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Abstract

We present a color- and shape-based 3D tracking system suited to a large class
of vision sensors. The method is applicable, in principle, to any known cali-
brated projection model. The tracking architecture is based on Particle Filtering
methods where each particle represents the 3D state of the object, rather than its
state in the image, therefore overcoming the nonlinearity caused by the projection
model. This allows the use of realistic 3D motion models and easy incorporation
of self-motion measurements. All nonlinearities are concentrated in the obser-
vation model that, for each particle, projects a few tens of special points onto
the image, on (and around) the 3D object’s surface. The likelihood of each state is
then evaluated by comparing the color distributions inside and outside the object’s
occluding contour. Since only pixel access operations are required, the method
does not require the use of image processing routines like edge/feature extrac-
tion, color segmentation or 3D reconstruction, which can be sensitive to mo-
tion blur and optical distortions typical in applications of omnidirectional sensors
to robotics. We show tracking applications considering different objects (balls,
boxes), several projection models (catadioptric, dioptric, perspective) and several
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challenging scenarios (clutter, occlusion, illumination changes, motion and opti-
cal blur). We compare our methodology against a state-of-the-art alternative, both
in realistic tracking sequences and with ground truth generated data.
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1. Introduction

Omnidirectional and wide-angle vision sensors have been widely used in the
last decade for robotics and surveillance systems. These sensors gather informa-
tion from a large portion of the surrounding space, thus reducing the number of
cameras required to cover a certain spatial extent. Their classical applications in-
clude mobile robot self localization and navigation [20, 11], video surveillance
[5] and humanoid foveal vision [18]. One drawback is that images suffer strong
distortions and perspective effects, demanding non-standard algorithms for target
detection and tracking.

In scenarios where the shape of objects can be modeled accurately a pri-
ori, 3D model-based techniques are among the most successful in tracking and
pose estimation applications [19]. However, classical 3D model-based tracking
methods are strongly dependent on the projection models and, thus, are not eas-
ily applicable to omnidirectional images. Often non-linear optimization methods
are employed: a cost function expressing the mismatch between the predicted
and observed object points is locally minimized with respect to the object’s pose
parameters [19]. This process involves the linearization of the relation between
state and measurements, which can be very complex with omnidirectional sensor
geometries. These approaches have limited convergence basins requiring either
small target motions or very precise prediction models.

In this paper we try to overcome these problems by addressing the pose esti-
mation and tracking problem in a Monte Carlo sampling framework [9], through
the use of a Particle Filter (PF).

Particle filters (PF) have become a popular tool in image processing and com-
puter vision communities as a way to infer time varying properties of a scene
from a set of input images. PF compute a sampled representation of the posterior
probability distribution over the scene properties under interest. It is capable of
coping with non-linear dynamics and nonlinear observation equations, being easy
to maintain uncertainty with multiple distributions.



The principle of the PF is simple. The goal is to compute the posterior prob-
ability distribution p(z;|y;.+) over an unknown state x;, conditioned on image ob-
servations up to that time instant, i.e., y;.,. Particle filtering works by approxi-
mating the posterior density using a discrete set of samples, i.e., the states. Each
state corresponds to some hypothesized set of model parameters. Each sample
is typically weighted by its likelihood p(y;|x;), the probability that the current
state observations were generated by the hypothesized state. Each sample can be
considered as a state hypothesis, whose weight depends on the corresponding im-
age data. The method operates by “testing” state hypothesis, thus avoiding the
linearization between state and measurements required in gradient optimization
techniques. In the context of our problem, this allows the utilization of arbitrarily
complex projection models.

More precisely, 3D object localization hypothesis, generated by the particle
filter, allow obtaining the 2D appearance of the objects, provided one has the
projection models of the imaging sensors. Examples of imaging sensors used in
our experiments range from conventional perspective to lens-mirror (catadioptric)
and fisheye-lens based omnidirectional cameras. Note that while the perspective
projection is already a non-linear model, in the sense that constant 3D motion
increments of an object do not imply constant 2D image increments, it is still a
simple model in the sense that the projection of any 3D point is ray-traced as a
straight line passing through one single point. This is not true in general for fish-
eye or catadioptric cameras. Fisheye lenses bend the incoming principal optical
rays progressively more while moving towards the periphery of the field of view.
Catadiotric cameras use simple lenses, but the mirror implies a reflection accord-
ing to the its local slope. In all cases one can have strong, anisotropic, geometrical
distortions associated to the projection which bend and blur the object’s visual
features in a space variant manner, creating difficulties in the search for object’s
features. In our approach, adopting a 3D tracking context, we can use the pro-
jection model to predict and test the location of features in the images instead of
locally searching for them.

1.1. Related Work

Particle filtering methods have been extensively used during the last decade in
2D tracking applications. One of the first algorithms applying particle filters in
the 2D context was the Condensation algorithm [15]. In that work targets were
modeled with a contour based appearance template. The approach proved not
very robust to occlusion and hard to initialize. To address such limitations, more



recent works added other types of features such as color histograms [33] and sub-
space methods [16]. In [34] a hierarchical particle filter is used to track objects
(persons) described by color rectangle features and edge orientation histogram
features. Since the use of multiple cues increases the computational demands,
two optimized algorithmic techniques are employed: integral images are used to
speed-up feature computation and an efficient cascade scheme is used to speed-up
particle likelihood evaluation. To deal with occlusions [32] fuses color histogram
features acquired from multiple cameras. Cameras are pre-calibrated with affine
transformations and the state of the filter is composed by the 2D coordinates and
bounding box dimensions of the target in one of the cameras. Each particle in the
filter generates a bounding box on each camera and the observation model is com-
posed by the concatenation of the color histograms in all bounding boxes. It is
shown that multiple cameras’ tracking and data fusion are able to tackle situations
when the target is occluded in one of the cameras.

