters of the model are of two types. Three pa-
rameters β, γ, and δ are used to modulate the speed
profile of the movement. They respectively control the
general form of the velocity profile (asymmetry and peak
value), enable the initiation of the movement and control
the final approaching phase of the movement. Although
the model’s parameters were optimized to model each
instance of the movements, we observed a consistency
across the values of the parameters and showed that the
parameter controlling the shape of the speed profile at
the end of the movement takes values that optimize a
trade-off between the precision and execution time of
the whole movement. This is in agreement with the ob-
servation of a correlation across speed and accuracy of
goal-directed movements (Plamondon and Alimi 1997;
Meyer et al 1988). (Meyer et al 1988) hypothesized that
this trade-off permits to cope optimally with noise in the
human system.

Most importantly, the model hypothesized the exis-
tence of virtual forces that encapsulate tasks constraints
to modulate a basic controller for reaching movements.
We showed that these forces could explain the curvature
of the movements of the wrist and elbow and could be in-
terpreted in relation to environmental and biomechanical
constraints. Further experiments should be conducted to
validate this hypothesis by varying the task constraints,
e.g. asking subjects to perform reaching motions by exag-
geratedly lowering the elbow, and showing how the forces
change as an effect of the context.

4.3 Separate Control of Wrist and Elbow

A second hypothesis inherent to the model is that el-
bow and wrist are driven by separate controllers, albeit
correlated through imagined biomechanical constraints.
Such a hypothesis corresponds to assuming that the ner-
vous system is able to plan the mechanical effects that
could arise from the motion of the arm segments (Gal-
loway and Koshland 2001). An analysis of the relation-
ship across the forces applied on the wrist and elbow at
each time step revealed a strong correlation along the
x- and y-axes. The forces along the z-axis were however
quasi-independent of the elbow’s elevation. The absence
of correlation along the z-direction suggests that the mo-
tions of the wrist and elbow are computed separately
by the brain. These conclusions are consistent with find-
ings on multi-joint arm movements and with the Leading
Joint Hypothesis (LJH) (Dounskaia et al 1998; Doun-
skaia 2005). The LJH states that there is one leading
joint that guides the motion of the entire limb. Muscles
of the secondary joints thus just play a regulatory role to
ensure that the end-effector performs the required task.
Interestingly, the LJH is applicable to our results if we
consider the elbow as the leading joint and the wrist as
the secondary joint.



12

4.4 Neural Correlated to the Model’s Parameters

Similarly to the VITE model, the duo-EFF-VITE model
depends on knowing at all time the wrist and elbow posi-
tions and velocities. Evidence that the velocity and posi-
tion of the wrist may be explicitly computed and used for
motor control by the nervous system exists. For instance,
cells in the primary motor cortex (M1) of the monkey
showed a high correlation between their discharge and
the velocity profile of reaching movements (Moran and
Schwartz 1999). Moreover (Wang et al 2006) confirmed
the existence of a neural representation of the hand loca-
tion in the motor cortex during reaching. They showed
that position and velocity of the hand are simultane-
ously encoded by cortical motor neurons. Existence that
the position and velocity of the elbow are explicitly com-
puted is still questioned (Murphy et al 1982; Scott et al
1997; Reina et al 2001). While the duo-EFF-VITE model
proposes a solution to encapsulate environmental and
biomechanical constraints, it does not explain how the
brain computes such constraints. As they contribute in
several ways to the virtual forces, several brain areas may
be involved.

Finally, the duo-EFF-VITE model is based on the
idea that motions are not planned but unfold through
time as the result of the inherent dynamics of the con-
trollers. Such an approach is in line with the force-field
approach (Graziano et al 2005), where the target of the
motion acts as an attractor for the end-effector. More-
over, the model assumes that control is done in close-
loop, taking into account the current position of the arm
to correct the motion. This is supported by evidence that
the nervous system is able to estimate and anticipate the
state of the limb by integrating delayed sensory input
and motor output, through afferent and efferent internal
feedback loops (Desmurget et al 1997).

While the model exploits a representation of biome-
chanical constraints in the coupling of the elbow and
wrist controllers, it does not account for the way the com-
mand are translated into muscle activation of the upper
and lower arm limbs. While a complete understanding of
the neural control of movements would require a realistic
musculoskeletal model2, we omitted such complexity in
order to focus on explaining the gross dynamics of mo-
tor control. In particular, we aimed at explaining how
volitional control of one specific limb (upper arm) could
be done separately from that of the lower arm, as in the
exaggerated elbow elevation condition considered here.