Despite the success of particle filters in 2D tracking applications, not many
works have proposed their use in a 3D model-based context. In [6] it is proposed
a system for estimating the time varying 3D shape of a moving person having
28DOF. To deal with the high dimensionality, hybrid Monte Carlo (HMC) filter is
used. However in that work observations were obtained directly from the 2D pro-
jection of suitably placed markers in the human body and, therefore is only appli-
cable in restricted cases. In general settings, the true appearance of an object (e.g.
color, shape, contours) must be taken into account. For instance, the work in [17]
uses a particle filter [15] to implement a full 3D edge tracking system using fast
GPU computation for real-time rendering of each state hypothesis image appear-
ance (visible edges) and for applying edge-detectors in incoming video stream.
In [27] the computation of edges in the full image is avoided by grouping line
segments from a known model into 3D junctions and forming fast inlier/outlier
counts on projected junction branches. A local search for edges around the ex-
pected values must be performed at each time step. In [25] a particle filter is used
to estimate the 3D positions of humans. The environment is explicitly modelled
to handle occlusions caused by fixed objects. Multiple fixed cameras and back-
ground subtraction techniques are used for the computation of the likelihood.

1.2. Our Approach

Most previous works on 3D-model based tracking, both the ones based on
non-linear optimization and the ones relying in sampling methods, require the
extraction of edge points from the images, either by processing the full image
with edge detectors or performing local search for edge points. We stress that the
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primary disadvantage of edge-based tracking algorithms is the lack of robustness
to motion and optical blur. These effects are frequent in robotics applications due
to the mobility of the devices and the frequent out-of-focus situations.

We formulate the problem differently. Rather than determining explicitly the
location of edge points in the image, we compute differences between color his-
tograms on the inside and outside regions of the projected target surfaces. We do
not require explicit image rendering, in the sense of creating an image of the ex-
pected appearance of the target as in [17]. Instead we just need to compute the 3D
to 2D projection of some selected points inside and outside the target’s visible sur-
faces. This can be easily done with any single projection center sensor, and allows
a fast evaluation of each particle’s likelihood. Because explicit edge or contour
extraction is avoided, the method is more robust to blur arising either from fast
object motions or optical defocus. Altogether, our approach facilitates the appli-
cation to arbitrary non-linear image projections and settings with fast target/robot
motion.

In our approach we use color features to compute state likelihoods. The rea-
sons for using color features are the following: color features cope well with
motion and optical blur, which are frequent in the scenarios we consider; color
features do not require local image processing for extracting edges or corners, but
simply pixel evaluations, which makes the system suitable for real-time applica-
tions; finally, many robotics research problems assume objects with distinctive
colors to facilitate the figure-ground segmentation problem, for instance in cogni-
tive robotics [22] or robotic competitions [28]. Notwithstanding, the approach is
general and, in other scenarios, additional features could be used.

In [28] we have presented the first application of our method for tracking balls
(spheres) and robots (cylinders) in the RoboCup Middle Size League scenario
with catadioptric sensors. In [31] we have compared the application of two well
known approximations of the projection function for the class of perspective cata-
dioptric mirrors in our tracking framework: the unified projection model and the
perspective model. In [29] we extended the approach to consider not only the
3D position but also the orientation of the targets and presented applications with
dioptric and perspective cameras with radial distortion to track both spherical and
convex polyhedral shapes. In [30] we have extended the observation model to
track objects without a initial color model (only the shape model is used) and
have extended the motion model to consider the observer’s self-motion. In the
present work we synthesize the main results derived in previous work and provide
a better characterization of the method’s performance in challenging scenarios, in-
cluding the comparison with an alternative state-of-art technique and quantitative



evaluations with ground truth data.

The paper is organized as follows: Section 2 presents common imaging sys-
tems used in robotics and corresponding projection models. Section 3 describes
the Particle Filtering approach and the state representation in our problem. In
Section 4 we detail the 3D shape and color-based observation model used in the
tracking filter. In Section 5 we show several experiments that illustrate the perfor-
mance of the system in realistic scenarios, including a comparison to an alternative
approach with ground truth data. In Section 6 we draw conclusions and present
directions for future work.

2. Imaging Systems

We start with a brief introduction to the most common imaging geometries
employed in robotics that were used in our experiments. We focus on imaging
systems with axial symmetry, both dioptric and catadioptric. Cameras with axial
symmetry can be described by a projection function P:

p="P([rez"0) (1

where the 2 axis coincides with the optical axis, [r ¢ z|T represents a 3D point in
cylindrical coordinates, p is the radial coordinate of the imaged point (the angular
coordinate coincides with angular coordinate of the 3D point, ¢) and ¥J is a vector
of parameters characterizing the geometry of the system (see Figs. 1a and 1c).

2.1. Dioptric Systems

Conventional lens-only systems, i.e., dioptric systems, have been traditionally
described by the pin-hole or perspective projection model (PPM):

p=k-- @)
z

where k includes the camera’s intrinsic calibration parameters. This is valid only
for narrow fields of view, as otherwise the radial distortion becomes too signif-
icant. Modeling super-fisheye fields of view (views larger that 180° angles) in-
volves using other projection models [13, 4]. For example [13] uses a super-
fisheye Nikon F8 and proposes the model p = a - tan(6/b) + ¢ - sin(6/d),
where 6 denotes the angle of an incoming optical ray with the optical axis (see
Fig. 1c) and (a, b, ¢, d) are parameters characterizing the optical system, obtained
by a calibration procedure. Some recent advances allowed companies to build



super-fisheye lenses having simple projection models. For example the Sunex’s
DSL215 lens, Fig. 1d, is designed to have a Constant Angular Resolution Projec-
tion Model (CARPM, termed equidistant in [13]), meaning that the radial coor-
dinate of the image points p is in a linear relationship with the direction of the
incoming optical ray, 0:

p=f-0=f-arctan(r/z). 3)

2.2. Catadioptric Systems

The conjunction of lens-based systems with mirrors, i.e. catadioptric systems,
allows the acquisition of wide-angle and omnidirectional images with relatively
simple and cheap setups. As compared to dioptric systems, the mirror introduces
a reflection on the incoming optical rays implying that the directions ¢ observed
by the camera effectively correspond to (distinct) directions, ¢, in the optical rays
projecting 3D points towards the mirror (see Fig. 1a).

Deriving P for the complete 3D field of view (FOV) of a catadioptric system
involves using the actual mirror shape, F', which is a function of the radial coordi-
nate ¢. Based on first order optics, particularly on the reflection law at the specular
surface of revolution, (¢, F), we have:

arctan(p) + 2 - arctan(F') = ¢ 4)

where arctan(p) = arctan(t/F') = 6 is the angle of the principal optical ray with
the optical axis of the system, ¢ = —arctan((r — t)/(z — F)) is the angle of
the principal optical ray before the reflection on the mirror, and F” represents the
slope of the mirror shape. If F' is a known shape then Eq. (4) describes a generic
Catadioptric Projection Model (CPM), as it forms an equation on p for a given 3D
point (7, 2).

In general there is no closed-form solution for such model. Some simple
shapes F’, such as a hyperboloid having one focus coinciding with the center of the
pin-hole camera capturing the mirror image, allow deriving a closed-form solution
for finding p from (r, z). An interesting solution is proposed in [14, 10]), where
mirrors are designed to have a constant resolution, wide-angle view of the ground
plane. Replacing p = t/F and ¢ = —arctan((r—t)/(z—F’)), becomes a differen-
tial equation, expressing the constant horizontal resolution property, p = a - r + b,
for one plane z = zy. F'is usually found using numerical integration methods
[14, 10].

A closed form model that provides good approximations to the general CPM
is given by the Unified Projection Model (UPM) [12]. It represents all omnidi-
rectional cameras with a single center of projection and consists of a two-step
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Figure 1: Catadioptric and dioptric cameras. (a,b) CPM geometry and setup. FOV of about
5m x 9m and camera 0.6m above the ground. (c,d) CARPM geometry and setup.

mapping via a unit-radius sphere [12]: (i) a 3D world point, P = [r ¢ 2|7, is
projected orthogonally to the sphere surface onto a point P;; (ii) projected to a
point on the image plane, P; = [p |, from a point O on the vertical axis of the
sphere, through the point P;. The mapping is defined by:

[+m

= -7
P IWVr2+z2 -z

where the (I, m) parameters describe the type of camera. The UPM is a widely
used representation for CPM when F' describes (i) a hyperboloid or ellipsoid with
focus at (0,0); (ii) a paraboloid combined with a telecentric lens (6 = 0) or (iii)
F' = const [1, 3]. Note that the PPM is a particular case of the UPM, obtained by
setting [ = 0 and m = —k.

Concluding, in the context of our tracking methodology we can use arbitrarily
complex projection models. Examples of models used in our experiments com-
prise the PPM, CARPM, CPM and UPM, described by Egs.(2) to (5), or by the
general expression Eq.(1).

()

3. 3D Tracking with Particle Filters

We are interested in estimating, at each time step, the 3D pose of the tar-
get. Thus, the state vector of the target, denoted as X;, contains its 3D pose and
derivatives up to a desired order. It represents the object evolution along time,
which is assumed to be an unobserved Markov process with some initial distribu-
tion p(xo) and a transition distribution p(x; | x;_1). The observations {y,; ¢t € N},
y; € R"Y, are conditionally independent given the process {x;;t € N} with dis-
tribution p(y, | x;), where ny is the dimension of the observation vector.



In a statistical setting, the problem is posed as the estimation of the a posteriori
distribution of the state given all observations p(x; | y;,). Under the Markov
assumption:

P(%el¥ 1) o€ D) / P(%e[s—1) (%o Y1) e, ®)

The above equation shows that the a posteriori distribution can be computed
recursively, using the estimate at the preceding time step, p(x:—1 | y;,_1), the
motion-model, p(x; | x;_1) and the observation model, p(y, | x;).

We use Particle Filtering methods in which the probability distribution of an

unknown state is represented by a set of M weighted particles {Xff t M 19

p(xe | y10) & Zwt Xt_xt)) (7)

where 0(+) is the Dirac delta function. Based on the discrete approximation of
p(x¢ | ¥1..), one can compute different estimates of the best state at time ¢. We
use the Monte Carlo approximation of the expectation:

M
L1 D) (i
x= > w2 E(xi | y.,), (8)
i=1
or the maximum likelihood estimate:
Mo '
Xnp, = arg max Z w8(x, — x\). 9)

i=1
The tracking algorithm is composed by four steps:

1. Prediction - computes an approximation of p(x; | y,.,_;), by moving each
particle according to the object’s motion model

2. Observation - computes the likelihood of each particle, based on image data

3. Update - updates each particle’s weight i using its likelihood p(y, | th‘))’
by the means of w\” o wt(i_)1 p(y, | Xﬁi))

4. Resampling - replicates the particles with a high weight and discards the
ones with a low weight

For this purpose, we need to model in a probabilistic way both the motion dy-
namics, p(x; | x;_1), and the computation of each particle’s likelihood p(y, | x\ )
(steps 1 and 2). We discuss the model for the motion dynamics in the rest of this
section, while we describe the observation model in Section 4.