Movements presented in this paper were unconstrained.
While this resulted in a high variability across trials and
subjects’ motions, it offered the opportunity to observe
features of motion that are inherent to natural reaching
motions. The duo-EFF-VITE model is however generic
and could also model constrained movements. To confirm

2 Such model is very complex and difficult to obtain due
to the numerous muscles and tendons present in the human
arm (Cheng and Loeb 2008).

the LJH hypothesis and the use of the duo-EFF-VITE
model in support of the latter, it would thus be inter-
esting to replicate the present study with movements
of the wrist constrained in the plane. The wrist would
then become the leading joint and the elbow the fol-
lower. Results of such a comparative study would con-
tribute to explaining the difference in the curvature of
the hand path found for constrained and unconstrained
movements (Desmurget et al 1997).

Acknowledgements This work was supported by the Sport
and Rehabilitation Engineering Program at EPFL, CE Grants
Robotcub, CONTACT and Poeticon, and Italian Ministry of
University PRIN.

References

Atkeson C, Hollerbach J (1985) Kinematic features of unre-
strained vertical arm movements. Journal of Neuroscience

Bernstein N (1967) The coordination and regulation of move-
ments. Pergamon

Boessenkool J, Nijhof EJ, Erkelens C (1998) A comparison of
curvatures of left and right hand movements in a simple
pointing task. Experimental Brain Research

Bullock D, Grossberg S (1988) Neural dynamics of planned
arm movements: emergent invariants and speed-accuracy
properties during trajectory formation. Psychological Re-
view

Bullock D, Grossberg S, Mannes C (1993) A neural network
model for cursive script production. Biological Cybernet-
ics

Cheng E, Loeb G (2008) On the use of musculoskeletal models
to interpret motor control strategies from performance
data. Journal of Neural Engineering

Desmurget M, Jordan M, Prablanc C, Jeannerod M (1997)
Constrained and unconstrained movements involve differ-
ent control strategies. The American Physiological Soci-
ety

Dounskaia N (2005) The internal model and the leading joint
hypothesis: implications for control of multi-joint move-
ments. Experimental Brain Research

Dounskaia N, Swinnen S, Walter C, Spaepen A, Verschueren
S (1998) Hierarchical control of different elbow-wrist co-
ordination patterns. Experimental Brain Research

Flash T, Hogan N (1985) The coordination of arm
movements: An experimentally confirmed mathematical
model. The Journal of Neuroscience

Galloway J, Koshland G (2001) General coordination of
shoulder, elbow and wrist dynamics during multijoint arm
movements. Experimental Brain Research

Gibet S, kamp JF, Poirier F (2004) Gesture analysis: Invari-
ant laws in movement. In: Gesture-based Communication
in Human-Computer Interaction

Graziano M, Aflalo T, Cooke D (2005) Arm movements
evoked by electrical stimulation in the motor cortex of
monkey. Journal of Neurophysiology

Gu X, Ballard D (2006) An equilibrium point based model
unifying movement control in humanoids. In: Robotics:
Science and Systems

Harris C, Wolpert D (1998) Signal-dependent noise deter-
mines motor planning. Nature
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β γ δ
Intrans Norm 2.04 ± 1.94 0.010 ± 0.005 1.31 ± 0.22
Intrans Elb 1.76 ± 1.53 0.006 ± 0.005 1.30 ± 0.37
Trans Norm 2.33 ± 1.75 0.011 ± 0.007 1.43 ± 0.30
Trans Elb 1.61 ± 1.36 0.007 ± 0.004 1.21 ± 0.39

p-value (sub.) n.s. n.s. < 0.001
p-value (cond.) n.s. n.s. n.s.
p-value (var.) n.s. < 0.001 < 0.009

p-value (sub*cond) n.s. < 0.001 n.s.
p-value (sub*var) n.s. n.s. < 0.008
p-value (cond*var) n.s. n.s. < 0.03

Table 4 Mean and standard deviation for the parameters modulating the speed profile for the movements of the wrist.
Three-way ANOVA results for each movement type across subjects, condition and variant have been provided for each of
these parameters, as well as interaction effects of the factors.