3.1. Object Motion Dynamics
In order to accommodate to any real object motion, we use a Gaussian distri-
bution, giving no privilege to any direction of motion:

p(Xt|Xt—1) :N(Xt|Xt—1>A) (10)

where NV (+| 11, X) stands for a Gaussian distribution with mean x and covariance %,
and A stands for the diagonal matrix with the variances for random walk models
on the components of the object state model. This approach has been widely used
(e.g. [2, 26]).

In this work we consider two kinds of objects: (i) spherical and (ii) polyhedral.
For the first case, the state vector consists of the 3D Cartesian position and linear
velocities of the ball, X; = [z y z & ¢ Z]7. The motion is modeled by a constant
velocity model, i.e., the motion equations correspond to a uniform acceleration
during one time sample:

ol PP o

where [ is the 3 x 3 identity matrix, At = 1, and a;, is a 3 x 1 white zero mean ran-
dom vector corresponding to an acceleration disturbance. The covariance matrix
of the random acceleration vector is usually set experimentally as cov(a;) = o1.

For the polyhedral object, the state vector is X; = [py; q;] where p; = [z y 2|7
denotes the position of the mass-center of the object and q; = [qw ¢z ¢, ¢.]” is a
quaternion representing the object orientation. To model the dynamics, in this case
we use a constant pose model, p;+1 = p; + 7, and q;1 = q * 14, Where * stands
for quaternion product, 7, is Gaussian noise and 7, is a quaternion generated by
sampling Euler angles from a Gaussian distribution.

Since the coordinates in the model are real-world coordinates, the motion
model for a tracked object can be chosen in a principled way, both by using re-
alistic models (constant velocity, constant acceleration, etc.) and by defining the
covariance of the noise terms in intuitive metric units. The fact of using a constant
velocity model is not limiting for cases where the objects can undergo sudden
direction changes, e.g., in a RoboCup scenario. Using an adequately chosen ac-
celeration noise, we can cope with arbitrary accelerations.

4. Observation model

In this section we describe the observation model, as expressed by p(y;|z;) in
(6). We propose a methodology that associates likelihood values to each of the
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Figure 2: The observation process projects the boundaries of the multiple 3D target hypothesis (a)
into the image plane (b) and assigns likelihood values to each of them, as a function image color
distributions inside and outside their boundaries.

samples in the particle filter using the target’s 3D shape and color models. Recall
that each particle represents an hypothesis of the target’s position and pose. The
likelihood function will assign high weights to a particle if the image information
is coherent with its 3D position and pose hypothesis, and will be low otherwise.
For instance, when tracking a red ball, an hypothesis whose projection is within a
certain image region will have low likelihood if few red pixels are in that region.
It will also be low if many pixels outside the region are equally red.

Figure 2 illustrates this process. Boundaries of the multiple 3D pose hypoth-
esis generated by the particle filter are projected onto the image plane with the
sensor’s projection function (we will explain latter that only some points inside
and outside the boundary are projected, not the whole boundary). For visualiza-
tion purposes, only a limited number of samples is shown — in practice a much
higher number of samples is generated.

The likelihood function takes into account the 3D shape and the color prop-
erties of the targets. The rationale is to measure the similarity/dissimilarity be-
tween the colors of the target and the ones in the image regions corresponding
to the boundaries of each hypothesis in the particle filter. High likelihood values
should only be assigned to particles if many pixels inside the region, and few out-
side, match the target’s color model. High likelihood particles will survive and
be replicated in the next time step while low likelihood particles will be rejected.
An appropriately designed likelihood function is thus a crucial aspect in the con-
vergence properties of the particle filter. It should be selective enough to quickly
converge to a good approximation of the posterior (6). However it must not be
too selective, otherwise particles close to the solution (but not close enough) will
receive very low weights and will be rejected. Small mismatches in position and
posture should nevertheless be accepted, despite having lower likelihood values
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that the optimal solution. We take these criteria into account in the definition of
the likelihood function.

In practice we do not project the whole boundary contour in the image plane
since boundary parameterizations may be hard to compute in arbitrary non-linear
sensors. Instead we define sets of 3D points, corresponding to specific regions
of the target’s surface or around it. These points are computed as a function of
the object 3D shape and the particle’s position and orientation with respect to
the imaging system. These sets of 3D points, are projected onto the image plane,
generating corresponding sets of points in 2D image coordinates. Then we build
a color histogram for each set of points and compute the likelihood of the particle
as a function of the similarities between pairs of color histograms. The only im-
age information required in such process is the color of a few hundreds of pixels
per particle. On the contrary to other existing methods, it only uses pixel val-
ues thus avoiding any other image processing operations, or rendering the full
object model in the image plane. Also, it facilitates the utilization of non-linear
projection models, since only the projection of isolated points is required. In the
consecutive sections we explain in depth each of the steps leading to the compu-
tation of particle’s likelihood.

4.1. 3D Points Generation and Their Projection onto the Image

From one 3D pose hypothesis for the tracked object we determine sets of 2D
points that lie on the image, around the object edges and silhouette. The idea is
that the color and luminance differences around the object edges are indicators of
the likelihood of the hypothetical pose.

We consider two different object shapes: spheres and convex polyhedral ob-
jects. However the model can be easily extended to general polyhedra by exploit-
ing the current knowledge in computer graphics [17].

For each state hypothesis Xf), and given the particular 3D geometric object
model, a few sets of 3D points are generated Uy)j (cv), where ¢ is the time step,
1 1s the particle index, j indexes the points in the objects contour vicinity, and «
represents a part of the object, usually the inside or outside of a surface. Then
we convert the sets of 3D points U'" () to the corresponding sets of 2D points
uy)j (cv) from which the likelihood measurements will be collected.

In the case of polyhedra, we use a 3D model that consists of a collection of
faces and edges. To each pair (face, edge) we associate a set of 3D points that lie
on the specific face, near the edge. To each edge we associate a set of points that
lie on the corresponding edge of an expanded polyhedron (see Fig. 3b). The 3D
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Figure 3: Sphere and polyhedron 3D model. (a) Location of the internal (blue dots) and external
(red crosses) 3D points sets for the sphere, with respect to the great circle of the sphere (black
line). (b) Location of the 3D points of the polyhedron model: the points lying on the faces of the
object are represented as blue dots, while the points lying on the edges of the expanded object are
represented as red crosses. (¢) One particular projection of the polyhedron.The areas sampled in
the image to build the internal and external histograms are highlighted. (d) The same projection
of the polyhedron with the pairs of areas associated with non-silhouette edges highlighted.

points of this model are used to define the areas of the image where the color is
sampled in order to build color histograms (see Figs. 3¢ and 3d) . This is done by
roto-translating the model and then projecting the 3D points onto the image.

For spheres, we define two sets of 3D points that when projected onto the im-
age fall on the internal and external boundary of the sphere’s silhouette. These 3D
points lie on the intersection between the plane orthogonal to the line connecting
the projection center to the center of the sphere and two spherical surfaces, one
with a radius smaller than that of the tracked sphere, the other with a radius greater
than that (see Fig. 3a).

The projection of the 3D points onto the image is performed using the appro-
priate projection model, as detailed in Section 2:

u”(a) = P(UY (a)) (12)

Fig. 4 shows examples of the obtained image points for a particle of the exact
posture.

4.2. Color-Based Likelihood Measurement

The 2D points coordinates generated by the previous process are sampled in
the current 1mage and their photometric information is used to obtain each parti-
cle’s likelihood wt . This approximates the state a posterzorz probability density
function, represented by the set of weighted particles Xt , wtz) For color mod-
eling we use independent normalized histograms in the HSI color space, which
decouples intensity from color. We denote the B-bin reference (object) histogram
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Figure 4: Examples of image points used to build the color histograms used for particle likelihood
computation. Obtained from the projection of the 3D points shown in Fig. 3. (a) For spheres. (b)
For cuboids.

model in channel ¢ € {H, S, I} by hi , = (h{,.;, -, % es). An estimate for

the histogram color model, denoted by h§ = (h{ , ..., h% ), can be obtained as
Wy =0 6.(b), i=1,... B (13)
ueld

U is the region where the histogram is computed; b5, € {1,..., B} denotes the
histogram bin index associated with the intensity at pixel location u in channel ¢;
0, 18 a Kronecker delta function at a; and 3 is a normalization constant such that
Zis;l hzg,x = 1.

We define hmodel, h'* and h°" as a reference (object) histogram, the inner
boundary points and the outer boundary points histogram, respectively. We define
hideA and hsideB ag the histograms of each of the two sides of the i non-silhouette
edge (see Fig. 3d). To measure the difference between histograms we use the
Bhattacharyya similarity as in [7, 24]:

B

S(hy, hy) = Z Vhiihis (14)

i=1
We define:

Z:’L:O S (hls'ideA7 hlsideB)
Sy = -

SO _ S(hmodel’ hin)7 Sl — ‘S(hout7 hin)’ (15)

as the object-to-model, object-to-background and mean-side-to-side (non-silhouette
edges) similarities, respectively. Finally, the resulting distance is:

D: <1_S()+/€1(1—31)+/€2(1—32)) —
/‘€1+/€2—|—1

(16)
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where + is a coefficient that modulates the distance based on the number of pro-
jected 3D points that fall onto the image, v = IH(M).

The rationale for this definition of D is that the distance metric should be high
when candidate color histograms are different from the reference histogram and
similar to the background. It should also be high when there is little or no differ-
ence in color on the sides of non-silhouette edges. Parameters s, and x, allow to
balance the influence of the different contributions, up to the extent of ignoring
them, by setting such parameters to 0. They were set to 1.5 and 0.6 respectively,
for the case of the polyhedron; for tracking the sphere they were set to 1.5 and 0
in the first and second experiment and to 0 and 0 in the third one (thus ignoring
the reference color model). The term ~ is useful when tracking an object whose

projection lies only partly on the image. The data likelihood function £ is mod-
D]

eled as a Laplacian distribution over the distance metric: p(y; | Xgi)) xX e .
In our experiments we set ¢ = 1/30.

5. Experimental Results

This section presents an evaluation of the proposed methods. Firstly we present
results taken with omnidirectional cameras: the tracking of a ball performed with
a catadioptric setup and the tracking of a cuboid in a dioptric setup. Secondly
we present results with conventional cameras and perform a comparison between
our method and a competing alternative based on 2D tracking followed by 3D
reconstruction. Is this set of experiments we show results with real and artifi-
cial images, both with ground truth. Finally we show results taken from a mobile
platform equipped with a dioptric vision system, tracking a ball of unknown color.