ux uy uz vx vy vz

Intrans Norm 0.36 ± 0.23 -0.36 ± 0.24 0.18 ± 0.19 0.87 ± 0.71 -0.92 ± 0.65 0.96 ± 0.47
Intrans Elb 0.68 ± 0.30 -0.54 ± 0.34 0.35 ± 0.59 0.32 ± 0.96 -0.24 ± 0.87 1.78 ± 0.60
Trans Norm 0.41 ± 0.26 -0.39 ± 0.26 0.10 ± 0.18 1.28 ± 0.56 -0.88 ± 0.72 0.77 ± 0.51
Trans Elb 0.73 ± 0.60 -0.73 ± 0.45 0.02 ± 0.50 0.71 ± 0.78 -0.14 ± 1.13 1.76 ± 1.00

p-value (sub.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond.) n.s. < 0.001 < 0.001 < 0.001 n.s. n.s.
p-value (var.) < 0.001 < 0.001 n.s. < 0.001 < 0.001 < 0.001

p-value (sub*cond) < 0.001 < 0.005 < 0.03 n.s. n.s. < 0.001
p-value (sub*var) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond*var) n.s. < 0.02 < 0.001 n.s. n.s. n.s.

Table 5 Mean and standard deviation for each parameter u and v of the model describing the force at the start and end of
the movements of the wrist. Three-way ANOVA results for each movement type across subjects, condition and variant have
been provided for each of these parameters, as well as interaction effects of the factors.

β γ δ
Intrans Norm 1.73 ± 0.66 0.011 ± 0.005 1.34 ± 0.14
Intrans Elb 1.55 ± 0.85 0.009 ± 0.004 1.22 ± 0.34
Trans Norm 1.64 ± 0.60 0.011 ± 0.005 1.33 ± 0.18
Trans Elb 1.40 ± 0.79 0.010 ± 0.005 1.27 ± 0.28

p-value (sub.) < 0.001 < 0.001 < 0.001
p-value (cond.) n.s. n.s. n.s.
p-value (var.) < 0.03 n.s. < 0.004

p-value (sub*cond) n.s. n.s. n.s.
p-value (sub*var) n.s. < 0.002 < 0.001
p-value (cond*var) n.s. n.s. n.s.

Table 6 Mean and standard deviation for the parameters modulating the speed profile for the movements of the elbow.
Three-way ANOVA results for each movement type across subjects, condition and variant have been provided for each of
these parameters, as well as interaction effects of the factors.

ux uy uz vx vy vz

Intrans Norm 0.61 ± 0.17 -0.34 ± 0.22 -0.08 ± 0.14 1.50 ± 0.033 -0.59 ± 0.39 -0.09 ± 0.58
Intrans Elb 0.85 ± 0.36 -0.63 ± 0.22 -0.06 ± 0.38 1.48 ± 0.43 -0.25 ± 0.64 1.09 ± 0.93
Trans Norm 0.50 ± 0.11 -0.38 ± 0.23 -0.03 ± 0.17 1.57 ± 0.38 -0.82 ± 0.55 -0.16 ± 0.35
Trans Elb 0.73 ± 0.36 -0.67 ± 0.27 -0.21 ± 0.29 1.44 ± 0.44 -0.56 ± 0.70 1.21 ± 1.05

p-value (sub.) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
p-value (cond.) < 0.001 n.s. < 0.03 n.s. < 0.001 n.s.
p-value (var.) < 0.001 < 0.001 < 0.001 n.s. < 0.001 < 0.001

p-value (sub*cond) n.s. n.s. n.s. n.s. n.s. n.s.
p-value (sub*var) < 0.001 < 0.001 < 0.001 < 0.002 < 0.0001 < 0.001
p-value (cond*var) n.s. n.s. < 0.001 n.s. n.s. n.s.

Table 7 Mean and standard deviation for each parameter u and v of the model describing the force at the start and end
of the movements of the elbow. Three-way ANOVA results for each movement type across subjects, condition and variant
have been provided for each of these parameters, as well as interaction effects of the factors.



14

ux uy uz vx vy vz

Sub. 1 Intrans Norm -0.07 ± 0.20 0.03 ± 0.13 0.14 ± 0.39 -0.14 ± 0.41 0.11 ± 0.30 0.17 ± 0.45
Trans Norm -0.05 ± 0.15 0.02 ± 0.05 0.14 ± 0.39 -0.13 ± 0.40 0.15 ± 0.42 0.16 ± 0.44

Sub. 2 Intrans Norm -0.05 ± 0.13 0.04 ± 0.13 0.10 ± 0.31 -0.14 ± 0.38 0.15 ± 0.43 0.17 ± 0.44
Trans Norm -0.06 ± 0.19 0.04 ± 0.13 0.17 ± 0.46 -0.15 ± 0.44 0.09 ± 0.25 0.16 ± 0.44