The first and the last sets of experiments are taken in very unconstrained sce-
narios and their evaluation is not supported by ground truth values of the target’s
trajectories. Evaluation of the results is made only on a quantitative basis by em-
pirical observations of the system’s performance. On the contrary, the second
set of experiments is supported by ground truth values and results are evaluated
quantitatively with the mean squared tracking error. In the experiments with real
images, ground truth is obtained manually by measuring the 3D coordinates of
some points along the trajectory. In the experiments with artificial images, tar-
get’s true 3D coordinates are provided by the simulation engine at each time step.

5.1. Omnidirectional Cameras

Here we illustrate qualitatively the performance of the methods with omnidi-
rectional images with large nonlinear distortions, blur and noise. The sequences
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Figure 5: Ball tracking in the catadioptric setup. (a) Three frames of the sequence (top row), the
corresponding close-ups (bottom row). In both cases the projection of a ball lying in the estimated
position is marked in white, while the pixels used to build the inner and outer color histograms are
marked in black. (b) Close-ups of the ball showing motion blur and image sensor noise. (c) Plot of
the tracked paths resulting from 10 runs of the algorithm performed on the same image sequence.
The 10 blue lines with red points represents the 10 3D estimated trajectories of the ball, the blue
lines are the projection of these trajectories on the ground and lateral plane.
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were collected from setups usually employed in RoboCup Middle Size league
scenarios.

Tracking a Ball in 3D with One Catadioptric Omnidirectional Camera. In this
experiment we tracked a ball hitting an obstacle on the ground and subsequently
performing a series of parabolic movements. This image sequence was acquired
with a Marlin firewire camera (see Fig. 1b) with a frame rate of 25fps and a resolu-
tion of 640 x 480 pixels. The tracker used 10000 particles, the Unified Projection
Model described in Section 2 and the constant velocity motion model described
in Section 3.1. Processing was done off-line, with Matlab. Processing one frame
took 11 seconds on a 2GHz Pentium 4 CPU, i.e. 1.1ms per particle. In this case
the tracker was provided with the color model for the ball. The projection of the
ball on the image plane changes dramatically in size during the image sequence
(see Fig. 5a), due to the nature of the catadioptric system used. The images are
affected by both motion blur and heavy sensor noise (see Fig. 5b). We repeated
the tracking 10 times on the same image sequence to assess how the stochastic
component of the tracker influences the precision of the 3D estimated paths (see
Fig. 5¢), with satisfactory results.

Tracking a Cuboid in 3D with one Dioptric Omnidirectional Camera. In this ex-
periment we tracked a yellow cuboid in a sequence of 600 frames, acquired us-
ing the dioptric omnidirectional setup, comprising a Marlin firewire camera and
a Sunex DSL215 lens (see Fig. 1d). The resolution was 640 x 480 pixels. In
the tracker we used 5000 particles, the Constant Angular Resolution Projection
Model described in Section 2 and the constant position motion model described
in Section 3.1. Processing was done off-line, with Matlab. Processing one image
took 33 seconds on a 2GHz Pentium 4 CPU, i.e. 6.6ms per particle. The tracker
managed to follow the cuboid along rotations and translations that greatly affect
its projection onto the image, see Fig. 6.

5.2. Comparative Study: Perspective Cameras with Ground Truth

Here we evaluate our algorithm quantitatively with ground truth data and com-
pare its performance against an alternative approach: a 2D tracker followed by a
3D reconstruction algorithm. The 2D tracker is based on a MMDA (Multiple
Model Data Association) methodology [23] and outputs a collection of points
uniformly sampled at the target’s contour. In each image, the tracked contour is
expanded in the 3D cone generated by the camera optical center and the sphere’s
occluding contour. Then, knowing the sphere’s radius, simple trigonometric cal-
culations allow the reconstruction of its 3D position.
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Figure 6: Cuboid tracking in the dioptric setup. Six frames of the sequence with the pixels used to
build color histograms highlighted.

Figure 7: Non-uniformly colored ball tracking on cluttered background. Four frames of the
sequence with the estimated contour highlighted in green (top row). Close-up’s on the ball showing
the behaviour of the tracker in challenging conditions: partial occlusion, heavy background clutter,
motion blur, projection of the ball lying partly outside the image (middle row). One close-up
showing the behaviour of the tracker when only a small part of the projection of the ball lies on
the image. Two frames showing the different illumination conditions at the beginning and at the
end of the ramp. A plot of the intensity histogram built on the area occupied by the ball at the
beginning of the ramp, in red, and at the end of the ramp, in blue (bottom row).
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Figure 8: (a) 3D plot of the trajectory estimated with PF along the whole image sequence. The
parts of the trajectory during which the ball is occluded are plotted with red circled lines, while
the part in which the ball is fully visible is plotted as a blue dotted line. Ground truth along the
ramp is represented with a green line, the projection of each line on the ground, lateral and vertical
plan is shown in black. (b) 3D plot of the trajectories estimated with PF (blue dotted line) and the
MMDA-based tracker (red crossed line). Because the MMDA-based method can not deal with
occlusion, both the beginning and the end of the sequence (where occlusions are significant and
the MMDA tracker fails) are not shown in this plot. Ground truth is plotted in green, projections
on the plans are plotted in black.

Tracking a Non-Uniformly colored Ball in 3D on Cluttered Background. In this
experiment we tracked a non-uniformly colored ball rolling down a ramp. The
path of the ball consists of four different parts: in the first part the ball is on top
of the ramp an partially occluded by the hand of an operator, in the second part
the ball rolls down the ramp, in the third part the ball performs a free fall, while
in the fourth it is caught by an operator and is gradually moved out of the image.
The image sequence is affected by heavy background clutter, occlusions, motion
blur and changes in illumination (see Fig. 7). It was acquired with a Canon XM
camera with a frame rate of 25fps and a resolution of 640 x 480 pixels. The tracker
used 10000 particles, a version of the Perspective Projection Model that takes into
account radial and tangential distortion, and the constant velocity motion model
described in Section 3.1. Processing was done off-line, with Matlab. Processing
one image took 21 seconds on a 2GHz Pentium 4 CPU, i.e. 2.1ms per particle.
The tracker was provided with the color model for the ball.

The proposed method successfully tracked the ball along the whole sequence
(see Fig. 8a). We compared the performance of the proposed tracker with the
MMDA-based method, finding that they produce similar results (see Fig. 8b).

19



Method | Precision (RMSE)
PF 0.035m
MMDA 0.017m

Table 1: Precision of the 3D tracking methods (PF - Particle Filter, MMDA - Multiple Model
Data Association) during the linear part of the ramp descent experiment. Precision is measured
by the root mean squared error (RMSE) between the measured trajectory and the best fit linear
trajectory. Notice that this error metric does not take into account constant bias terms (systematic
errors).

This comparison, though, could only be performed on the part of the sequence in
which the ball is fully visible, as the MMDA tracker is not robust to occlusions.

The proposed method is able to cope with occlusions, although the 3D esti-
mate is less accurate: the gradual occlusion during the last part of the path induces
an increasing localization error, but that is difficult to quantify as the motion of
the ball was constrained by an operator catching it.

To evaluate the precision of both methods during the linear part of the ramp
descent, we have computed the root-mean-squared error of the estimated position
with respect to a “ground truth trajectory” obtained by fitting a line to the ob-
served 3D points. Results are presented in table 1. Furthermore, we compared
the performance of the two methods along the first and second half of the linear
path, assessing that the increasing motion blur does not affect it. The RMS error
for the PF approach is smaller during the second half of the linear path (0.039m
and 0.032m, for the first and second halves respectively), as it is for the MMDA
method (0.019m and 0.016m, respectively). Eventually, we measured the preci-
sion of the PF approach during the frames in the beginning of the sequence while
the ball is partially occluded and still, obtaining a value of 0.033m.

We notice that both methods have low tracking errors. The PF filter is less
precise that the MMDA method in this particular experiment, this is due to an
arbitrary choice of the tuning parameters. By appropriately tuning the acceleration
covariance noise it would be possible to change the precision of the methods.
What we would like to stress in this experiment is that the PF method is able to
cope better with significant levels of occlusion whereas the MMDA method fails.

Tracking a Non-Uniformly colored Ball in 3D in Simulated Images with Ground
Truth. In this experiment we tracked a non-uniformly colored ball along a spi-
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Method | Accuracy (RMSE)
PF 0.0192m
MMDA 0.0712m

Table 2: Accuracy of the 3D tracking methods (PF - Particle Filter, MMDA - Multiple Model
Data Association) for the virtual ball tracking experiment. Accuracy is measured by the root mean
squared error (RMSE) between the measured trajectory and the true synthesized trajectory. Both
systematic errors (bias) and random errors (variance) are taken into account on the error metric.

raling path. The images were generated with a virtual reality software!, so the
intrinsic parameters of the camera and the 3D position of the ball at each given
time are known exactly. The image sequence was generated with a resolution of
576 x 380 pixels. The tracker used 10000 particles, the Perspective Projection
Model, and the constant velocity motion model. Processing was done off-line,
with C++. Processing one image took 0.26 seconds on a 2GHz Pentium 4 CPU,
i.e. 0.026ms per particle. The tracker was provided with the color model for the
ball. The results from simulation experiments can be seen in Figure 9.

The PF and MMDA methods were compared in terms of root-mean-squared
error to the true trajectory. Whereas in the previous experiment we were able to
evaluate only the precision of the methods (repeatability), in this experiment we
are able to quantify accuracy (truthfulness).

In comparison to the MMDA-based method, we notice a better match with the
ground truth, despite a slightly larger variance. Quantitatively, the average error
is much smaller with the proposed tracking method. Table 2 presents the obtained
accuracy values.

The MMDA technique was designed to track approximately circular shapes
in the image. Due to a large focal distance of the camera used in this experience,
there is a high perspective distortion and the 3D sphere projects to the image plane
into an ellipse whose eccentricity varies significantly with position. This produces
a space variant bias in the estimated 3D position that was not so obvious in the
previous experiment. On the contrary, our method does not suffer from this effect
because it uses the true 3D space invariant shape of the object instead of its 2D
space variant projection. It is, therefore, more easily applicable to different kinds
of sensors.

'The authors would like to thank Simon Day for granting them the possibility to use one of his
images as wallpaper in this experiment.
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Figure 9: Non-uniformly colored ball tracking with ground truth. (a) One frame of the sequence
with the estimated contour highlighted in green. (b) Plot of the tracking error as a function of
distance to the projection center for PF (blue dots) and the MMDA-based approach (red crosses).
(c) Plot of the tracked path of the ball estimated with PF (blue dots) and the MMDA-based ap-
proach (red crosses). Each graph represents a different view of the reconstructed 3D trajectory.
The left plot is a general perspective view, the middle plot is a projection in X,Z plane (top view)
and the right plot is a projection in the X,Y plane (front view). The ground truth trajectory is
represented by the black line.
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Figure 10: Position of one sphere in the world and robot reference frames.