Sub. 3 Intrans Norm -0.07 ± 0.20 0.04 ± 0.11 -0.03 ± 0.11 -0.14 ± 0.45 0.13 ± 0.35 0.17 ± 0.44
Trans Norm -0.09 ± 0.25 0.01 ± 0.03 0.05 ± 0.17 -0.11 ± 0.38 0.13 ± 0.35 0.21 ± 0.59

Sub. 4 Intrans Norm -0.07 ± 0.20 0.03 ± 0.10 0.04 ± 0.17 -0.15 ± 0.42 0.20 ± 0.55 0.16 ± 0.44
Trans Norm -0.07 ± 0.20 0.03 ± 0.12 0.10 ± 0.30 -0.13 ± 0.40 0.18 ± 0.50 0.16 ± 0.45

Sub. 5 Intrans Norm -0.05 ± 0.13 0.01 ± 0.04 0.21 ± 0.55 -0.13 ± 0.35 0.12 ± 0.33 0.17 ± 0.44
Trans Norm -0.05 ± 0.14 -0.01 ± 0.04 0.23 ± 0.61 -0.14 ± 0.39 0.04 ± 0.17 0.20 ± 0.54

Sub. 6 Intrans Norm -0.03 ± 0.09 0.00 ± 0.01 0.14 ± 0.43 -0.12 ± 0.35 0.04 ± 0.13 0.14 ± 0.41
Trans Norm -0.02 ± 0.05 0.01 ± 0.03 0.23 ± 0.62 -0.10 ± 0.28 0.05 ± 0.16 0.17 ± 0.45

Sub. 7 Intrans Norm -0.01 ± 0.08 0.01 ± 0.05 0.12 ± 0.45 0.03 ± 0.26 0.16 ± 0.44 0.20 ± 0.55
Trans Norm -0.03 ± 0.11 0.00 ± 0.01 0.18 ± 0.52 0.07 ± 0.21 0.06 ± 0.23 0.20 ± 0.55

Sub. 8 Intrans Norm -0.01 ± 0.04 0.01 ± 0.04 0.15 ± 0.41 -0.15 ± 0.41 0.04 ± 0.12 0.14 ± 0.38
Trans Norm -0.03 ± 0.09 0.01 ± 0.03 0.18 ± 0.49 -0.18 ± 0.48 0.08 ± 0.24 0.16 ± 0.43

Table 8 Mean and standard deviation for each parameter of the model describing the force for Intrans Norm and Trans
Norm movements of the wrist for each subject respectively.

β γ δ
Sub. 1 Intrans Norm 0.43 ± 1.60 0.001 ± 0.002 0.04 ± 0.12

Trans Norm 0.21 ± 0.57 0.002 ± 0.005 0.04 ± 0.12
Sub. 2 Intrans Norm 0.22 ± 0.58 0.002 ± 0.005 0.06 ± 0.17

Trans Norm 0.36 ± 1.24 0.001 ± 0.003 0.05 ± 0.15
Sub. 3 Intrans Norm 0.25 ± 0.68 0.001 ± 0.004 0.03 ± 0.08

Trans Norm 0.42 ± 1.46 0.002 ± 0.006 0.03 ± 0.08
Sub. 4 Intrans Norm 0.36 ± 1.57 0.001 ± 0.003 0.03 ± 0.09

Trans Norm 0.29 ± 1.13 0.001 ± 0.004 0.02 ± 0.08
Sub. 5 Intrans Norm 0.22 ± 0.59 0.001 ± 0.003 0.04 ± 0.12

Trans Norm 0.32 ± 1.01 0.001 ± 0.002 0.07 ± 0.20
Sub. 6 Intrans Norm 0.15 ± 0.46 0.001 ± 0.004 0.03 ± 0.08

Trans Norm 0.23 ± 0.64 0.001 ± 0.002 0.04 ± 0.11
Sub. 7 Intrans Norm 0.24 ± 0.94 0.001 ± 0.004 0.10 ± 0.29

Trans Norm 0.29 ± 0.94 0.002 ± 0.006 0.12 ± 0.31
Sub. 8 Intrans Norm 0.17 ± 0.45 0.001 ± 0.003 0.03 ± 0.09

Trans Norm 0.21 ± 0.57 0.001 ± 0.003 0.04 ± 0.11

Table 9 Mean and standard deviation for each parameter of the model describing the force for Intrans Norm and Trans
Norm movements of the wrist and for each subject respectively.
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