5.3. Arbitrary Color Ball Tracking with a Moving Robot

To use the tracker on moving robots we need to distinguish between two ref-
erence frames for the 3D coordinates of a point: the world reference frame {W},
which is inertial, and the robot reference frame {R}, which is not inertial as the
robot undergoes accelerations during its motion. The state of a tracked object is
expressed in terms of the world reference frame, so that a motion model based on
the laws of physics can be expressed in the simplest possible way.

In order to project a 3D point onto the image plane, its relative position with
respect to the imaging system of the robot must be known. This means that co-
ordinates expressed in the world reference frame WM = WX WY WZ 1] must
be transformed to the robot reference frame "M = [EX 2Y %7 1] by means of
the transformation matrix 7y, which comprises the rotation matrix ?Ry; and the
translation vector *tyy .

0 1

The transformation matrix is computed at every time step based on the difference
between the initial pose of the robot and the current one. The 2D coordinates of
the point m, corresponding to the point A/, are thus computed as:

%@:{%Wlmq (17)

m = P("M) = P("Ty - M). (18)

In other words, we model the dynamics of the tracked object in the world reference
frame, while the observer position is taken into account in the observation model.

The tracker was implemented in the soccer robot team ISocRob [8] software
architecture in order to demonstrate a real-time application of the method with
robots playing in the RoboCup Middle Size League. In this experiment the omni-
directional robot tracked a moving ball, moved around by a human. The robot is
constantly moving towards the ball without catching it.
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In this implementation the observation model discards the object-to-model
mismatch, described in Eq.(15), and relies strictly on the object-to-background
dissimilarity. Therefore, we carried out the experience with an ordinary soccer
ball, mainly white colored, as one can see in Fig. 11la, but other colored balls,
e.g., orange, could be used.

Images on the robot were acquired with the dioptric omnidirectional camera
used in Section 5.1, at 10fps. Odometry motion control measurements were ob-
tained at 25fps and we used only 600 particles in the tracker. Processing was
done on-line, at 10fps. The results are visible in Fig. 11b 2. In the figure, the
robot posture and ball position are plotted in a frame located on the center of the
soccer field (field frame). The ball coordinates were transformed from the robot
frame to the field frame and the robot self-localization postures (obtained using
Monte Carlo Localization [21] — MCL) were expressed in the field frame, to plot
the ball at each update step. The ball trajectory is not smooth due to the robot
self-localization errors. Ball shifts in the plot correspond to equal shifts in the
robot posture, when MCL corrects the robot posture, since the transformation of
the ball position from the robot frame to the field frame is based on the current
estimate of the robot posture by MCL.

6. Conclusions

We presented a 3D model-based tracking system, based on a Particle Filter
framework. The method requires the knowledge of the 3D shape of the target and
the imaging sensor calibration. We stress that the system is particularly suited for
omnidirectional vision systems, as it only requires the projection of isolated points
arising from likely posture hypotheses for the target. In practice the method can
be used with any projection model given the availability of ways to compute the
projection of 3D points to sensor coordinates. We have shown applications with
different kinds of omnidirectional vision sensors (dioptric and catadioptric), with
different objects (spheres and polyhedra) and with moving observers. The pro-
posed methods were evaluated in challenging real and synthetic sequences with
clutter, partial occlusions, image blur and non-uniformly colored objects. The
observation model assumes distinct target and background color distributions and
benefits, but does not depend critically, on their knowledge. We have shown a case

Zsee also a video taken online — at 2 fps — from the robot camera during this same experiment,

at http://www.youtube.com/watch?v=szReXrJUeY Q&feature=channel
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Figure 11: Tracking a white ball with a moving robot. (a) Detection of a white ball based on the
object-to-background dissimilarity, where the light green crosses mark the pixels used to build the
background histogram. (b) Plot of the paths of robot and ball. The robot starts in the middle circle
facing opposite to the ball. The gray circles represent the robot’s pose while the red dots represent
the ball localization, here in a 2D representation only.

where the target color model is absent and tracking relies only on the contrast be-
tween target and background color. Anyway having known and distinctly colored
objects, naturally improves the robustness of the tracker and makes it specially
suited to color engineered environments as is the case of robotic competitions.

The proposed method was compared with a state-of-the-art 2D tracker fol-
lowed by 3D pose estimation, in the problem of tracking spheres. The two meth-
ods have similar results whenever the 2D tracker reliably computes the image
contour. However, the proposed methodology has proven more robust to partial
occlusion. Additionally, our method is advantageous in terms of the customiza-
tion required to cope with objects of different shapes. In our case we just have
to recompute points in the inner and outer object boundaries, compute their vis-
ibility and project them to the sensor plane (a large body of computer graphics
algorithms and hardware acceleration techniques are available for such purposes).
Instead, contour based methods require 3D pose estimation from the 2D silhou-
ette which often involves complex computations and is frequently an ill-posed
problem.

In future work we will advance in two directions. First we will consider the
use of multiple models for target motion. Despite a constant velocity model, as
the one employed in this work, can cope with arbitrary accelerations by increasing
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the model’s acceleration noise, this has the side effect of increasing also the vari-
ance of the estimated trajectories. With multiple motion models we expect to have
less noisy position estimates and still be able to cope with sudden target accelera-
tions. Secondly we will investigate the possibility of applying information fusion
methods to perform the collaborative tracking of objects in distributed robotics
systems. Something we did not address in this paper was the consideration of lo-
calization errors in the robot/sensor position information. By appropriately com-
bining the information of both robots’ and targets’ location and uncertainty, we
aim at attaining a globally coherent and precise localization of robot teams.
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